Support varieties for Weyl modules over bad primes

David John Benson, Brian D. Boe, Leonard Chastkofsky, Daniel K. Nakano, Jo Jang Hyun, Jonathan Kujawa, Nadia Mazza, Philip Bergonio, Bobbe Cooper, Jeremiah Hower, Kenyon J. Platt, Caroline Wright, UGA VIGRE Algebra Group

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


Let G be a reductive algebraic group scheme defined over F-p and G(1) be the first Frobenius kernel. For any dominant weight lambda, one can construct the Weyl module V(lambda). When p is a good prime for G, the G(1)-support variety of V (lambda) was computed by Nakano, Parshall and Vella in [D. K. Nakano, B.J. Parshall, D.C. Vella, Support varieties for algebraic groups, J. Reine Angew. Math. 547 (2002) 15-49]. We complete this calculation by computing the G(1)-supports of the Weyl modules over fields of bad characteristic.

Original languageEnglish
Pages (from-to)602-633
Number of pages32
JournalJournal of Algebra
Issue number2
Early online date21 Mar 2007
Publication statusPublished - 15 Jun 2007


  • cohomology
  • support varieties
  • Weyl modules
  • finite-group schemes
  • lie-algebras
  • nilpotent elements
  • unipotent elements
  • field


Dive into the research topics of 'Support varieties for Weyl modules over bad primes'. Together they form a unique fingerprint.

Cite this