Effects of reproduction on immuno-suppression and oxidative damage, and hence support or otherwise for their roles as mechanisms underpinning life history trade-offs, are tissue and assay dependent

Deng Bao Yang, Yan Chao Xu, De Hua Wang*, John R. Speakman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

69 Citations (Scopus)

Abstract

Life history parameters appear to be traded off against each other, but the physiological mechanisms involved remain unclear. One hypothesis is that potentially energetically costly processes such as immune function and protection from oxidative stress may be compromised during reproductive attempts because of selective resource allocation. Lower temperatures also impose energy costs, and hence allocation decisions might be more pronounced when animals are forced to reproduce in the cold. Here, we experimentally tested whether reproduction at different ambient temperatures was associated with elevated oxidative stress and suppressed immune function in Mongolian gerbils (Meriones unguiculatus). Using a variety of different markers for both immune function and oxidative stress, we found that some measures of immune function (serum bactericidal capacity and size of the thymus) were significantly suppressed, while some measures of oxidative protection [serum superoxide dismutase (SOD) activity and glutathione peroxidase (GPx) activity] were also reduced, and a marker of oxidative damage (protein carbonyls in serum) was increased in lactating compared with non-reproductive gerbils. These changes were in line with the selective resource allocation predictions. However, the phytohaemagglutinin response and serum total immunoglobulin (IgG) were not suppressed, and other markers of oxidative damage [malondialdehyde (MDA) (TBARS) and protein carbonyls in the liver] were actually lower in lactating compared with non-reproductive gerbils, consistent with increased levels of SOD activity and total antioxidant capacity in the liver. These latter changes were opposite of the expectations based on resource allocation. Furthermore, other measures of protection (GPx levels in the liver and protein thiols in both serum and liver) and damage [MDA (TBARS) in serum] were unrelated to reproductive status. Ambient temperature differences did not impact on these patterns. Collectively, our results indicated that the inferred effects of reproduction on immunosuppression and oxidative damage, and hence support or otherwise for particular physiological mechanisms that underpin life history trade-offs, are critically dependent on the exact markers and tissues used. This may be because during reproduction individuals selectively allocate protection to some key tissues, but sacrifice protection of others.

Original languageEnglish
Pages (from-to)4242-4250
Number of pages9
JournalJournal of Experimental Biology
Volume216
Issue number22
DOIs
Publication statusPublished - 15 Nov 2013

Bibliographical note

Acknowledgements

We thank all members of the Animal Physiological Ecology Group for their assistance.

Keywords

  • Environmental temperature
  • Immune function
  • Lactation
  • Meriones unguiculatus
  • Mongolian gerbil
  • Oxidative damage
  • Trade-offs

Fingerprint

Dive into the research topics of 'Effects of reproduction on immuno-suppression and oxidative damage, and hence support or otherwise for their roles as mechanisms underpinning life history trade-offs, are tissue and assay dependent'. Together they form a unique fingerprint.

Cite this