Abstract
The polyamines, spermine (Spm) and spermidine (Spd), are important for cell growth and function. Their homeostasis is strictly controlled, and a key downregulator of the polyamine pool is the polyamine-inducible protein, antizyme 1 (OAZ1). OAZ1 inhibits polyamine uptake and targets ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, for proteasomal degradation. Here we report, for the first time, that polyamines induce dimerization of mouse recombinant full-length OAZ1, forming an (OAZ1)2–polyamine complex. Dimerization could be modulated by functionally active C-methylated spermidine mimetics (MeSpds) by changing the position of the methyl group along the Spd backbone—2-MeSpd was a poor inducer as opposed to 1-MeSpd, 3-MeSpd, and Spd, which were good inducers. Importantly, the ability of compounds to inhibit polyamine uptake correlated with the efficiency of the (OAZ1)2–polyamine complex formation. Thus, the (OAZ1)2–polyamine complex may be needed to inhibit polyamine uptake. The efficiency of polyamine-induced ribosomal +1 frameshifting of OAZ1 mRNA could also be differentially modulated by MeSpds—2-MeSpd was a poor inducer of OAZ1 biosynthesis and hence a poor downregulator of ODC activity unlike the other MeSpds. These findings offer new insight into the OAZ1-mediated regulation of polyamine homeostasis and provide the chemical tools to study it.
Original language | English |
---|---|
Article number | 4614 |
Number of pages | 17 |
Journal | International Journal of Molecular Sciences |
Volume | 23 |
Issue number | 9 |
Early online date | 21 Apr 2022 |
DOIs | |
Publication status | Published - 21 Apr 2022 |
Bibliographical note
Funding: This work was supported by grants from the Russian Science Foundation (grant # 17-74-20049—synthesis of C-methylated Spd analogues, ITC studies of dimerization of OAZ1, and frameshifting experiments), the Russian Science Foundation (grant # 19-74-10086—isolation of OAZ1, electrophoresis studies of dimerization of OAZ1), and the Academy of Finland (grants # 292574 and# 315487).
Acknowledgments: The authors thank A. Karppinen, A. Korhonen, T. Reponen, M. Salminkoski, and S.D. Negrya for their skillful technical assistance.
Keywords
- polyamines
- antizyme
- dimerization
- polyamine analogues
- ribosomal frameshifting
- polyamine uptake
- ornithine decarboxylase
- α-difluoromethylornithine