Abstract
PURPOSE: To examine whether calcium type and co-ingestion with protein alter gut hormone availability.
METHODS: Healthy adults aged 26 ± 7 years (mean ± SD) completed three randomized, double-blind, crossover studies. In all studies, arterialized blood was sampled postprandially over 120 min to determine GLP-1, GIP and PYY responses, alongside appetite ratings, energy expenditure and blood pressure. In study 1 (n = 20), three treatments matched for total calcium content (1058 mg) were compared: calcium citrate (CALCITR); milk minerals rich in calcium (MILK MINERALS); and milk minerals rich in calcium plus co-ingestion of 50 g whey protein hydrolysate (MILK MINERALS + PROTEIN). In study 2 (n = 6), 50 g whey protein hydrolysate (PROTEIN) was compared to MILK MINERALS + PROTEIN. In study 3 (n = 6), MILK MINERALS was compared to the vehicle of ingestion (water plus sucralose; CONTROL).
RESULTS: MILK MINERALS + PROTEIN increased GLP-1 incremental area under the curve (iAUC) by ~ ninefold (43.7 ± 11.1 pmol L-1 120 min; p < 0.001) versus both CALCITR and MILK MINERALS, with no difference detected between CALCITR (6.6 ± 3.7 pmol L-1 120 min) and MILK MINERALS (5.3 ± 3.5 pmol L-1 120 min; p > 0.999). MILK MINERALS + PROTEIN produced a GLP-1 iAUC ~ 25% greater than PROTEIN (p = 0.024; mean difference: 9.1 ± 6.9 pmol L-1 120 min), whereas the difference between MILK MINERALS versus CONTROL was small and non-significant (p = 0.098; mean difference: 4.2 ± 5.1 pmol L-1 120 min).
CONCLUSIONS: When ingested alone, milk minerals rich in calcium do not increase GLP-1 secretion compared to calcium citrate. Co-ingesting high-dose whey protein hydrolysate with milk minerals rich in calcium increases postprandial GLP-1 concentrations to some of the highest physiological levels ever reported. Registered at ClinicalTrials.gov: NCT03232034, NCT03370484, NCT03370497.
Original language | English |
---|---|
Pages (from-to) | 2449-2462 |
Number of pages | 14 |
Journal | European Journal of Nutrition |
Volume | 59 |
Issue number | 6 |
Early online date | 17 Sept 2019 |
DOIs | |
Publication status | Published - Sept 2020 |
Bibliographical note
This work was supported by grants from Arla Foods Ingredients and from The Nutrition Society.Keywords
- Incretins
- Calcium
- Protein
- Metabolism
- Peptide tyrosine tyrosine
- Gastric inhibitory polypeptide
- Postprandial
- SENSING RECEPTOR
- FOOD-INTAKE
- ENERGY-INTAKE
- EXERCISE
- SUPPLEMENTATION
- GLYCEMIA
- METABOLISM
- GLUCOSE
- GUT HORMONE-RELEASE
- APPETITE