Abstract
We investigate a class of nonlinear wave equations subject to periodic forcing and noise, and address the issue of energy optimization. Numerically, we use a pseudo-spectral method to solve the nonlinear stochastic partial differential equation and compute the energy of the system as a function of the driving amplitude in the presence of noise. In the fairly general setting where the system possesses two coexisting states, one with low and another with high energy, noise can induce intermittent switchings between the two states. A striking finding is that, for fixed noise, the system energy can be optimized by the driving in a form of resonance. The phenomenon can be explained by the Langevin dynamics of particle motion in a double-well potential system with symmetry breaking. The finding can have applications to small-size devices such as microelectromechanical resonators and to waves in fluid and plasma.
Original language | English |
---|---|
Pages (from-to) | 65-70 |
Number of pages | 6 |
Journal | The European Physical Journal B - Condensed Matter and Complex Systems |
Volume | 69 |
Issue number | 1 |
DOIs | |
Publication status | Published - May 2009 |
Keywords
- coherence resonance
- noise
- oscillators