Shape-based clustering in wireless sensor networks

Ijeoma Okeke, Fabio Verdicchio

Research output: Chapter in Book/Report/Conference proceedingPublished conference contribution

2 Citations (Scopus)


A low-complexity algorithm is presented that clusters sensor nodes based on similarity in the sensed signals. This feature makes it an enabler for distributed detection of events that are impossible to identify using information available to a single node. The algorithm does not require system training prior to deployment nor does it assume statistical knowledge of the signal. Experimental results confirm that clusters produced by our algorithm match signal patterns more closely than those formed by a comparatively simple algorithm that minimizes Euclidean distance between signals.

Original languageEnglish
Title of host publicationIEEE SENSORS 2017 - Conference Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages3
ISBN (Electronic)9781509010127
Publication statusPublished - 21 Dec 2017
Event16th IEEE SENSORS Conference, ICSENS 2017 - Glasgow, United Kingdom
Duration: 30 Oct 20171 Nov 2017


Conference16th IEEE SENSORS Conference, ICSENS 2017
Country/TerritoryUnited Kingdom


  • event detection
  • sensor clustering
  • similarity metric


Dive into the research topics of 'Shape-based clustering in wireless sensor networks'. Together they form a unique fingerprint.

Cite this