Wittgenstein on Incompleteness Makes Paraconsistent Sense

Francesco Berto

Research output: Chapter in Book/Report/Conference proceedingChapter


I provide an interpretation of Wittgenstein’s much criticised remarks on Gödel’s First Incompleteness Theorem in a paraconsistent framework: in taking Gödel’s proof as a paradoxical derivation, Wittgenstein was consequent upon his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. I show that the model-theoretic features of paraconsistent arithmetics match with many intuitions underlying Wittgenstein’s philosophy of mathematics, such as its strict finitism and the insistence on the decidability of any mathematical question.
Original languageEnglish
Title of host publicationParaconsistency
Subtitle of host publicationLogic and Applications
EditorsK. Tanaka, F. Berto, E. Mares, F. Paoli
Number of pages20
ISBN (Electronic)978-94-007-4438-7
ISBN (Print)978-94-007-4437-0
Publication statusPublished - 2012

Publication series

NameLogic, Epistemology, and the Unity of Science

Bibliographical note

The non-technical parts of this work draw on a paper published in Philosophia Mathematica, 17: 208–219, with the title “The Gödel Paradox and Wittgenstein’s Reasons”. I am grateful to Oxford University Press and to the Editors of Philosophia Mathematica for permission to reuse that material. I am also grateful to an anonymous referee for helpful comments on this expanded version


Dive into the research topics of 'Wittgenstein on Incompleteness Makes Paraconsistent Sense'. Together they form a unique fingerprint.

Cite this