"Farmed salmon is a major source of high quality protein and fatty acids essential for human health. Salmon aquaculture is worth approximately £1Bn to the UK economy, and supports many rural and coastal communities. However, disease outbreaks have a major negative effect on salmon production and animal welfare. Infectious salmon anaemia (ISA) is one such disease, and is sometimes dubbed 'salmon flu' because it is caused by a virus (ISAV) that is similar in to influenza. At present, ISA is a notifiable disease in the UK, meaning farmers are obliged to cull their stock in the event of an outbreak. Vaccination and biosecurity cannot fully prevent outbreaks, and developing disease resistant strains of salmon is high priority.
Selective breeding can result in moderate improvements in disease resistance of salmon stocks and may take many generations. However, a revolutionary approach known as genome editing has potential to rapidly increase the rate at which disease resistant salmon can be produced. Genome editing involves the use of gene scissors to precisely cut the genome at a specific location, leading to small-scale targeted changes in the DNA sequence. In this proposal, genome editing technology will be used to investigate genes underlying resistance to ISAV, and potentially to produce a disease-resistant salmon.
The first stage of the project is to identify target genes that will be edited. This will be achieved by measuring the ISAV resistance in a selective breeding program. Genetic markers dispersed throughout the salmon genome will then be used to map individual genes that contribute to variation in resistance in the population. Salmon from resistant and susceptible families will also be sequenced and to identify candidate genes and mutations causing this genetic effect on resistance to ISAV.
In parallel to the 'forward genetic' approach described above, a 'reverse genetic' approach to identifying ISAV resistance candidates will be employed using cell culture models. A genome editing method known as CRISPR-Cas9 will be applied to destroy the function of key candidate ISAV resistance genes in the cell lines. Two methods of choosing candidate genes will be used. The first is based on prior knowledge of the biology of the interaction between the virus and the host cell, partly harnessing extensive research which has been performed on ISAV's close relative influenza. The second is to use the genes affecting natural resistance identified in the forward genetic screen described above. These edited cell lines will be infected with ISAV, and the impact of the edited gene on ISAV resistance and cellular response to infection will be assessed. This will build on an ongoing project to develop genome editing for salmon cell lines.
Finally, genome editing will be used in Atlantic salmon embryos to test the highest priority ISAV resistance genes, especially where knockout of the gene has an impact on resistance in cell culture. Targeted editing of the genes will be performed by microinjecting newly fertilised embryos, which will be reared until the freshwater fry stage. These edited embryos, and unedited controls from the same family, will be challenged with ISAV. The nature and frequency of the edited genes in the resistant and susceptible salmon will be measured.
This proposal has potential to create Atlantic salmon with resistance to a problematic viral disease (ISA) using a novel breeding technology. As such, it could have major animal welfare and economic impacts via prevention of outbreaks and subsequent culling of stocks. The approaches will be directly relevant to other viral disease in fish aquaculture. While the regulatory landscape for application of edited animals in food production is uncertain, a successful outcome of this proposal will provide a high profile example of the power of this technology to understand biology and to improve food security and animal health."