Abstract
We explore the statistical behaviour of the discrete nonlinear Schrodinger equation as a test bed for the observation of negative-temperature (i.e. above infinite temperature) states in Bose-Einstein condensates in optical lattices and arrays of optical waveguides. By monitoring the microcanonical temperature, we show that there exists a parameter region where the system evolves towards a state characterized by a finite density of discrete breathers and a negative temperature. Such a state persists over very long (astronomical) times since the convergence to equilibrium becomes increasingly slower as a consequence of a coarsening process. We also discuss two possible mechanisms for the generation of negative-temperature states in experimental setups, namely, the introduction of boundary dissipations and the free expansion of wavepackets initially in equilibrium at a positive temperature.
Original language | English |
---|---|
Article number | 023032 |
Number of pages | 13 |
Journal | New Journal of Physics |
Volume | 15 |
DOIs | |
Publication status | Published - 19 Feb 2013 |
Keywords
- Bose-Einstein condensation
- statistical-mechanics
- optical lattice
- gases
- solitons
- systems
- arrays