Effects of passive-storage conceptualization on modeling hydrological function and isotope dynamics in the flow system of a cockpit karst landscape

Guangxuan Li, Xi Chen*, Zhicai Zhang, Lichun Wang, Chris Soulsby

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
3 Downloads (Pure)


Conceptualizing passive storage in coupled flow-isotope models can improve the simulation of mixing and attenuation effects on tracer transport in many natural systems, such as catchments or rivers. However, the effectiveness of incorporating different conceptualizations of passive storage in models of complex karst flow systems remains poorly understood. In this study, we developed a coupled flow-isotope model that conceptualizes both "fast-flow"and "slow-flow"processes in heterogeneous aquifers as well as hydrological connections between steep hillslopes and low-lying depression units in cockpit karst landscapes. The model tested contrasting configurations of passive storage in the fast- and slow-flow systems and was optimized using a multi-objective optimization algorithm based on detailed observational data of discharge and isotope dynamics in the Chenqi Catchment in southwestern China. Results show that one to three passive-storage zones distributed in hillslope fast-/slow-flow reservoirs and/or depression slow-flow reservoirs provided optimal model structures in the study catchment. This optimization can effectively improve the simulation accuracy for outlet discharge and isotope signatures. Additionally, the optimal tracer-aided model reflects dominant flow paths and connections of the hillslope and depression units, yielding reasonable source area apportionment for dominant hydrological components (e.g., more than ∼ 80 % of fast flow in the total discharge) and solute transport in the steep hillslope unit of karst flow systems. Our coupled flow-isotope model for karst systems provides a novel, flexible tool for more realistic catchment conceptualizations that can easily be transferred to other cockpit karst catchments.

Original languageEnglish
Pages (from-to)5515-5534
Number of pages20
JournalHydrology and Earth System Sciences
Issue number21
Publication statusPublished - 7 Nov 2022

Bibliographical note

Acknowledgements. This research was supported by the National Natural Science Foundation of China (grant nos. 42030506 and 41971028). We thank Natalie Orlowski, the two reviewers (Catherine Bertrand and the anonymous reviewer) and Thom Bogaard for their constructive comments that significantly improved the manuscript.

Data Availability Statement

Code availability. The code that supports the findings of this study
is available from the corresponding author upon reasonable request.
Data availability. The discharge and isotope data that support the
findings of this study can be shared following the completion of our
project, as per the project executive policy. In the meantime, the data
can be made available from the corresponding author upon request


Dive into the research topics of 'Effects of passive-storage conceptualization on modeling hydrological function and isotope dynamics in the flow system of a cockpit karst landscape'. Together they form a unique fingerprint.

Cite this