TY - JOUR
T1 - Effects of Azithromycin on Behavior, Pathologic Signs, and Changes in Cytokines, Chemokines, and Neutrophil Migration in C57BL/6 Mice Exposed to Dextran Sulfate Sodium.
AU - Anderson, SJ
AU - Lockhart, Joey Scott
AU - Estaki, M
AU - Quin, C
AU - Hirota, SA
AU - Alston, L
AU - Buret, AG
AU - Hancock, TM
AU - Petri, B
AU - Gibson, Deanna L
AU - Morck, DW
N1 - This article was made available online on 13 December 2018 as a Fast Track article with title: "Effects of Azithromycin on Behavior, Pathologic Signs, and Changes in Cytokines, Chemokines, and Neutrophil Migration in C57BL/6 Mice Exposed to Dextran Sulfate Sodium".
PY - 2019/2
Y1 - 2019/2
N2 - Here we characterized the murine dextran sulfate sodium (DSS) model of acute colitis. Specifically, we evaluated azithromycin and metronidazole treatment regimens to assess their effects on animal wellbeing, pathologic changes, barrier function, cytokine and chemokine profiles, and neutrophil migration in colon tissue. Azithromycin treatment significantly reduced the severity of colitis, as assessed through body weight change, water consumption, macroscopic lesions, and animal behaviors (activity level, climbing, and grooming), but did not alter food consumption or feeding behavior. Mucosal barrier function (evaluated by using FITC-labeled dextran) was decreased after DSS exposure; azithromycin did not significantly alter barrier function in mice with colitis, whereas metronidazole exacerbated the colitis-related deficit in barrier function. In addition, metronidazole appeared to exacerbate disease as assessed through water consumption and animal behaviors (overall activity, climbing, grooming, and drinking) but had no effect on weight loss, macroscopic lesions, or eating behavior. Pathologic changes were typical for DSS treatment. Antibiotic treatment resulted in reduced levels of proinflammatory cytokines and chemokines and decreased neutrophil adhesion and emigration in DSS-exposed mice. The results highlight the importance of clinical and behavioral assessments in addition to laboratory evaluation as tools to evaluate animal welfare and therapeutic efficacy in disease models. Data from this study suggest that azithromycin may convey some benefits in the mouse DSS colitis model through modulation of the immune response, including neutrophil migration into tissues, whereas metronidazole may exacerbate colitis.
AB - Here we characterized the murine dextran sulfate sodium (DSS) model of acute colitis. Specifically, we evaluated azithromycin and metronidazole treatment regimens to assess their effects on animal wellbeing, pathologic changes, barrier function, cytokine and chemokine profiles, and neutrophil migration in colon tissue. Azithromycin treatment significantly reduced the severity of colitis, as assessed through body weight change, water consumption, macroscopic lesions, and animal behaviors (activity level, climbing, and grooming), but did not alter food consumption or feeding behavior. Mucosal barrier function (evaluated by using FITC-labeled dextran) was decreased after DSS exposure; azithromycin did not significantly alter barrier function in mice with colitis, whereas metronidazole exacerbated the colitis-related deficit in barrier function. In addition, metronidazole appeared to exacerbate disease as assessed through water consumption and animal behaviors (overall activity, climbing, grooming, and drinking) but had no effect on weight loss, macroscopic lesions, or eating behavior. Pathologic changes were typical for DSS treatment. Antibiotic treatment resulted in reduced levels of proinflammatory cytokines and chemokines and decreased neutrophil adhesion and emigration in DSS-exposed mice. The results highlight the importance of clinical and behavioral assessments in addition to laboratory evaluation as tools to evaluate animal welfare and therapeutic efficacy in disease models. Data from this study suggest that azithromycin may convey some benefits in the mouse DSS colitis model through modulation of the immune response, including neutrophil migration into tissues, whereas metronidazole may exacerbate colitis.
UR - https://europepmc.org/articles/PMC6382047
U2 - 10.30802/aalas-cm-18-000001
DO - 10.30802/aalas-cm-18-000001
M3 - Article
C2 - 30545428
VL - 69
SP - 4
EP - 15
JO - Comparative medicine
JF - Comparative medicine
IS - 1
ER -