A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain

Xin-Yuan Huang, Fenglin Deng, Naoki Yamaji, Shannon R. M. Pinson, Miho Fujii-Kashino, John Danku, Alex Douglas, Mary Lou Guerinot, David E. Salt, Jian Feng Ma

Research output: Contribution to journalArticlepeer-review

143 Citations (Scopus)
13 Downloads (Pure)


Rice is a major source of calories and mineral nutrients for over half the world's human population. However, little is known in rice about the genetic basis of variation in accumulation of copper (Cu), an essential but potentially toxic nutrient. Here we identify OsHMA4 as the likely causal gene of a quantitative trait locus controlling Cu accumulation in rice grain. We provide evidence that OsHMA4 functions to sequester Cu into root vacuoles, limiting Cu accumulation in the grain. The difference in grain Cu accumulation is most likely attributed to a single amino acid substitution that leads to different OsHMA4 transport activity. The allele associated with low grain Cu was found in 67 of the 1,367 rice accessions investigated. Identification of natural allelic variation in OsHMA4 may facilitate the development of rice varieties with grain Cu concentrations tuned to both the concentration of Cu in the soil and dietary needs.

Original languageEnglish
Article number12138
Pages (from-to)1-13
Number of pages13
JournalNature Communications
Early online date8 Jul 2016
Publication statusPublished - 8 Jul 2016

Bibliographical note

We thank B. Lahner, E. Yakubova and S. Rikiishi for ICP-MS analysis, N. Komiyama, Iowa State University Plant Transformation Facility and Prashant Hosmani for generation of transgenic rice, K. Wang for providing pTF101.1 vector and N. Verbruggen for providing pYES2 and pYEC2/CT-GFP vectors. We also thank Rice T-DNA Insertion Sequence Database center for providing the T-DNA insertion line and X. Wang, T. Zheng and Z. Li for accessing 3 K rice genome sequence, and Graeme Paton for helpful discussions on Cu bioavailability in water-logged soils. This research was supported by a Grant-in-Aid for Specially promoted Research (JSPS KAKENHI Grant Number 16H06296 to J.F.M), and the US National Science Foundation, Plant Genome Research Program (Grant #IOS 0701119 to D.E.S., M.L.G. and S.R.M.P.).


Dive into the research topics of 'A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain'. Together they form a unique fingerprint.

Cite this