Project Details
Description / Abstract
Fish are a major source of protein and omega-3 fatty acids. With the decline in fisheries worldwide, fish farming has increased to fill the gap and currently supplies around half of all fish consumed. Production must continue to increase in order to supply the increasing human population. The Atlantic salmon farming industry has been a major success story in Scotland, the third largest producer of Atlantic salmon globally, and is a major employer in rural areas. The sustainability of the aquaculture industry relies on good management of fish health and effective control of diseases. Within Scottish salmon farming, control of sea lice and improvement of gill health are currently the two most important health issues that the sector faces. Gill health impacts on the performance of fish at sea, and the need for expensive and often poorly efficacious therapeutic treatments.
Lack of information of host (salmon) responses in gills in different disease states has been highlighted at several recent industry-led workshops in Scotland. Therefore this application proposes to address this issue by undertaking an in-depth study of the genes expressed in gills following exposure to a major gill parasite that causes amoebic gill disease (AGD), using archived samples from a past study. We will determine whether the gill, as a multifunctional organ responsible for oxygen uptake, osmoregulation, as well as defence at a major point of entry for pathogens, has a limited scope to react to pathogens in fish. We will focus on elucidating the wound healing pathways activated and the growth factors potentially released that cause tissue remodelling, since many gill diseases cause similar pathologies, in terms of lamellar fusion and epithelial cell hyperplasia. The data from this initial study will also be used to identify candidate biomarkers relevant for gill health, to be used for further study
Next we will undertake qPCR analysis of the biomarkers in a variety of gill disease states. Gill samples from farmed fish will be collected during the late summer/autumn of 2017/18 by our collaborators, when gill disease is most prevalent. Initially the gill samples will be screened for pathogen presence to confirm the species causing the pathology and whether single or co-infections are involved. The biomarker analysis will reveal if common pathways are seen in different disease states, allowing the potential to alter these pathways to improve gill health against multiple diseases.
Lastly, we will try to modulate the gill responses using different immunomodulators to establish if this approach can improve gill health/ disease protection. We will focus on administration of a 4 molecules that we know are potent inducers of pro-inflammatory pathways or anti-viral defences. They will include flagellin, poly I:C and two cytokines (IL-1beta and IFN-gamma, from a related salmonid the rainbow trout) that are available in our lab as recombinant protein ready for use, or can be purchased (poly I:C). Following administration we will sample gill tissue over a time course and examine the impact on the biomarkers identified earlier in the programme, as well as on known antimicrobial and anti-viral pathways. The best modulator of gill responses will be trialled on a salmon site by our industrial collaborator to assess the impact on gill health.
Lack of information of host (salmon) responses in gills in different disease states has been highlighted at several recent industry-led workshops in Scotland. Therefore this application proposes to address this issue by undertaking an in-depth study of the genes expressed in gills following exposure to a major gill parasite that causes amoebic gill disease (AGD), using archived samples from a past study. We will determine whether the gill, as a multifunctional organ responsible for oxygen uptake, osmoregulation, as well as defence at a major point of entry for pathogens, has a limited scope to react to pathogens in fish. We will focus on elucidating the wound healing pathways activated and the growth factors potentially released that cause tissue remodelling, since many gill diseases cause similar pathologies, in terms of lamellar fusion and epithelial cell hyperplasia. The data from this initial study will also be used to identify candidate biomarkers relevant for gill health, to be used for further study
Next we will undertake qPCR analysis of the biomarkers in a variety of gill disease states. Gill samples from farmed fish will be collected during the late summer/autumn of 2017/18 by our collaborators, when gill disease is most prevalent. Initially the gill samples will be screened for pathogen presence to confirm the species causing the pathology and whether single or co-infections are involved. The biomarker analysis will reveal if common pathways are seen in different disease states, allowing the potential to alter these pathways to improve gill health against multiple diseases.
Lastly, we will try to modulate the gill responses using different immunomodulators to establish if this approach can improve gill health/ disease protection. We will focus on administration of a 4 molecules that we know are potent inducers of pro-inflammatory pathways or anti-viral defences. They will include flagellin, poly I:C and two cytokines (IL-1beta and IFN-gamma, from a related salmonid the rainbow trout) that are available in our lab as recombinant protein ready for use, or can be purchased (poly I:C). Following administration we will sample gill tissue over a time course and examine the impact on the biomarkers identified earlier in the programme, as well as on known antimicrobial and anti-viral pathways. The best modulator of gill responses will be trialled on a salmon site by our industrial collaborator to assess the impact on gill health.
Status | Finished |
---|---|
Effective start/end date | 1/06/18 → 31/12/20 |
Links | https://gtr.ukri.org:443/projects?ref=BB%2FR008442%2F1 |