Rotating solutions for a parametrically driven pendulum

X. Xu, Marian Wiercigroch, M. P. Cartmell

Research output: Contribution to journalArticlepeer-review

128 Citations (Scopus)


The authors consider the dynamics of the harmonically excited parametric pendulum when it exhibits rotational orbits. Assuming no damping and small angle oscillations, this system can be simplified to the Mathieu equation in which stability is important in investigating the rotational behaviour. Analytical and numerical analysis techniques are employed to explore the dynamic responses to different parameters and initial conditions. Particularly, the parameter space, bifurcation diagram, basin of attraction and time history are used to explore the stability of the rotational orbits. A series of resonance tongues are distributed along the non-dimensionalied frequency axis in the parameter space plots. Different kinds of rotations, together with oscillations and chaos, are found to be located in regions within the resonance tongues. (C) 2004 Elsevier Ltd. All rights reserved.

Original languageEnglish
Pages (from-to)1537-1548
Number of pages11
JournalChaos, Solitons & Fractals
Issue number5
Publication statusPublished - 2005




Dive into the research topics of 'Rotating solutions for a parametrically driven pendulum'. Together they form a unique fingerprint.

Cite this