Robustness of Interrelated Traffic Networks to Cascading Failures

Zhen Su, Lixiang Zhang, Haipeng Peng, Jurgen Kurths, Jinghua Xiao, Yixian Yang

Research output: Contribution to journalArticlepeer-review

68 Citations (Scopus)

Abstract

The vulnerability to real-life networks against small initial attacks has been one of outstanding challenges in the study of interrelated networks. We study cascading failures in two interrelated networks S and B composed from dependency chains and connectivity links respectively. This work proposes a realistic model for cascading failures based on the redistribution of traffic flow. We study the Baraba´si-Albert networks (BA) and Erdo˝s-Re´nyi graphs (ER) with such structure, and found that the efficiency sharply decreases with increasing percentages of the dependency nodes for removing a node randomly. Furthermore, we study the
robustness of interrelated traffic networks, especially the subway and bus network in Beijing. By analyzing different attacking strategies, we uncover that the efficiency of the city traffic system has a non-equilibrium phase transition at low capacity of the networks. This explains why the pressure of the traffic overload is relaxed by singly increasing the number of small buses during rush hours. We also found that the increment of some buses may release traffic jam caused by removing a node of the bus network randomly if the damage is limited. However, the efficiencies to transfer people flow will sharper increase when the capacity of the subway network aS . a0.
Original languageEnglish
Article number05413
JournalScientific Reports
Volume4
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'Robustness of Interrelated Traffic Networks to Cascading Failures'. Together they form a unique fingerprint.

Cite this