A random growth model for power grids and other spatially embedded infrastructure networks

Paul Schultz, Jobst Heitzig, Jurgen Kurths

Research output: Contribution to journalArticlepeer-review

62 Citations (Scopus)


We propose a model to create synthetic networks that may also serve as a narrative of a certain kind of infrastructure network evolution. It consists of an initialization phase with the network extending tree-like for minimum cost and a growth phase with an attachment rule giving a trade-off between cost-optimization and redundancy. Furthermore, we implement the feature of some lines being split during the grid's evolution. We show that the resulting degree distribution has an exponential tail and may show a maximum at degree two, suitable to observations of real-world power grid networks. In particular, the mean degree and the slope of the exponential decay can be controlled in partial independence. To verify to which extent the degree distribution is described by our analytic form, we conduct statistical tests, showing that the hypothesis of an exponential tail is well-accepted for our model data.
Original languageEnglish
Pages (from-to)2593-2610
Number of pages18
JournalThe European Physical Journal. Special Topics
Issue number12
Early online date26 Sept 2014
Publication statusPublished - Oct 2014

Bibliographical note

This work was partially supported by the ConDyNet project which is funded by the German Federal Ministry of Education and Research.


Dive into the research topics of 'A random growth model for power grids and other spatially embedded infrastructure networks'. Together they form a unique fingerprint.

Cite this