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Abstract  

 A new method for producing calcium sulfoaluminate (CS̅A) clinkers is described. Sulfur is 

introduced from the gas phase as SO2 and oxygen and reacts with solids during clinkerisation. 

Laboratory experiments and thermodynamic calculations are presented. Sulfur-containing 

phases, ye’elimite and ternesite, are stabilised together with belite to produce clinkers with 

various mineralogies. The influence of temperature and SO2 partial pressure is analysed and 

their effect on the formation of undesirable anhydrite and gehlenite is explained. The process by 

which a potentially hazardous waste material such as sulfur is used as raw material, and 

possibly as fuel, to form CS̅A cements, is shown to be successful. 

 

Keywords chosen from ICE Publishing list 

Clinkering/clinkering reactions; Diffraction (X-ray); Mineralogy; Modelling; Special 

cements; Thermodynamics; Waste valorisation 
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1. Introduction 1 

The formulation of calcium sulfoaluminate (CS̅A) cements is undergoing rapid development as a 2 

prelude to widespread application. The advantages of CS̅A cements relative to ordinary Portland 3 

cement (OPC) have been reported (Gartner 2004, Hanein et al. 2016, Gartner, Hirao 2015, 4 

Gartner, MacPhee 2011, Juenger et al. 2011) and include reduction of CO2 emissions and lower 5 

specific energy requirements. 6 

The major benefits of CS̅A cements primarily arise due to the presence of abundant ye’elimite 7 

(C4A3S̅) giving, among other advantages, high early strength. But other sulfur containing phases, 8 

including ternesite (C5S2S̅) and anhydrite (CS̅) can occur. CS̅A clinkers require a source of sulfur 9 

trioxide, commonly provided by addition of anhydrite to the clinker or either active anhydrite or 10 

gypsum to the raw mix. However, the formation of CS̅A clinker is challenging, particularly under 11 

laboratory conditions, due to volatilisation of SO3 (the stable gas phase lost at elevated 12 

temperatures is in fact a mixture of SO2 and O2 from the solids) or, more generally, the inability 13 

to stabilise the clinker SO3 content. 14 

At clinkering temperatures, typically >1250 °C but lower than melting temperatures, which occur 15 

at >1300 °C (Idrissi et al. 2010, Touzo, Scrivener & Glasser 2013), the loss of SO3 limits 16 

clinkering to a rather narrow window of temperatures and requires that the exhaust gas from the 17 

kiln is monitored and, if necessary, scrubbed to remove SOx. The present paper shows that this 18 

loss need not be a problem, particularly on an industrial scale: the high pressures of sulfur 19 

oxides can be used to an advantage and vapour transport is shown to be an effective way of 20 

achieving reaction amongst the components of the raw meal. Kinetic studies show that the 21 

equilibrium between gas and solid components is achieved rapidly at ≈1300 °C, even in the 22 

rapid flow rates achieved in commercial kilns. 23 

Most experience of clinkering has been gained by laboratory experiments supplemented by pilot 24 

plant “burns”. In the present study, a somewhat different approach was taken. Experiments and 25 

thermodynamic calculations were combined to elucidate the clinkering process. The work 26 

demonstrates the importance of the vapour phase to clinkering and has led to changes in kiln 27 

operation: the kiln is modified to work as a semi-sealed system in order to gain control of the kiln 28 

atmosphere. This has been paralleled by using a small capacity (10-100g) laboratory kiln 29 
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permitting independent control of temperature and gas partial pressures of SO2 and O2 and total 30 

pressure 1 bar.  31 

Numerous high temperature thermodynamic equilibrium models based on Gibbs energy 32 

minimization have been developed for cement clinker predictions and have proved useful in 33 

cement research (Barry, Glasser 2000, Hökfors et al. 2015, Hökfors, Eriksson & Viggh 2014). 34 

Thermodynamic databases used to calculate high temperature cement phase equilibria include, 35 

MTDATA (Davies et al. 2002), FactSage (Bale et al. 2002), HSC (Roine 2002) and that recently 36 

developed by Hanein et al. (Hanein, Glasser & Bannerman 2015). As shown by Hanein et al. 37 

(Hanein et al. 2015), the stability of ye’elimite at clinkering temperatures is dependent on the 38 

fugacities (which we equate with partial pressures) of both SO2 and O2 in the kiln atmosphere 39 

and a thermodynamic model considering both the clinker phases and atmosphere has been 40 

developed to model the reaction path and optimising operating conditions for the production of 41 

CS̅A clinkers. 42 

 43 

2. Experimental 44 

2.1. Furnace 45 

Experiments were conducted in a tube furnace specifically modified to operate at one bar total 46 

pressure but with controlled partial pressures of SO2 and O2 (Galan et al. 2014), see Figure 1. 47 

The pre-mixed gases, whose rates were monitored by means of precision mass flow controllers 48 

(Bronkhorst, NL), pass through the non-rotating furnace tube maintaining the desired 49 

atmosphere during the experiment. The discharge end of the tube is connected to a scrubber 50 

that absorbs and neutralizes unreacted SOx prior to gas discharge to the atmosphere. In that 51 

way, exit gases achieve less that 1ppm SOx. Temperature patterns (heating, idling and cooling) 52 

were programmed at the furnace control box. 53 

 54 

2.2. Raw materials 55 

Two sets of raw materials were used for the experiments:  56 

Set 1: laboratory grades of Al2O3 (Sigma-Aldrich 265497, 10 m, 99.7%), SiO2 (quartz, Fluka 57 

83340, >230 mesh, >95%), CaCO3 (Sigma-Aldrich 795445, >99%), Fe2O3 (Fisher Scientific 58 

I/1150/53, general purpose grade) and CaSO4 (Fisher C/2440/60, >95%). 59 
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Set 2: commercially available bauxite, clay and limestone. The oxide composition of the 60 

commercially available raw materials is shown in Table 1. The bauxite and the clay were 61 

provided by Zhengzhou Haixu abrasives Co. Ltd. (China), and the limestone was provided by 62 

Samin (France). 63 

In both cases the raw materials were weighted, mixed, placed in crucibles or boats of aluminous 64 

porcelain or Pt, and introduced in the furnace which was ramped up to an isothermal level. 65 

 66 

2.3. Experiments 67 

The variables evaluated in the experiments described in this work include: SO2 partial pressure, 68 

peak clinkering temperature, proportioning of raw materials and time. The O2 partial pressure 69 

was kept sufficiently high to ensure oxidizing conditions to (i) prevent formation of undesirable 70 

sulfides and (ii) ensure all SO2 is able to oxidize to SO3 if the equilibrium sought demands 71 

formation of solids containing sulfate. The minimum O2 excess was targeted at 100%, resulting 72 

in weight ratios SO2:O2 at least 1:0.5 (or SO2:air, 1:2.5). 73 

Approximately 25 compositions were tested and in all cases the atmosphere conditions were 74 

such that SO3 was transferred from the vapour to the solid to achieve the target mineralogy.  75 

This was achieved providing an automatic check that the kinetics of transfer of sulfur species 76 

from gas to solid are rapid. The experiments included: (i) formation of CaSO4 by transfer of 77 

SO2+O2 from the vapour to powdered CaCO3 or CaO, (ii) formation of ye’elimite (C4A3S̅) and 78 

ternesite (C5S2S̅) by transfer of SO2+O2 to appropriate mixes of CaO and Al2O3, and CaO and 79 

SiO2, respectively, and (iii) clinkers designed to contain C4A3S̅, belite (C2S) and ferrite (solid 80 

solution C2F-C6A2F) by transfer of SO2+O2 to mixes of CaO, Al2O3, SiO2 and Fe2O3. The 81 

different compositions were prepared by hand mixing the calculated amounts of dry solid 82 

reactants using a mortar and a pestle with a few drops of ethanol added to aid homogenisation, 83 

for 5 minutes. The resulting mix was dried in an oven at ≈100 °C for 2 hours to remove the 84 

alcohol. Clinkers were prepared from lab grade materials in the form of pellets (Table 2) and in 85 

powder (Table 3) and using commercially available raw materials (Table 4) in powder form with 86 

a particle size of approximately 40 microns. In experiments 1-11 in Table 3 lab grade calcium 87 

sulfate (CS̅) was also added to the raw mix. 88 

 89 
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- Clinkers made with CaCO3, SiO2, Al2O3 and Fe2O3. Three different mixes were 90 

prepared in the form of 13 mm diameter pressed pellets. These were fired at 1300 °C 91 

for 30 minutes. Targeted mineralogies and gas flow conditions are shown in Table 2. 92 

The amount of sulfur introduced in the furnace was in all cases sufficient to form the 93 

target amount of C4A3S̅. The rate of SO2 used allowed for the formation of a minimum of 94 

1.5 grams of “SO3” in the 30 minutes the gases were passing through the tube furnace. 95 

The quantities of SO3 required to obtain the target compositions 1, 2 and 3 in Table 2 96 

were 0.21, 0.13 and 0.05 grams, respectively. C6A2F was chosen as the target 97 

stoichiometry for ferrite based on trends shown by Touzo el al. (Touzo, Scrivener & 98 

Glasser 2013) for feeds with high Al2O3:Fe2O3 ratios, but changes were made in the 99 

course of the work because experiments showed that the actual ferrite lay close to 100 

C4AF. 101 

 102 

- Clinkers made with CaCO3, SiO2, Al2O3, Fe2O3 and CaSO4. In this set of experiments 103 

the SO2+O2 was turned on when the furnace reached ≈600 °C during ramp up (at 20 104 

°C/min) and turned off during the cooling cycle (at 20 °C/min) below ≈600 °C. To 105 

facilitate reaction between gas and solid phases, a layer of the solid reactants several 106 

mm thick, ≈10 grams in total, was placed in a 15 cm long ceramic boat in the middle of 107 

the hot zone of the tube (at constant temperature). The mix proportions used and the 108 

experimental conditions (SO2:air ratios and temperature) are summarised in Table 3. 109 

The time allowed for reaction, ≈120 minutes, does not include ramping up and down 110 

times. The amount of CaSO4 was in all cases enough to form the desired target 111 

compositions; the SO2+O2 atmosphere was used to preclude sulfur losses from the 112 

solids, and to keep an atmosphere with an excess of “SO3“ at all times. 113 

 114 

- Clinkers made with commercially available raw materials. Two different mixes were 115 

used under two different conditions. The mixes used were calculated for a certain target 116 

composition assuming silica (from both the clay and bauxite) will form belite (C2S), the 117 

iron oxide will combine with Ca and Al oxides to form ferrite (C4AF) and the excess of Al 118 

oxide react to form ye’elimite (C4A3S̅). The gas atmosphere was on from the beginning 119 
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to the end of the experiments (to prevent possible sulfur losses during ramping up and 120 

down). As in the lab grade experiments, a layer of the solid reactants several mm thick, 121 

≈10 grams in total, was placed in a ceramic boat in the middle of the hot zone of the 122 

tube (at constant temperature). The proportions used and the experimental conditions 123 

(SO2 partial pressure, temperature and time) are summarised in Table 4. In the column 124 

‘time’ the number indicates the actual time at peak temperature. The excess of SO3 in 125 

these cases was higher: the mass of SO3 that would pass through the tube during the 126 

time at peak temperature (around 6 g) was 3-4 times higher than the amount needed in 127 

theory for the target mineralogies (around 2.2 g and 1.4 g, respectively). For these 128 

experiments C4AF was chosen as the target stoichiometry for ferrite, as opposed to the 129 

C6A2F used for the previous ones. This was done for several reasons: the exact 130 

stoichiometry for ferrite in CS̅A mixes is not well known and both extremes of the solid 131 

solution had to be checked; also, according to the results, the ferrite phase made in 132 

SO2+O2 atmospheres seems to be variable, but both the standard used for Rietveld 133 

refinement and the data for the thermodynamic modelling consider C4AF. 134 

 135 

2.4. Characterisation 136 

The products obtained were characterised by X-ray powder diffraction using an Empyrean 137 

diffractometer (PANalytical) with strictly monochromatic CuKα1 radiation (λ = 1.54056 Å) at 45 138 

kV and 40 mA. In order to determine the composition of the samples, they were analysed using 139 

the Rietveld methodology as implemented in the GSAS software package (Larson, Von Dreele 140 

2004). Final global optimised parameters included background coefficients, zero-shift error, cell 141 

parameters and peak shape parameters. Peak shapes were fitted using the pseudo-Voigt 142 

function (Thompson, Cox & Hastings 1987) with an asymmetry correction included (Finger, Cox 143 

& Jephcoat 1994). A March-Dollase ellipsoidal preferred orientation correction algorithm 144 

(Dollase 1986) was used when preferred orientation parameter needed refinement. The crystal 145 

structure descriptions for the different phases encountered were: (Cuesta et al. 2013) for 146 

orthorhombic ye’elimite, (Cuesta et al. 2014) for cubic ye’elimite, (Mumme et al. 1995) for -147 

belite, (Colville, Geller 1971) for ferrite, (Louisnathan 1971) for gehlenite, (Irran, Tillmanns & 148 
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Hentschel 1997) for ternesite, (Hörkner, Müller-Buschbaum 1976) for calcium monoaluminate, 149 

(Kirfel, Will 1980) for anhydrite and (Sasaki et al. 1987) for perovskite. 150 

 151 

2.5. Thermodynamic modelling 152 

A thermodynamic model based on Gibbs energy minimisation and a recently compiled high 153 

temperature cement clinker stoichiometric phase thermodynamic database (Hanein, Glasser & 154 

Bannerman 2015) was used to supplement the experimental data: raw mix input and 155 

experimental conditions included in Table 4 were ‘replicated’ for the model calculations. The 156 

thermodynamic data for ye’elimite and ternesite (C5S2S̅) were recently derived by the authors 157 

(Hanein et al. 2015, Hanein et al. 2017). The thermodynamic model and compiled database 158 

used here have been validated in several studies (Hanein, Glasser & Bannerman 2015, Hanein 159 

et al. 2015, Hanein et al. 2017, Galan et al. 2017, Hanein et al. 2016). As a means of emulating 160 

the furnace operation (continuous counter-current flow) and to maintain constant SO2 and O2 161 

partial pressures in the system, the gaseous atmosphere is assumed to be in excess (mgas>> 162 

msolids). P2O5 and MnO were neglected in thermodynamic simulations due to the lack of 163 

thermodynamic data for these species and phases containing them. The database also does 164 

not have thermodynamic data for C6A2F; C4AF is the only calcium aluminoferrite for which data 165 

are currently available. The model used takes into account both the solids and the atmosphere 166 

surrounding them simultaneously. For comparison, only major phases formed and detected in 167 

XRD measurements of experimental runs are shown from the model results in Table 8. 168 

However, the model also accounts for all the species shown in Table 1 (except MnO and P2O5) 169 

and all the calculations carried out predict the conversion of all alkali to alkali sulfates; MgO also 170 

appears to remain unreacted in the thermodynamic calculations. 171 

 172 

3. Results 173 

3.1. Transfer of sulfur between gas and solids 174 

The transfer of sulfur from gas to solid was confirmed to be rapid at 900-1000 °C and above: 175 

CaO reacted readily and completely with mixes of SO2 and O2 to form CaSO4. For these 176 

experiments different flow rates and ratios SO2:air were used (0.1:0.25, 0.434:1.058, 177 

0.868:2.116 and 0.217:0.529 g/min), and they were performed using different amounts of CaO 178 
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in powder and in porous pellets (13 mm diameter) for different periods of time (from 5 minutes to 179 

4 hours). Formation of CaSO4 was assessed quantitatively by XRD. 180 

 181 

3.2. Formation of ye’elimite, C4A3S̅ 182 

At ≈1200-1300 °C, C4A3S̅ was formed in SO2+O2 atmospheres from 30 g mixes of CaCO3 and 183 

Al2O3. Figure 2 shows the XRD pattern following 30 minutes reaction at 1220 °C, where the 184 

rates of SO2 and air used were 0.105 and 0.2624 g/min, respectively, giving a SO2:air ratio of 185 

1:2.5. Such a high SO2 concentration did not lead to high yields of ye’elimite: CaSO4 forms, 186 

leaving unreacted Al2O3 and CaO coexisting with CA2 and CA. The results cannot be in 187 

equilibrium as some phases are known to be incompatible, e.g. CaO and CA2 (Galan et al. 188 

2017). Re-introducing the sample for another 30 minutes in the furnace under the same 189 

conditions led to an increase in ye’elimite and a decrease in CaSO4, leaving traces of CA2 and 190 

Al2O3 still present. Further repetition of the same process led to total disappearance of CaO and 191 

Al2O3 and some increase both in the ye’elimite yield and reduction in the CaSO4 with almost 192 

constant CA2. After 7x30 minutes cycles, the XRD pattern did not change and it was considered 193 

that the sample reached its final state. 194 

Rates of SO2 and air of 0.0525 and 1.3122 g/min, respectively (ratio SO2:air of 1:25) were used 195 

for tests of 60 minutes duration. Figure 3 shows the result of this synthesis, performed using the 196 

same amount of raw materials (stoichiometric amounts of CaCO3 and Al2O3 to form C4A3S̅) and 197 

same temperature (1220 °C) as the previous ones, for 60 minutes. As it can be seen, lower SO2 198 

partial pressure (10 times dilution) led to higher yields of C4A3S̅, no unreacted raw materials and 199 

only small amounts of CaSO4 and CA remaining. These experiments suggest the existence of a 200 

threshold in the SO2 concentration which, if exceeded, favours reaction of SO3 with lime to give 201 

CaSO4, inhibiting formation of ye’elimite. 202 

 203 

3.3. Formation of ternesite, C5S2S̅ 204 

In a similar fashion to the methods used in section 4.2, the formation of C5S2S̅ was investigated. 205 

A mix of CaCO3 and SiO2 (quartz) was prepared and placed in a boat and reacted at 1220°C for 206 

60 minutes. As with the C4A3S̅ experiments, the reactive sulfur containing atmosphere was left 207 

running for the duration of the experiment. Flow-rates of 0.25 g/min air and 0.1 g/min SO2 were 208 
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used in the initial high SO2 partial pressure experiment to give a ratio SO2:air 1:2.5. Figure 4 209 

shows that the experiment did not form ternesite and instead produced a mixture of belite, 210 

anhydrite and unreacted material. The temperature, reaction time and cooling rates of the 211 

reaction were altered in attempts to form ternesite but, at this partial pressure, these 212 

experiments proved unsuccessful. 213 

As calculation suggested that the SO2 partial pressure was too high, another experiment was 214 

conducted, where the partial pressure of the SO2 component of the atmosphere was lowered, 215 

similar to what was done in section 4.2: flow-rates of 0.1 g/min SO2 and 2.5 g/min air were used 216 

to give a ratio air:SO2 of 25:1. As shown in Figure 5, ternesite was successfully formed at 1075 217 

°C in the sulfur containing atmosphere for the first time, in the presence of belite, anhydrite and 218 

unreacted lime. The temperature was chosen based on previous work (Pliego-Cuervo, Glasser 219 

1978), who synthesized ternesite in sealed systems using belite and calcium sulfate as 220 

reactants. These experiments show the combined influence of temperature and SO2 partial 221 

pressure on the stability of sulfur-containing phases. The field of stability of ternesite has 222 

subsequently been mapped by Hanein et al. (Hanein et al. 2017) who show quantitatively the 223 

necessity of controlling the partial pressures of gas species if ternesite is the desired product. 224 

 225 

3.4. Synthesis of clinkers using laboratory grade reactants 226 

At 1300 °C clinkers containing ye’elimite, belite and anhydrite were synthesized from mixes of 227 

CaCO3, SiO2, Al2O3 and Fe2O3 using both mixes of reactants in powder form and by pressing 228 

these same mixes in the form of 13 mm diameter pellets. The thickness of the pellets was ≈ 2 229 

mm. Three different mixes were used in order to obtain different proportions of the phases in the 230 

final product. Targeted compositions are given in Table 2. Figure 6 and Figure 7 show the 231 

pellets corresponding to target compositions 1 and 2, respectively. In both cases the pellets 232 

were coherent and did not show cracking. However, the pellets with target composition 3, high 233 

in silica, crumbled during cooling and only powder could be retrieved. 234 

The results from Rietveld refinement of the XRD patterns of the pellets are shown in Table 5. 235 

Mixes 1 and 2 led to formation of mainly four phases: ye’elimite, belite, anhydrite and gehlenite 236 

(C2AS). In both cases, crystalline ferrite was almost absent. The presence of undesired CS̅ and 237 
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C2AS can be attributed to kinetic effects but also to the SO2 partial pressure used which may 238 

have favoured their formation. 239 

Mix 3 gave very different mineralogy: in this case, both -C2S and -C2S were present, as well 240 

as ferrite and tricalcium aluminate. CaSO4 was absent and C4A3S̅ and C2AS only appeared in 241 

very low percentages. The physical decomposition of pellets, termed ‘dusting’, is attributed to 242 

the volume expansion arising from spontaneous conversion of the high temperature belite 243 

phases to -C2S in the course of cooling. 244 

Table 6 shows the results obtained from Rietveld analysis for the clinkers synthesized using lab 245 

grade reactants including CaSO4 (conditions shown in Table 3).  246 

At a constant temperature of 1280 °C, a drastic effect is observed when diluting the SO2 from 247 

SO2:air ratio of 1:2.5 to 1:25 (reactions 1 and 2, respectively, in Table 6), not only in the 248 

formation of ye’elimite but also on the belite. High concentrations of SO2 shifted the equilibrium 249 

away from belite to mixtures of CS̅ and C2AS. Further reduction of the SO2 partial pressure 250 

(ratios SO2:air 1:50 and 1:100 in reactions 3 and 4 in Table 6) did not lead to significant 251 

changes in the final compositions. The remaining % of C2AS and C$ are attributed to kinetic 252 

effects: once C2AS and CS̅ formed in quantity, 120 minutes does not seem to be sufficient to 253 

completely shift compositions towards C2S and C4A3S̅. 254 

Lower temperatures also have an impact in the final compositions, especially at the lower SO2 255 

partial pressure conditions (experiment 5 in Table 6) at 1230 °C and 1:50 SO2:air ratio), making 256 

it even more difficult to reach the target compositions by reacting CS̅ and C2AS. 257 

The effect of the gas flow rate is also shown in experiments 2 and 9. Similar temperature (1280 258 

and 1270 °C, respectively) and partial pressure (SO2:air ratio 1:25) but different gas flow rate 259 

(SO2:air rates 0.105:2.63 and 0.088:2.204 g/min, respectively) led to different results. In this 260 

case, lower rates promoted formation of C4A3S̅ and C2S: the faster the gases passed over the 261 

solid reactants the more this reaction was suppressed. 262 

 263 

Compositions with higher ye’elimite content, around 60%, could be achieved at temperatures as 264 

low as 1200 °C (experiment 10 in Table 6); increasing the temperature to 1250 °C led to an 265 

increase in both ye’elimite and belite contents (experiment 11 in Table 6). 266 
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The absence of ferrite in some clinkers could be attributed to the poorly crystalline ferrite, not 267 

‘visible’ by XRD, the possible inclusion of some iron, probably not exceeding a few wt. %, in 268 

ye’elimite (Touzo, Scrivener & Glasser 2013), and the limitations of the XRD to detect small 269 

amounts of phases. 270 

 271 

3.5. Synthesis of clinkers using commercial grade reactants 272 

Table 7 and Table 8 show results of Rietveld analysis and thermodynamic modelling output, 273 

respectively, of clinkers made with commercial grade raw materials (conditions shown in Table 274 

4). 275 

In the experiments with raw materials dilution of the SO2 from SO2:air ratios of 1:25 276 

(experiments 1 and 2 in Table 7) to 1:100 (experiments 3 and 4 in Table 7) led to a significant 277 

increase in ye’elimite and belite. Also, the yield at 1300 °C is notably higher than at 1250 °C 278 

(experiments 1-4 in Table 7). 279 

These experiments indirectly show the effect of the presence of impurities in the raw materials 280 

which affect stability and formation of the phases giving different results and different effect of 281 

temperature and SO2 partial pressure. The mineralogical evolution with time can be observed in 282 

experiments 5-7 in Table 7: at 1300 °C and 1:100 SO2:air ratio, equilibrium seems to shift 283 

towards formation of ye’elimite and belite with slow disappearance of gehlenite and calcium 284 

sulfate. 285 

According to the model predictions, the conditions used in experiments 2, 4 and 5-7 would lead 286 

to the target compositions. The reasons why these were not achieved are likely due to kinetic 287 

limitations, the ferrite not being ‘visible’ with XRD and possibly the cooling rate which may have 288 

favoured formation of anhydrite and gehlenite as opposed to ye’elimite and belite. It must also 289 

be noted that the model does not account for solid solutions (or liquid solutions) and can 290 

therefore not predict the formation of entropy stabilised phases such as ye’elimite with iron 291 

substitution or various aluminoferrite compositions. 292 

 293 

The formation of ternesite is predicted in four of the compositions (2, 3, 8 and 9 in Table 8) but 294 

only detected experimentally in two (3 and 8 in Table 7). This can be understood by looking at 295 

the temperatures and partial pressures which were used. Comparing experiments 2 and 3 from 296 
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Table 4, both were carried out at SO2:air 1:100, but at different temperature. While in the 297 

experiment at 1250 °C ternesite could be seen, 1300 °C seems to be too high for ternesite to 298 

stabilise. In experiments 8 and 9 from Table 4, both performed at 1275 °C, the lower SO2 partial 299 

pressure, 1:100 SO2:air ratio, favoured formation and stabilisation of ternesite as opposed to 300 

1:50. Even though under ideal conditions ternesite would form in all cases, in reality too high 301 

temperatures and too high partial pressures make it more difficult for it to be stabilised. 302 

 303 

4. Discussion 304 

At present, designing and implementing an “optimum“ CS̅A clinker is arguably more difficult than 305 

producing a PC clinker. Firstly, we do not at present know the “optimum” clinker mineralogy. 306 

Should ternesite be present, and if so how much? Can we control the polymorphism of belite so 307 

as to reproduce a reactive clinker with fast strength gain? And how are the economics of the 308 

raw materials associated with the clinker mineralogy? How do the clinker phases react with 309 

water and with each other to produce dense and durable matrices? Many questions remain 310 

unanswered. 311 

But another complication arises: the presence of an important sulfur cycle in the course of 312 

clinkering which can affect mineralogy. These dependencies, weak for PC cements, become 313 

crucial in making CS̅A cement. The concept of using a reactive atmosphere to facilitate reaction 314 

kinetics and control the quantitative clinker mineralogy is crucial but has not been well explored 315 

in respect of CS̅A cement clinkering. 316 

It is known that gas-solid reactions are important to a range of problems, as for example, in 317 

Portland cement clinkering, where the cycle of alkali circulation via the vapour phase may lead 318 

to condensation in cooler zones of (K, Na) sulfates on the clinker and these in turn, affect early 319 

hydration and set. However, the main oxide components of Portland cement are relatively 320 

involatile and the vapour phase composition relatively unimportant to the circulation of the main 321 

oxides. But cycles involving transfer of sulfur species assume much greater importance in the 322 

course of clinkering CS̅A formulations where they control mass and energy balances. Both 323 

C4A3S̅ and C5S2S̅ have definite limits of thermodynamic stability which need to be formulated in 324 

terms of composition, temperatures and fugacities of both SO2 and O2. Our approach to process 325 

development and optimisation, combining thermodynamic calculation with experimentally -326 
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derived data, is being brought to maturity to guide and enhance clinker process development 327 

quantitatively to control clinker mineralogy. 328 

Many commentators have expressed doubts that gas fugacities (which we equate with partial 329 

pressures) can be controlled in a rotary kiln. While this may be true as a general case, special 330 

circumstances arise in the formation of calcium sulfoaluminate clinkers which make control 331 

relatively easy to achieve. For example, conventional kilns consume the oxygen components of 332 

air with the result that the atmosphere in the burning zone has ca 1-4% free oxygen: typically an 333 

order of magnitude less than air. If the oxygen pressure is allowed to drop below that range, 334 

locally reducing conditions are generated which affect clinker quality: for example, ferric iron is 335 

reduced to ferrous. Moreover, sulfur, if present, is chemically reduced to sulfide and CO 336 

increasingly appears in exit gases. These processes are undesirable, so free oxygen is always 337 

present in excess in combustion gas. On the other hand, if oxygen partial pressures are allowed 338 

to rise, the thermal economy decreases as excess air is unnecessarily heated. Even if oxygen 339 

enriched gas is used, the same set of restrictions apply. Broadly, we assume that these 340 

considerations will also apply to CS̅A production. Thus, we assume that the oxygen partial 341 

pressure will lie within a narrow range to optimise the clinkering process. 342 

The sulfur species at elevated temperatures are dominated by SO2 and its partial pressure is 343 

fixed by temperature and by the sulfur content of the raw meal and fuel. As an approximation, 344 

the vapour pressure of SO2 in equilibrium with the clinker phases, e.g. anhydrite and ye’elimite, 345 

can be used to fix the minimum numerical value of the partial pressures necessary to stabilise 346 

these phases against evaporation. However, the actual pressure may significantly exceed that 347 

minimum, as for example is likely to occur in the course of combusting sulfur- rich fuels, or when 348 

elemental sulfur is injected into the kiln to supply part of the thermal energy. 349 

Thus, we can distinguish three regimes in clinkering CS̅A compositions: (i) a regime with low 350 

partial pressure of SO2 in which the raw meal loses sulfur in order to saturate the kiln 351 

atmosphere, (ii) a regime which is essentially neutral and no significant loss or gain of sulfur 352 

occurs between solid and atmosphere and finally (iii), a regime mainly of higher SO2 pressures 353 

in which sulfur, effectively as “SO3”, is transferred from the atmosphere to the solid. In order for 354 

regime (iii) to operate, excess oxygen has to be present because, as noted, the transfer of sulfur 355 
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from vapour to solid also involves an oxidation of the sulfur from S(IV) to S(VI). However, this 356 

condition is readily achieved by an excess of oxygen in the kiln atmosphere. 357 

Despite the limitations of the experimental set-up, it was successfully proven that the transfer of 358 

SO2 and O2 gas to the clinkering solids to form CS̅A clinkers occurs rapidly and efficiently under 359 

normal operating conditions. It is also shown that clinkering temperatures tend to fall within a 360 

narrow range. At temperatures below ≈1230 °C, reaction kinetics are too slow to achieve 361 

complete reaction in the normal residence time in the hot zone, ca 20-60 minutes. On the other 362 

hand, if it is desired to produce ternesite, which decomposes above an estimated 1298 °C (Gutt, 363 

Smith 1967), clinkering temperatures cannot exceed this limit and the sulfur pressures need to 364 

be maintained within limits determined by Hanein, et al (Hanein et al. 2017). If the limits are 365 

observed, ternesite rich clinkers can be made in a single stage operation. However, ternesite 366 

can only be considered as a desirable clinker mineral if, in clinker, its reactions with other 367 

minerals and water leads to rapid strength gain: at present, this is not fully assured. 368 

Ye’elimite containing clinkers have similar restrictive ranges where kinetics and equilibrium 369 

allow it to form stably, but these limits are in general somewhat less restrictive than those of 370 

ternesite. Above ≈ 1320 °C extensive melting occurs, so, depending on the target mineralogy, 371 

clinkering temperatures will also lie in a narrow band between about 1250 and 1320 °C. The 372 

other key variable, the partial pressure of SO2, greatly affects the mineralogy of the clinkers: at a 373 

given temperature (around 1250-1300) a threshold in SO2 partial pressure exists above which 374 

CS̅ and C2AS are more favourable to form than C4A3S̅ and C2S. 375 

What is under less good control are the rates of sulfur transfer and their relation to the state or 376 

condition of the gas- solid surface available for exchange. These are functions of, amongst 377 

other factors, kiln size, gas flow rates and countercurrent solid flow rates, as well as total mass 378 

of transferrable components. As such these factors are probably specific to specific equipment 379 

and are not readily calculated without process data. 380 

In this way, by combining technical and thermodynamic limits, it is possible to control the kiln 381 

atmosphere simply by controlling the sulfur content of the fuel and raw mix and ensuring an 382 

excess of oxygen. 383 
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The knowledge gained from these experiments and calculations, that is, the influence of 384 

temperature and partial pressures of the gaseous components informed the pilot plants trials at 385 

Ibutec, Weimar, Germany, reported in (Hanein et al. 2016).  386 

Another important aspect of this work, controlling the polymorphism and reactivity of belite, is 387 

still work in progress (Elhoweris, Galan & Glasser 2017). And, of course, hydration studies are 388 

needed to determine the properties of the resulting binders at all ages. The correlation of clinker 389 

mineralogy with cementing properties is under investigation (Jen et al. 2017). 390 

 391 

5. Conclusions 392 

Experiments show that SO2 and oxygen in the vapour are readily transferred to calcium 393 

aluminates and silicates thereby combining much of the sulfur. Understanding the physical 394 

chemistry of the process enables control over clinker phase composition and avoids production 395 

of free lime, arising from decomposition of anhydrite and aluminates. The method emphasises 396 

mass gains as opposed to more usual mass losses, which give greater freedom to design CS̅A 397 

clinkers with optimised properties and utilise sulfur containing fuel whose heat of combustion 398 

enables decrease consumption of hydrocarbon fuel and lowered CO2 emissions. 399 

Thermodynamic modelling has proven to be an invaluable tool with which to simulate, evaluate 400 

and optimise novel cement compositions. 401 
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 502 

 503 

 504 

Figure captions 505 

Figure 1. Furnace used for the experiments where sulfur was transferred from the gas to the 506 

solid phase. The entire unit is housed in a ventilated enclosure 2400 mm width x 640 mm depth. 507 

Note the red bar which is an edge of the sliding glass screen shown here in its open position. 508 

Figure 2. Synthesis of ye’elimite from CaCO3 and Al2O3 in an atmosphere of SO2+air (ratio 509 

SO2:air of 1:2.5) at 1220 °C. Result after 30 minutes reaction. 510 

Figure 3. Synthesis of ye’elimite from CaCO3 and Al2O3 in an atmosphere of SO2+air (ratio 511 

SO2:air of 1:25) at 1220 °C for 60 minutes. 512 

Figure 4. Attempt to synthesize calcium sulfosilicate in an atmosphere of SO2+air (ratio SO2:air 513 

of 1:2.5) at 1220 °C for 60 minutes. 514 

Figure 5. Formation of calcium sulfosilicate from C2S and CS̅ in an atmosphere of SO2+air (ratio 515 

SO2:air of 1:25) at 1075 °C for 60 minutes. 516 

Figure 6. Pellets with target composition 1 (Table 2) after firing at 1300 °C for 30 minutes under 517 

SO2+air atmosphere (ratio SO2:air of 1:2.5). Pellets are 13 mm diameter. 518 

Figure 7. Pellets with target composition 2 (Table 2) after firing at 1300 °C for 30 minutes under 519 

SO2+air atmosphere (ratio SO2:air of 1:2.5). Pellets are 13 mm diameter. 520 

 521 

 522 

Table captions 523 

Table 1. Oxide composition of raw materials used for the experiments. XRF measurements of 524 

bauxite and clay were performed at Edinburgh University at the School of Geosciences. Oxide 525 

composition of limestone was provided by the supplier (Samin). 526 
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Table 2. Experimental conditions used for clinkers made with mixes of CaCO3, SiO2, Al2O3 and 527 

Fe2O3. 528 

Table 3. Experimental conditions used for clinkers made with mixes of CaCO3, SiO2, Al2O3, 529 

Fe2O3 and CaSO4. 530 

Table 4. Experimental conditions used for clinkers made with commercial grade raw materials.  531 

Table 5. Rietveld analysis results of clinkers synthesized from laboratory grades of CaCO3, 532 

SiO2, Al2O3 and Fe2O3: experimental conditions shown in Table 2. Note the polymorphs of 533 

C4A3S̅ and C2S are included in the corresponding boxes. O and C stand for orthorhombic and 534 

cubic ye’elimite, and ’,  and  are the three polymorphs of C2S. wRp stands for weighted- 535 

profile R factor. 536 

Table 6. Rietveld analysis results of clinkers synthesized from laboratory grades of CaCO3, 537 

SiO2, Al2O3, Fe2O3 and CaSO4: experimental conditions shown in Table 3. Note the polymorphs 538 

of C4A3S̅, orthorhombic (O) and cubic (C), are included in the corresponding box. All C2S formed 539 

in these experiments was -C2S. 540 

Table 7. Rietveld analysis results of clinkers synthesized from commercial grade raw materials 541 

clay, bauxite and limestone: experimental conditions shown in Table 4. Note the polymorphs of 542 

C4A3S̅ and C2S are included in the corresponding boxes. O and C stand for orthorhombic and 543 

cubic ye’elimite, and ’ and  for the polymorphs of C2S. 544 

Table 8. Model predictions for the clinker compositions made with commercial grade raw 545 

materials: clay, bauxite and limestone. Temperature and gas atmosphere used for the 546 

simulations are detailed in Table 4. 547 
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Table 1. Oxide composition of raw materials used for the experiments. XRF measurements of 

bauxite and clay were performed at Edinburgh University at the School of Geosciences. Oxide 

composition of limestone was provided by the supplier (Samin). 

% Oxides Bauxite Clay Limestone 

SiO2 11.52 39.24 0.1 

Al2O3 69.32 38.18 0.00 

Fe2O3 1.21 5.98 0.009 

MgO 0.00 0.06 0.26 

CaO 0.16 0.87 55.70 

Na2O 0.00 0.00 0.00 

K2O 0.455 0.624 0.00 

TiO2 3.409 1.773 0.00 

MnO 0.000 0.001 0.00 

P2O5 0.081 0.088 0.00 

LOI 13.44 13.08 44.00 
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Table 2. Experimental conditions used for clinkers made with mixes of CaCO3, SiO2, Al2O3 and 

Fe2O3. 

 Target 

mineralogy 

(weight %) 

Input (weight 

% solids) 

Mass flow 

rates SO2:air 

(g/min) 

Temperature 

(°C) 

1 

60% C4A3$  

20% C2S  

20% C6A2F 

48.1% CaO 

7.6% SiO2 

37.2% Al2O3 

7.1% Fe2O3 

0.04:0.1 

(1:2.5) 
1300 

2 

40% C4A3$  

40% C2S  

20% C6A2F 

52.7% CaO 

14.7% SiO2 

25.6% Al2O3 

6.9% Fe2O3 

0.04:0.1 

(1:2.5) 
1300 

3 

20% C4A3$  

60% C2S  

20% C6A2F 

57.1% CaO 

21.5% SiO2 

14.6% Al2O3 

6.8% Fe2O3 

0.04:0.1 

(1:2.5) 
1300 
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Table 3. Experimental conditions used for clinkers made with mixes of CaCO3, SiO2, Al2O3, Fe2O3 

and CaSO4. 

 Target 

mineralogy 

(weight %) 

Input  

(weight %) 

Mass flow rates 

SO2:air (g/min) 
T (°C) 

1 

30% C4A3$  

60% C2S  

10% C6A2F 

52.1% CaO 

20.9% SiO2 

6.7% CaSO4 

18.0% Al2O3 

2.3% Fe2O3 

1.05:2.63 (1:2.5) 

1280 
2 0.105:2.63 (1:25) 

3 0.1:5 (1:50) 

4 0.04:4 (1:100) 

5 0.04:2 (1:50) 1230 

6 0.04:1 (1:25) 1230 

7 

0.088:2.204 (1:25) 

1200 

8 1250 

9 1270 

10 

60% C4A3$  

30% C2S  

10% C6A2F 

40.9% CaO 

10.5% SiO2 

13.4% CaSO4 

33.0% Al2O3 

2.3% Fe2O3 

0.088:2.204 (1:25) 

1200 

11 

1250 
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Table 4. Experimental conditions used for clinkers made with commercial grade raw materials. 

 Target mineralogy 

(weight %) 
Input (weight %) 

Flow rates SO2:air 

(g/min) 

Temperature 

(°C) 
Time (min) 

1 36% C4A3$ 

32% C2S 

9% C4AF 

23% C$ 

12.2% bauxite 

68.4% limestone 

19.5% clay 

0.04:1 (1:25) 
1250 

120 

 

2 1300 

3 
0.04:4 (1:100) 

1250 

4 1300 

5 
34% C4A3$ 

42% C2S 

11% C4AF 

13% C$ 

6.6% bauxite 

67.3% limestone 

26.1% clay 

0.04:4 (1:100) 
1300 

120 

6 60 

7 30 

8 
1275 120 

9 0.04:2 (1:50) 
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Table 5. Rietveld analysis results of clinkers synthesized from laboratory grades of CaCO3, SiO2, Al2O3 and 

Fe2O3: experimental conditions shown in Table 2. Note the polymorphs of C4A3$ and C2S are included in 

the corresponding boxes. O and C stand for orthorhombic and cubic ye’elimite, and ’,  and  are the 

three polymorphs of C2S. wRp stands for weighted- profile R factor. 

 Target 

mineralogy 

(weight %) 

Output mineralogy (weight %) 

 

 
wRp 

(%) 

  C4A3$ C2S C$ C2AS C4AF S C3A C12A7  

1 60% C4A3$ 

20% C2S 

20% C6A2F 

O 20 

C 28 

’ 1 

 2 

23 26 1    5.28 

2 40% C4A3$ 

40% C2S 

20% C6A2F 

O 15 

C 23 

’ 2 

 19 

18 21 1    4.99 

3 20% C4A3$ 

60% C2S 

20% C6A2F 

O 2  25 

 18 

 1 28 4 20 1 5.48 
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Table 6. Rietveld analysis results of clinkers synthesized from laboratory grades of CaCO3, SiO2, Al2O3, 

Fe2O3 and CaSO4: experimental conditions shown in Table 3. Note the polymorphs of C4A3$, 

orthorhombic (O) and cubic (C), are included in the corresponding box. All C2S formed in these 

experiments was -C2S. 

 Target 

mineralogy 

(weight %) 

Output mineralogy (weight %) 

   
wRp 

(%) 

  C4A3$ -C2S C$ C2AS C5S2$ CA C4AF C S  

1 

30% C4A3$ 

60% C2S 

10% C6A2F 

O 1 

C 4 

 57 38      5.68 

2 O 17 

C 12 

33 16 22      5.57 

3 O 19 

C 13 

37 12 19      4.72 

4 O 15 

C 19 

33 11 21      5.74 

5 O 9 

C 10 

13 41 13 4 7 1  2 8.33+ 

6 O 24 

C 11 

35 12 5 2  4 4 2 5.23 

7 O 23 

C 8 

21 24 4 8  3 6 4 6.00 

8 O 15 

C 14 

32 21 14 4     5.89 

9 O 27 

C16 

40 13 5      5.70 

10 
60% C4A3$ 

30% C2S 

10% C6A2F 

O 43 

C 15 

8 17 2 4 4 2 4  5.81 

11 O 63 

 

14 16 7      9.22 
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Table 7. Rietveld analysis results of clinkers synthesized from commercial grade raw materials clay, 

bauxite and limestone: experimental conditions shown in Table 4. Note the polymorphs of C4A3$ and C2S 

are included in the corresponding boxes. O and C stand for orthorhombic and cubic ye’elimite, and ’ 

and  for the polymorphs of C2S. 

 Target 

mineralogy 

(weight %) 

Output mineralogy (weight %) wRp (%) 

  C4A3$ C2S C$ C2AS CT C5S2$  

1 

36% C4A3$ 

32% C2S 

9% C4AF 

23% C$ 

O 1 

C 4 

 64 31 1  9.46 

2 O 8 

C 13 

 4 

’ 2 

48 25  1 9.30 

3 O 20 

C 17 

 11 

’ 7 

29 4 2 11 6.79 

4 O 30 

C 16 

 23 

’ 8 

22  1 0 5.63 

5 

34% C4A3$ 

42% C2S 

11% C4AF 

12% C$ 

O 22 

C 20 

 28 

’ 3 

23  5  8.46 

6 O 10 

C 32 

 23 

’ 3 

27 3 3  8.63 

7 O 13 

C 23 

 19 

’ 2 

32 9 1 2 6.93 

8 O 8 

C 25 

 9 

 

 

 

11 1 18 6.60 

9 O 1 

C 1 

 59 39   10.62 
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Table 8. Model predictions for the clinker compositions made with commercial grade raw materials: clay, 

bauxite and limestone. Temperature and gas atmosphere used for the simulations are detailed in Table 

4. 

   Model Output (weight %) using raw materials 

 C4A3$ C2S C$ C4AF C5S2$ CT CF (L) MgO 

1 38.7 - 12.8 - 44.5 1.6 2.2 0.2 

2 37.2 32.4 23.5 5.0 - 1.6 - 0.2 

3 37.2 - 10.7 5.0 45.2 1.6 - 0.2 

4 37.2 32.4 23.5 5.0 - 1.6 - 0.2 

5 35.6 42.0 14.0 6.6  1.5 - 0.3 

6 35.6 42.0 14.0 6.6  1.5 - 0.3 

7 35.6 42.0 14.0 6.6  1.5 - 0.3 

8 35.6 6.4 - 6.6 49.6 1.5 - 0.3 

9 35.6 6.4 - 6.6 49.6 1.5 - 0.3 
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To the editor and referees, 

Enclosed is a manuscript to be considered for publication in ”Advances in Cement Research”, entitled 

‘Advances in clinkering technology of calcium sulfoaluminate cement’.  

The manuscript describes a new process to produce cement. The main highlight of the process is the 

use of sulfur, in gas phase, as a raw material to produce calcium sulfoaluminate clinkers. The method 

presents important advantages in terms of CO2 and energy savings. The experimental design to 

develop the new method is described. The experimental and thermodynamic modelling results 

presented here lead to the completion of pilot plant trials (published in ACR vol 28, 2016). 

We appreciate your consideration and look forward to its publication. 
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Isabel Galan, Ammar Elhoweris, Theodore Hanein, Marcus Bannerman, Fredrik P. Glasser 
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