Abstract
Despite being critical for normal brain function, the pools that supply docosahexaenoic acid (DHA) to the brain are not agreed upon. Using multiple kinetic models in free-living adult rats, we first demonstrate that DHA uptake from the plasma non-esterified fatty acid (NEFA) pool predicts brain uptake of DHA upon oral administration, which enters the plasma NEFA pool as
well as multiple plasma esterified pools. The rate of DHA loss by the brain is similar to the uptake from the plasma NEFA pool. Furthermore, upon acute iv administration, although more radiolabeled lysophosphatidylcholine (LPC)-DHA enters the brain than NEFA-DHA, this is due to the longer plasma half-life and exposure to the brain. Direct comparison of the uptake rate of LPC-DHA and NEFA-DHA demonstrates that uptake of NEFA-DHA into the brain is 10-fold greater than LPC-DHA. In conclusion, plasma NEFA-DHA is the major plasma pool supplying the brain.
well as multiple plasma esterified pools. The rate of DHA loss by the brain is similar to the uptake from the plasma NEFA pool. Furthermore, upon acute iv administration, although more radiolabeled lysophosphatidylcholine (LPC)-DHA enters the brain than NEFA-DHA, this is due to the longer plasma half-life and exposure to the brain. Direct comparison of the uptake rate of LPC-DHA and NEFA-DHA demonstrates that uptake of NEFA-DHA into the brain is 10-fold greater than LPC-DHA. In conclusion, plasma NEFA-DHA is the major plasma pool supplying the brain.
Original language | English |
---|---|
Article number | 15791 |
Number of pages | 12 |
Journal | Scientific Reports |
Volume | 5 |
DOIs | |
Publication status | Published - 29 Oct 2015 |
Bibliographical note
Acknowledgements This project was funded by a NSERC and CIHR grant to R.P.B. and studentship to C.T.C. R.P.B. holds a Canada Research Chair in Brain Lipid Metabolism. R.P.B. acknowledges support and mass spectrometry equipment and solutions for lipidomics from Sciex. Computer programmable pump software was designed by Dr. Brian Scott. HPLC analyses were performed at the Analytical Facility at the Department of Nutritional Sciences by Dr. Zhen Liu. LC/MS/MS analyses of NEFA-DHA and LPC-DHA and MALDI imaging were performed at the Analytical Facility for Bioactive Molecules (AFBM) with the assistance of Michael Leadley. The AFBM is part of the Centre for the Study of Complex Childhood Diseases (CSCCD) at the Hospital for Sick Children, Toronto, Ontario. CSCCD was supported by Canadian Foundation for Innovation (CFI).Keywords
- DHA
- LPC-DHA
- brain uptake