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Evidence for a Role of Adaptive Immune
Response in the Disease Pathogenesis of the
MPTP Mouse Model of Parkinson’s Disease

Heather L. Martin,1 Matteo Santoro,1 Sarah Mustafa,1 Gernot Riedel,1

John V. Forrester,1,2,3 and Peter Teismann1

Parkinson’s disease (PD) is the second most common neurodegenerative disease and results from the loss of dopaminergic
neurons of the nigrostriatal pathway. The pathogenesis of PD is poorly understood, but inflammatory processes have been
implicated. Indeed increases in the number of major histocompatibility complex II (MHC II) reactive cells have long been rec-
ognised in the brains of PD patients at post-mortem. However whether cells expressing MHC II play an active role in PD
pathogenesis has not been delineated. This was addressed utilising a transgenic mouse null for MHC II and the parkinsonian
toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In wild-type mice MHC II levels in the ventral midbrain were
upregulated 1–2 days after MPTP treatment and MHC II was localized in both astrocytes and microglia. MHC II null mice
showed significant reductions in MPTP-induced dopaminergic neuron loss and a significantly reduced invasion of astrocytes
and microglia in MHC II null mice receiving MPTP compared with controls. In addition, MHC II null mice failed to show
increases in interferon-g or tumour necrosis factor-a in the brain after MPTP treatment, as was found in wild-type mice. How-
ever, interleukin-1b was significantly increased in both wild-type and MHC II null mice. These data indicate that in addition to
microglial cell/myeloid cell activation MHC Class II-mediated T cell activation is required for the full expression of pathology
in this model of PD.
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Introduction

Parkinson’s disease (PD) is the second most common neu-

rodegenerative disease (Dauer and Przedborski, 2004),

affecting 120,000 people in the UK alone, with 10,000 new

cases per annum. Its primary neuropathological feature is the

loss of dopaminergic nigrostriatal neurons (Dauer and Przed-

borski, 2004). The pathogenesis of this debilitating disease is

poorly understood (Dauer and Przedborski, 2004), but

inflammatory processes have been implicated in the degenera-

tion of the dopaminergic neurons. This is supported by the

activated glial cells and the upregulation of pro-inflammatory

cytokines seen in both models of PD and PD patients

(Czlonkowska et al., 1996; Hebert et al., 2003; McGeer

et al., 1988; Mogi et al., 1994a,b).

Major histocompatibility complex class II (MHC II)

molecules present endocytosed antigens to CD41 T-helper

cells (Cresswell, 1994). Under normal conditions the central

nervous system expresses low levels of MHC II (Shrikant and

Benveniste, 1996); however increases in MHC II levels have

been documented in a number of pathological states includ-

ing multiple sclerosis (Hofman et al., 1986) and Alzheimer’s

disease (Parachikova et al., 2007). Increases in MHC II-

positive cells have long been recognised in human post-

mortem tissue from PD patients (Imamura et al., 2003;
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McGeer et al., 1988). Also an increase in the number of

MHC II-positive microglia is seen in mice treated with

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a

drug which induces a PD-like disease in mice (Kurkowska-

Jastrzebska et al., 1999a,b). A role for MHC II in PD patho-

genesis is further supported by the presence of an infiltrate of

CD41 T-cells in PD patients (Brochard et al., 2009), as

recruitment of CD41 T-cells requires MHC II signalling

(Cresswell, 1994). Indeed mice null for CD41 T-cells are

protected from MPTP toxicity (Brochard et al., 2009).

Despite this body of evidence suggesting that MHC II plays a

role in the degeneration of dopaminergic neurons direct evi-

dence for the role of MHC II in PD pathogenesis has not

been demonstrated. This study aims to determine whether

MHC II is required for PD pathogenesis by utilising a trans-

genic mouse null for MHC II and the parkinsonian toxin

MPTP.

Materials and Methods

Animals and Treatments
All procedures were in accordance with the Animals (Scientific Pro-

cedures) Act 1986 and MPTP handling and safety measures were

consistent with (Jackson-Lewis and Przedborski, 2007). Twelve

week-old male C57BL6 mice (Charles River Laboratories, UK) or

MHC II null mice, previously described by (Lau et al., 2008)

received intraperitonal injections of MPTP-HCl (30mg/kg free

base; Sigma Aldrich, Poole, UK) dissolved in saline, one injection

for five consecutive days, and were killed at selected times ranging

from 0 to 21 days after the last injection. Control mice received

saline only.

MHC II, Tyrosine Hydroxylase (TH), Glial Fibrillary
Acid Protein (GFAP) and Ionized Calcium-Binding
Adaptor Molecule-1 (Iba1) Immunohistochemistry
Immunofluorscent staining was performed as described in (Teismann

et al., 2003). Primary antibodies were rat anti-MHC II (1:200; eBio-

science, Hatfield, UK), mouse anti-TH (1:500; Chemicon, Teme-

cula, CA), mouse anti-human GFAP (1:100; DAKO,

Cambridgeshire, UK) and rabbit anti-Iba-1 (1:1000; Wako Chemi-

cals, Neuss, Germany). Immunostaining was visualized with Alexa

Fluor 488 anti-rabbit (1:300; Molecular Probes, Eugene, OR), Alexa

Fluor 488 anti-rat (1:300; Molecular Probes) cy-3 anti-mouse

(1:200; Jackson Immuno Research, West Grove, PA), cy-3 anti-rab-

bit (1:200; Jackson Immuno Research) and confocal microscopy

(LSM 510, Carl Zeiss, Hertfordshire, UK).

Immunostaining for stereological counting of TH- and Nissl-

stained neurons in the substantia nigra pars compacta (SNpc) was

carried out on midbrain sections as described in (Teismann et al.,

2003) using a polyclonal rabbit anti-TH (1:1000; Chemicon) and

visualized with 3,30-diaminobenzidine (SigmaAldrich). The sections

were counted using regular light microscopy (AxioImager M1, Carl

Zeiss) and the optical fractionator method (West, 1993) (Stereo

Investigator version 7, MBF Bioscience, Magdeburg, Germany).

Stereological counting of microglia and astrocytes in the SNpc was

carried out on midbrain sections as described for TH-stained neu-

rons using a rabbit anti-Iba1 (1:1,000; Wako Chemicals) for micro-

glia and a rabbit anti- GFAP antibody (1:500; DAKO) for

astrocytes. A mouse anti-TH was used to permit the SNpc to be

identified (1:1,000; Chemicon). Staining was visualized using cy-3

anti-rabbit (1:300; Jackson Immuno Research) and cy-2 anti-mouse

(1:300; Jackson Immuno Research) antibodies. The sections were

counted using fluorescence microscopy (AxioImager M1) and the

optical fractionator method (Stereo Investigator version 7).

RNA Extraction and Quantitative RT-PCR
Total RNA was extracted from selected brain regions using the TRIzol

(Invitrogen) homogenization method as in the manufacturer’s instruc-

tions. Samples were then subjected to a DNase digestion, DNase I

Amp Grade kit (Invitrogen), as per manufacturer’s instructions. First

strand cDNA synthesis was carried out using the Superscript II kit

(Invitrogen). The primer sequences used in this study were MHC II

b-chain 50- ACACGGTGTGCAGACACAA-30 (forward), 50-TCAG

GCTGGGATGCTCC-30 (reverse), b-actin as 50-TGTGATGG

TGGGAATGGGTCAG-30 (forward) and 50-TTTGATGTCACGC

ACGATTTCC-30 (reverse). Quantitative PCR amplification was

undertaken using the Lightcycler 480 and the perfecta SYBR Green

Fastmix kit (Quanta Biosciences, Gaithersburg, MD) as per the manu-

facturer’s instructions. The identity of fragments amplified with these

primers was confirmed by DNA sequencing performed by The

Sequencing Service (College of Life Sciences, University of Dundee,

Scotland, www.dnaseq.co.uk) using Applied Biosystems Big-Dye Ver

3.1 chemistry on an Applied Biosystems model 3730 automated capil-

lary DNA sequencer.

Western Blot Analysis
Total proteins from mouse ventral midbrain, striatum and cerebel-

lum samples were isolated in NP-40 buffer (20 mM Tris–HCl pH

8; 137 mM NaCl; 10% glycerol; 1% NP-40; 2 mM EDTA and

protease inhibitors (cOmplete Mini EDTA-free cocktail, Roche))

1:20 (wt/vol). Protein concentration was determined using a bicin-

choninic acid kit (Pierce, Rockford, IL). After boiling in Laemmli’s

buffer, 20 mg of protein was separated by electrophoresis on a 12%

sodium dodecyl sulphate–polyacrylamide gel, transferred to nitrocel-

lulose membrane, and blocked with 2% BSA, 5% or 2% non-fat

dried milk in PBS containing 0.05% Tween-20 (vol/vol). Overnight

incubation with primary antibody at 48C followed. Primary antibod-

ies were rat anti-MHC II (1:750; eBioscience), mouse anti-

interferon-g (1:500; ThermoScientific, Cambridge, UK), rabbit anti-

tumour necrosis factor-a (1:200; Abcam, Cambridge, UK), rabbit

anti-interleukin-1b (1:500; Abcam), and mouse anti-b-actin

(1:25,000; SigmaAldrich). Blots were then washed a second time in

PBS-Tween (0.05%) and incubated with an appropriate secondary

antibody (Jackson Immuno Research). Blots were washed in

Abbreviations

IFNg Interferon-g
IL-1b Interleukin-1b

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
TNFa Tumour necrosis factor-a
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PBS-Tween (0.05%) and developed using the Supersignal West Dura

kit (Pierce) as per manufacturer’s instructions. Bands were visualized

with an AlphaInnotech digital imaging system (San Leandro, CA)

and quantified with AlphaEase FC 5.02 software.

HPLC Analysis of Striatal Dopamine and 3,4-
Dihydroxyphenylacetic Acid (DOPAC) Levels
High-performance liquid chromatography (HPLC) with electro-

chemical detection was used to measure striatal levels of dopamine,

and DOPAC using a method that has been described (Sathe et al.,

2012). Briefly, mice were killed, 21 days after the last MPTP injec-

tion, and the striata were dissected out and snap frozen on solid car-

bon dioxide. Striata were then homogenised in 0.1 M perchloric

acid (1:30 wt/vol), sonicated and centrifuged at 18,600 x g at 48C

for 20 mins. Following centrifugation 20 ll of sample was injected

onto a C18 column (Dionex, Germering, Germany) The mobile

phase consisted of 90% 50 mM sodium acetate, 35 mM citric acid,

105 mg/L octane sulfonic acid, 48 mg/L sodium EDTA solution,

and 10% methanol at pH 4.3. Flow rate was 1 ml/min. Peaks were

detected by an ESA Coulochem II electrochemical detector (ESA,

Dionex), and the detector potential was set at 700 mV. Data were

collected and processed using the Chromeleon computer system

(Dionex).

Statistical Analysis
Data were analyzed in SigmaPlot 11 for Windows (Systat Software,

London, UK). All values are expressed as the mean 6 SEM. Normal

distribution of the data was tested and the homogeneity of variance

confirmed with Levene Test. ANOVA was used to analyse differences

among means with time, treatment, or genotype as the independent

factor, when the data was normally distributed. When ANOVA

showed significant differences Dunnett post-hoc testing was used in

time-course experiments to compare to saline-treated mice, in other

experiments student Newman–Keuls post hoc testing was used to

make pairwise comparisons between means. Data not normally dis-

tributed were analyzed with the Kruskal-Wallis test followed by

Mann Whitney U-tests. The null hypothesis was rejected at the 0.05

level.

Results

Effect of MPTP Treatment on MHC II Expression
MHC II is upregulated in the acute MPTP model (Kurkow-

ska-Jastrzebska et al., 1999b) and it was necessary to see if

this is also true for the sub-acute model used in this study.

Quantitative RT-PCR showed a significant increase in MHC

II b-chain mRNA in the ventral midbrain one day after

MPTP administration compared to saline-treated mice

(P 5 0.011 ANOVA, Dunnett’s post hoc test; Fig. 1A), when

normalized to b-actin levels (b-actin levels were unchanged

by MPTP treatment, P 5 0.112 Kruskal Wallis test). The

increase in MHC II mRNA levels correlated with an increase

in MHC II protein one day after MPTP administration

which reached statistical significance two days after MPTP

treatment (P 5 0.031 compared to saline, ANOVA, Dunnett’s

post hoc test; Fig. 1B). The two chains of MHC II, a and b,

were dissociated under the conditions used for the Western

blots, the bands representing both chains were analyzed

together. MHC II protein levels in the striatum were

increased at 14 and 21 days after MPTP treatment

(P 5 0.031 at 14 days and P 5 0.008 at 21 days compared to

saline, ANOVA, Dunnett’s post hoc test; Fig. 1C), whilst

MHC II protein levels in the cerebellum were unchanged by

MPTP treatment (P 5 0.734 ANOVA; Fig. 1D).

Following toxic insults MHC II is reported to be

upregulated on both microglia and astrocytes (Kurkowska-

Jastrzebska et al., 1999a; Wong et al., 1984) so the immuno-

histological localisation of MHC II in the SNpc was deter-

mined by fluorescent double-labelling using TH as a marker

for dopaminergic cells, GFAP as a marker for astrocytes and

Iba1 as a marker for microglia. MHC II was found to co-

localize with GFAP (Fig. 1E iv-vi) indicating its presence in

astrocytes. MHC II also co-localized with a subset of Iba1

positive microglia (Fig. 1E vii-ix).

Genetic Ablation of MHC II Provides Protection
Against MPTP Toxicity
Having determined that MHC II is expressed in the SNpc

and altered by MPTP treatment the impact of the absence of

MHC II on MPTP toxicity was examined. Treatment with

MPTP induces dopaminergic neuron death and this was the

case for wild-type mice that showed a significant reduction in

TH-positive neurons compared to saline-treated mice

(P< 0.001 ANOVA, Student Newman Keuls post hoc test;

Fig. 2A,B). However, MHC II null mice treated with MPTP

did not show any significant reductions in dopaminergic neu-

ron number compared to saline-treated mice. No significant

differences were seen in dopaminergic neuron number

between wild-type and MHC II null mice treated with saline.

The same situation was seen with Nissl neuron numbers,

with MPTP reducing the number of Nissl positive neurons in

wild-type mice only (P 5 0.008 Kruskal Wallis, Mann

Whitney-U post hoc test compared to saline-treated wild-type

mice; Fig. 2C). In the striatum dopaminergic nerve terminals

were partially protected in MHC II null mice treated with

MPTP. In wild-type mice MPTP administration reduced

striatal TH-immunoreactivity (P 5 0.036 ANOVA, Student

Newman Keuls post hoc test; Fig. 2E). However, in MHC II

null mice MPTP-induced reduction in TH-immunoreactivity

was less pronounced (not significantly compared to wild-type

mice) and did not significantly differ from saline-treated

mice. The neuroprotective effect of MHC II ablation did not

extend into functional protection as there were no differences

in the levels of dopamine and its metabolites (Table 1)

between wild-type and MHC II null mice treated with

MPTP. Levels of dopamine and DOPAC were both reduced
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FIGURE 1: Alterations in MHC II expression and MHC II immunolocalisation following MPTP treatment. MHC II mRNA levels in the ven-
tral midbrain are increased one day after MPTP compared to saline-treated mice (A), with a corresponding increase in MHC II protein
two days after MPTP (B). In the striatum MHC II protein levels are increased at 14 and 21 days after MPTP treatment (C). MHC II protein
levels are unchanged in the cerebellum after MPTP treatment (D). Data are mean 6 SEM, n 5 3–6 mice per timepoint. *P < 0.05,
**P < 0.01 compared to saline (ANOVA with Dunnett’s post hoc test) (d—days after MPTP (5 3 30mg/kg) administration). (E) Double
immunofluorescence of the SNpc confirms that two days after MPTP treatment MHC II (green) is not expressed in TH-positive neurons
(i-iii; red), but is present in GFAP-positive astrocytes (iv-vi; red) and a subset of Iba1-positive microglia (arrowed) (vii-ix; red). (TH—tyro-
sine hydroxylase; GFAP—glial fibrillary acidic protein; Iba1—Ionized calcium-binding adaptor molecule 1). Scale bars are 20mm. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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by MPTP treatment in wild-type (dopamine—P< 0.001

Kruskal Wallis, Mann Whitney-U post hoc test; DOPAC—

P< 0.001 Kruskal Wallis, Mann Whitney-U post hoc test)

and MHC II null mice (dopamine—P< 0.001 Kruskal

Wallis, Mann Whitney-U post hoc test; DOPAC—P 5 0.010

Kruskal Wallis, Mann Whitney-U post hoc test) compared to

saline-treated mice.

Genetic Ablation of MHC II Reduces MPTP-Induced
Microgliosis and Astrogliosis
Administration of MPTP results in reactive gliosis beginning

one day after MPTP treatment for microglia and two days

after MPTP for astrocytes (Kohutnicka et al., 1998). To see if

the degree of reactive gliosis was altered in MHC II null

mice, the number of Iba1-positive microglia and the number

TABLE 1: Effect of Genetic Ablation of MHC II on Striatal Dopamine and DOPAC Levels

Saline MPTP

WT KO WT KO

Dopamine (ng/mg wet tissue) 7.32 6 1.42 9.17 6 1.21 1.27 6 0.30*** 1.74 6 0.34***

DOPAC (ng/mg wet tissue) 0.76 6 0.08 1.52 6 0.35 0.24 6 0.05*** 0.39 6 0.11*

No difference is seen between wild-type and MHC II null mice in their sensitivity to MPTP toxicity as measured by reduction in dopamine
and DOPAC levels. Data are mean 6 SEM, n 5 5–8 mice per group.
*P< 0.05.
***P< 0.001 compared to appropriate saline-treated group (Kruskal-Wallis test with Mann Whitney U-post hoc tests; WT—wild-type,
KO—knock-out (MHC II null mice)).

FIGURE 2: Effect of genetic ablation of MHC II on MPTP neurotoxicity. MHC II null mice show attenuation of MPTP-induced neuronal
loss. Representative micrographs of TH and Nissl stained sections (Scale bar is 200 lm) (A). MPTP treatment induced loss of both TH-
positive neuron (B) and Nissl-positive neuron (C) numbers in wild-type mice and this loss was reduced in MHC II null mice. No differences
were detected in striatal TH-immunoreactivity (D and E) between wild-type and MHC II null mice. Data are mean 6 SEM, n 5 4–5 mice
per group. *P < 0.05; **P < 0.01; ***P < 0.001; ANOVA with student Newman-Keuls post hoc test for TH-positive neurons and TH-
immunoreactivity; Kruskal Wallis with Mann Whitney-U tests for Nissl-positive neurons (WT—wild-type; KO—knock-out (MHC II null); TH-
tyrosine hydroxylase). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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of GFAP-positive astrocytes were stereologically counted one

and two days after MPTP treatment respectively. MPTP

treatment significantly increased the number of Iba1-positive

microglia in both wild-type (P< 0.001 ANOVA, Student

Newman Keuls post hoc test; Fig. 3A,B) and MHC II null

mice (P 5 0.001 ANOVA, Student Newman Keuls post hoc

test) compared to saline-treated controls. However, MPTP

treated MHC II null mice demonstrated less Iba1-positive

microglia than MPTP treated wild-type mice (P 5 0.002

ANOVA, Student Newman Keuls post hoc test). The number

of Iba1-positive microglia did not differ between wild-type

and MHC II null mice treated with saline. The number of

GFAP-positive astrocytes was also increased by MPTP in

wild-type mice (P 5 0.007 ANOVA, Student Newman Keuls

post hoc test; Fig. 3C,D), however, this increase was signifi-

cantly attenuated in MHC II null mice (P 5 0.016 ANOVA,

Student Newman Keuls post hoc test). The number of

GFAP-positive astrocytes in MPTP treated MHC II null

mice did not differ from that of saline-treated mice and the

number of GFAP-positive astrocytes did not differ between

wild-type and MHC II null mice treated with saline.

Genetic Ablation of MHC II Changes Cytokine
Responses to MPTP
As MHC II ablation reduced both MPTP-induced dopami-

nergic loss and reactive gliosis processes involving cytokine

production, alterations in cytokine responses to MPTP

administration were assessed. The cytokines chosen for assess-

ment were interferon-g (IFNg), tumour necrosis factor-a

(TNFa) and interleukin-1b (IL-1b) as these cytokines are

linked to both MHC II induction (Dong and Benveniste,

2001) and PD pathogenesis (Mogi et al., 1994a,b; Mount

et al., 2007). Saline-treated MHC II null mice had higher

levels of IFNg than saline-treated wild-type mice (P 5 0.040

FIGURE 3: Effect of genetic ablation of MHC II on MPTP-induced reactive microgliosis and astrogliosis. MHC II null mice show attenua-
tion of MPTP-induced microgliosis and astrogliosis. Representative micrographs of Iba1 stained sections one day after MPTP (Scale bar
is 200lm) (A). MPTP-induced reactive microgliosis was present in both wild-type and MHC II null mice, but was reduced in MHC II null
mice compared to wild-type mice (B). Representative micrographs of GFAP stained sections two days after MPTP (Scale bar is 200lm)
(C). MPTP-induced reactive astrogliosis was attenuated in MHC II null mice compared to wild-type mice (D). Data are mean 6 SEM,
n 5 4–5 mice per group. *P < 0.05; **P < 0.01; ***P < 0.001; ANOVA with student Newman-Keuls post hoc test (WT—wild-type; KO—
knock-out (MHC II null); Iba1 Ionized calcium-binding adaptor molecule 1; GFAP-glial fibrillary acidic protein). [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

Martin et al.: MHC II Ablation Attenuates MPTP Toxicity

March 2016 391

http://wileyonlinelibrary.com


ANOVA, Student Newman Keuls post hoc test; Fig. 4A). In

wild-type mice MPTP induced an increase in IFNg levels

(P 5 0.035 ANOVA, Student Newman Keuls post hoc test)

but this MPTP-induced increase was not seen in the MHC II

null mice. TNF-a levels were also increased by MPTP treat-

ment in wild-type mice (P 5 0.018 ANOVA, Student New-

man Keuls post hoc test; Fig. 4B) and this increase was

attenuated in MHC II null mice (P 5 0.001 ANOVA, Stu-

dent Newman Keuls post hoc test), where the levels of TNFa

did not differ from saline-treated mice. The levels of TNFa

levels did not differ between wild-type and MHC II null

mice treated with saline. IL-1b was increased by MPTP treat-

ment in both wild-type and MHC II null mice compared to

saline-treated mice (wild-type—P 5 0.036 ANOVA, Student

Newman Keuls post hoc test; MHC II null—P 5 0.009

ANOVA, Student Newman Keuls post hoc test; Fig. 4C).

The magnitude of increase was greater in MHC II null mice

compared to wild-type mice (P 5 0.002 ANOVA, Student

Newman Keuls post hoc test).

Discussion

In this study, MHC II levels in the ventral midbrain, the area

containing the SNpc, were increased soon after MPTP treat-

ment. This is in contrast to previous work (Kurkowska-Jastr-

zebska et al., 1999b) where MHC II levels were not increased

until three days after MPTP with peak expression 14 days

after MPTP. However, (Kurkowska-Jastrzebska et al., 1999b)

focussed on MHC II-positive microglia whilst the results

from the current study included a heterogeneous mixture of

cell types. This study demonstrated that MHC II also co-

localized with the astrocytic marker GFAP, as previously

shown (Kurkowska-Jastrzebska et al., 1999a; Wong et al.,

1984), suggesting that the increase in MHC II levels may

arise from astrocytes. The increase in MHC II protein levels

seen coincides with increased GFAP expression after MPTP

treatment (Kohutnicka et al., 1998) adding further support to

astrocytes potentially being the predominant source of the

MHC II upregulation. In the striatum MHC II levels were

not elevated until 14 days after MPTP treatment which is

consistent with previous work (Kurkowska-Jastrzebska et al.,

1999b). This increase occurs after the peak of dopaminergic

FIGURE 4: Effect of genetic ablation of MHC II on cytokine
responses one day after MPTP treatment. IFN-c protein levels
are increased in MHC II null mice treated with saline compared
to wild-type mice, but MPTP treatment did not induce an
increase in IFNc in MHC II null mice as it did in wild-type mice
(A). MPTP-induced increases in TNFa protein levels are attenu-
ated in MHC II null mice (B). Interleukin-1b protein levels are
increased in MHC II null mice treated with saline compared to
wild-type mice, MPTP treatment increased IL-1b protein levels in
both MHC II null and wild-type mice. Data are mean 6 SEM,
n 5 4–5 mice per group. *P < 0.05; ** P < 0.01; ANOVA with stu-
dent Newman-Keuls post hoc test (WT—wild-type; KO—knock-
out (MHC II null); IFNc—interferon-c; TNFa—tumour necrosis
factor-a; IL-1b—interleukin-1b).
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neuron death (Jackson-Lewis et al., 1995) and is more likely

to be a result from the degeneration of the dopaminergic ter-

minals rather than being an active component of the

degeneration.

Genetic ablation of MHC II provided neuroprotection

to the cell bodies of dopaminergic neurons in the SNpc

against MPTP toxicity, but this did not extend to functional

protection of the dopaminergic nerve terminals in the stria-

tum. This is consistent with early upregulation of MHC II in

the ventral midbrain, suggesting that this upregulation of

MHC II contributes to dopaminergic neuron death. A similar

pattern of neuroprotection was seen in mice null for the

T-cell receptor or CD4 (Brochard et al., 2009) and as MHC

II is important for activation of T-cells (Dong and Flavell,

2001) these data suggest that an adaptive immune response is

involved in MPTP-induced dopaminergic neuron death.

Interestingly, CD41 T-helper (TH) cells, particularly TH1

cells, are increased in the peripheral blood of PD patients

(Baba et al., 2005) and TH1 cells recruit CD81 cytotoxic T

cells which are the predominant T-cell infiltrate in the brain

in PD patients at post-mortem and in MPTP-lesioned ani-

mals (Brochard et al., 2009), providing further support for an

adaptive CD41 TH cell mediated immune response in PD.

Further evidence is emerging for a possible role of the adapt-

ive immune in the development of Parkinson’s disease as toll-

like receptor 4 (TLR4) gene polymorphisms have been linked

to sporadic Parkinson’s disease (Zhao et al., 2015) and

a-synuclein can induce the up-regulation of TLRs (Beraud

et al., 2011). Additionally, ablation of TLR4 provided neuro-

protection in the MPTP-model of PD (Noelker et al., 2013).

A direct role for MHC II in the immune/inflammatory

response to MPTP is further supported by the significant

reduction of microgliosis in MHC II null mice compared to

wild-type mice. As microgliosis was not completely attenuated

in MHC II null mice this suggests that some of the micro-

gliosis seen following MPTP treatment is MHC II independ-

ent. Initial microglial activation is likely to be MHC II

independent as this occurred before MHC II upregulation

(Araneda et al., 1980) and following activation MHC II is

upregulated (Kreutzberg, 1996). The reduction in microglio-

sis in MHC II null mice may be the result of a lack of infil-

tration/activation of CD41 T-cells and the release of IFNg,

indeed IFNg levels were not upregulated by MPTP treatment

in MHC II null mice as they were in wild-type mice. IFN-g

is known to be an important activator of microglia and to

date no CNS source for IFNg has been identified (Lynch,

2009) suggesting that infiltrating cells (i.e. T cells) are the

most likely source of IFNg. Thus the reduction in microglio-

sis could result from the attenuation of T-cell infiltration and

IFNg production. However, microgliosis was assessed one day

after MPTP treatment and significant CD41 T-cell infiltrates

are not seen until two days after MPTP administration

(Bj€orklund et al., 1986), but Brochard and coworkers used

the acute MPTP regime compared to the sub-acute regime

used here. Differences between these regimes have been

reported (Luchtman et al., 2009), which means CD41 T-cell

infiltration may occur earlier in the sub-acute regime. The

total MPTP dose of the acute regime, 80 mg/kg, was reached

by the third day of dosing in the sub-acute regime suggesting

that CD41 T-cell infiltration may occur by the time used to

assess microgliosis, but it is not possible to conclusively attrib-

ute the reduction in microgliosis to a lack of CD41 T-cell

infiltrates without further work.

Also proteins like alpha-synuclein (a-synuclein), which

has long been implicated in the pathogenesis of PD (Polymer-

opoulos et al., 1997) could act as both modulators of glial

functions and as antigens themselves activating the peripheral

and central immune system (Harms et al., 2013; Reynolds

et al., 2008; Sanchez-Guajardo et al., 2015). Thus in PD

itself, a-synuclein itself might be an antigen used by MHC II

during antigen presentation and thus leading to the observed

glial infiltration in PD (Hunot and Hirsch, 2003). However

it has been also demonstrated that MHC II is upregulated in

Parkinson brains, and was not linked to the presence of

Lewy-bodies, indicating, that a-synuclein might only play a

minor role in the recruitment of MHC II positive microglia,

and invasion occurs due to the neuronal injury and the asso-

ciated phagocytosis (Imamura et al., 2003; McGeer et al.,

1988).

Astrogliosis was completely attenuated in MHC II null

mice suggesting that astrocytic activation following MPTP

treatment involves an MHC II dependent process. This may

be a lack of infiltrating T-cells and IFNg release, as IFNg in

combination with TNFa is an important activator of astro-

cytes (Dong and Benveniste, 2001). Activated microglia can

increase astrocyte number in vitro (Rohl et al., 2007) and the

astrogliosis seen in PD/MPTP has an astrogenic component

(Kohutnicka et al., 1998). Taken together this suggests that

the attenuation of astrogliosis in MHC II null mice was just

a downstream effect of reduced microgliosis. However, there

is evidence that astrogliosis can occur independently of micro-

gliosis following MPTP treatment, as interleukin-6 null mice

are more vulnerable to MPTP toxicity (Bolin et al., 2002)

and microgliosis was completely attenuated in these mice

whilst astrogliosis was unaffected (Cardenas and Bolin, 2003).

A role for astrogliosis independent of microgliosis receives a

degree of support from the current study as astrocytes were

the major source of MHC II expression. This suggests that it

is actually astrocytes that interact with infiltrating CD41

T-cells leading to cytokine production and reactive gliosis,

further supported by the integral role of astrocytes in the

blood-brain barrier (Prat et al., 2001). However, there is

Martin et al.: MHC II Ablation Attenuates MPTP Toxicity

March 2016 393



conflicting evidence whether astrocytes express the co-

stimulatory molecules, B7 and CD40, required to activate

infiltrating CD41 T-cells (Aloisi et al., 1998; Nikcevich

et al., 1997; Tan et al., 1998). Further work is needed to

determine the importance of MHC II-positive astrocytes in

MPTP toxicity. Unfortunately it is difficult to assess the role

of astrocytes in dopaminergic neuron death as astrocytes are

required for the biotransformation of MPTP to its toxic

metabolite MPP1 (Ransom et al., 1987), and interfering with

astrocytes function has been shown to reduce dopaminergic

neuron loss via reductions in MPP1 production (Takada

et al., 1990). As both astrogliosis and microgliosis were

reduced in MHC II null mice it is not possible to determine

which plays a more important role in the pathogenesis of

dopaminergic neuron loss. It is likely that both contribute to

dopaminergic neuron loss as both astrocytes and microglia

produce pro-inflammatory cytokines (Dong and Benveniste,

2001; Hanisch, 2002). However, some of these pro-

inflammatory cytokines, especially IFNg, may be derived

from infiltrating CD41 T-cells. Irrespective of their source,

all these cytokines are increased in PD patients (Mogi et al.,

1994a,b; Mount et al., 2007) and are documented to have

negative impacts on MPTP toxicity (Mount et al., 2007;

Ferger et al., 2004). Indeed IFNg null mice showed signifi-

cant attenuation of MPTP-induced loss of dopaminergic neu-

rons together with ablation of microgliosis (Mount et al.,

2007), suggesting that IFNg activation of microglia is impor-

tant in MPTP toxicity. TNF-a null mice also showed attenu-

ation of MPTP toxicity, but this effect was confined to the

striatum (Ferger et al., 2004). As the protection from MPTP

toxicity derived from the ablation of MHC II did not extend

to the striatum it would suggest that IFNg is more important

for dopaminergic neuron death in the SNpc. In contrast to

IFNg and TNFa MPTP-induced increases in IL-1b levels

were seen in both wild-type and MHC II null mice, which

suggests that regulation of this cytokine is independent of the

MHC II pathway. Indeed IL-1 inhibition reduced dopaminer-

gic neurodegeneration induced by 6-hydroxydopamine or

lipopolysaccharide treatment without downregulating micro-

glial activation (Pott Godoy et al., 2008). The lack of impact

of MHC II ablation on IL-1b levels may also be due to the

significant degree of microgliosis that still occurred as micro-

glia are an important source of IL-1b following insults

(Hanisch, 2002). Furthermore chronic, systemic administra-

tion of IL-1 together with 6-OHDA increases dopaminergic

neuron loss and the number of MHC II-positive cells (Pott

Godoy et al., 2008). These data suggest that IL-1b has a role

in regulating MHC II responses after dopaminergic toxic

insults, and mice null for the IL-1 receptor 1 cannot activate

CD41 T-cells (Eriksson et al., 2003). The IL-1 b is probably

derived from infiltrating MHC II-monocytes.

In conclusion this study has shown that MHC II upregu-

lation is important for dopaminergic neuron death by a mecha-

nism that involves reactive gliosis. This study also further

supports the presence of an adaptive immune response in PD

pathogenesis, and it suggests that astrocytes, as well as micro-

glia, play an important part in this response. Further work is

required to delineate the role of cytokines in this adaptive

immune response, as the current study shows that IL-1b may

play an important role in regulating MHC II responses, whilst

IFNg and TNFa appear to be important for inflammatory

processes downstream of MHC II activation in reactive gliosis.

It will be interesting to further explore the molecular mecha-

nisms underlying the adaptive immune response seen in this

study and their relevance to PD pathogenesis.
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