Abstract
Just over a year ago, one of the most destructive rock-ice avalanches in Indian Himalaya hit a small township, tragically wiping out more than 200 lives, several bridges, roads and two hydroelectric power plants.
Known as the Chamoli disaster, it was unique in its magnitude. Despite consisting of 80% of rock and only 20% of ice, the avalanche mass was able to travel around 13km downstream before it turned into a debris flow, causing a flash flood in the Rishiganga and Dhauliganga rivers.
The scale of the disaster attracted the attention of scientists around the world. In the past several months, more than ten research articles have been published covering investigations into possible causes and changes to the valley afterwards.
Known as the Chamoli disaster, it was unique in its magnitude. Despite consisting of 80% of rock and only 20% of ice, the avalanche mass was able to travel around 13km downstream before it turned into a debris flow, causing a flash flood in the Rishiganga and Dhauliganga rivers.
The scale of the disaster attracted the attention of scientists around the world. In the past several months, more than ten research articles have been published covering investigations into possible causes and changes to the valley afterwards.
Original language | English |
---|---|
Specialist publication | The Conversation |
Publisher | The Conversation UK |
Publication status | Published - 3 Mar 2022 |
Keywords
- Climate change
- NASA
- Glaciers
- European Space Agency (ESA)
- Remote sensing
- Flash floods
- Avalanche