Interpretation[®]

Subsurface fluid flow focused by buried volcanic complexes in sedimentary basins

Journal:	Interpretation
Manuscript ID	INT-2016-0205.R1
Manuscript Type:	2015-12 Subsurface expression of igneous systems and their impacts on petroleum systems
Date Submitted by the Author:	n/a
Complete List of Authors:	Holford, Simon; The University of Adelaide, The Australian School of Petroleum Schofield, Nick; Geology and Petroleum Geology Reynolds, Peter; University of Adelaide, Australian School of Petroleum
Keywords:	Australia, volcanics, 3D, fluid, imaging
Subject Areas:	Case studies, Structural, stratigraphic, and sedimentologic interpretation

Interpretation

	Holford, Schofield and Reynolds Buried volcanoes and subsurface fluid flow
1	Subsurface fluid flow focused by buried volcanoes in sedimentary basins: evidence from 3D
2	seismic data, Bass Basin, offshore southeastern Australia
3	Simon P. Holford ¹ , Nick Schofield ² , and Peter Reynolds ¹
4	¹ Australian School of Petroleum, University of Adelaide, SA 5005, Australia
5	(simon.holford@adelaide.edu.au; peter.reynolds@adelaide.edu.au)
6	² Department of Geology and Petroleum Geology, University of Aberdeen, AB24 3UE, UK
7	(n.schofield@abdn.ac.uk)
8	Abstract
9	There is growing evidence that intrusive magmatic bodies such as sills and dikes can
10	influence the migration of fluids in the deep subsurface. This influence is largely due to
11	permeability contrasts with surrounding sedimentary rocks or because of interconnected open
12	fractures within and around intrusions acting as conduits for migrating fluids. The role of buried
13	volcanoes in influencing cross-stratal fluid migration in sedimentary basins is less well established.
14	However, several studies have highlighted spatial linkages between extinct hydrothermal vent
15	complexes and fluid seepage, suggesting buried extrusive features can also influence subsurface
16	fluid flow pathways, potentially leading to migration of hydrocarbon fluids between source and
17	reservoir. Here we present 3D seismic reflection data from the Bass Basin in offshore southeastern
18	Australia that images an early Miocene volcanic complex with exceptional clarity. This volcanic
19	complex is now buried by <1.3 km of younger sediments. The largest volcano within this complex
20	is directly overlain by a vertical feature interpreted to be a fluid escape pipe, which extends
21	vertically for ~700 m across the late Miocene-Pliocene succession. We suggest the buried volcanic
22	complex was able to focus vertical fluid migration to the base of the pipe because its bulk
23	permeability was higher than that of the overlying claystone sequence. The fluid escape pipe may
24	have initiated through either: 1) hydraulic fracturing following fluid expulsion from a deep,
25	overpressured sub-volcanic source region; 2) differential compaction and doming of the overlying
26	claystones; or 3) through a combination of these processes. Our results suggest a hitherto

Interpretation

	Holford, Schofield and Reynolds Buried volcanoes and subsurface	fluid flow
27	unrecognized role for buried volcanoes in influencing dynamic subsurface processes in sedir	nentary
28	basins. In particular, our study highlights that buried volcanoes may facilitate cross-stratal m	igration
29	of hydrocarbons from source to reservoir, or through sealing horizons.	
30	Introduction	
31	Volcanic and intrusive igneous rocks are found in many types of sedimentary basins,	and are
32	particularly common in basins that form due to lithospheric stretching i.e. rift and passive ma	argin
33	basins (e.g. Planke et al, 2000; White et al., 2003; Holford et al, 2012; Magee et al., 2016). B	uried
34	volcanic sequences and shallow intrusive complexes where magma stalled several kilometers	s below
35	the paleolandsurface are thus frequently encountered during petroleum exploration and produ	uction.
36	A number of studies have sought to identify the impact of this magmatism on the elements a	nd
37	processes of the petroleum system (e.g. Schutter, 2003; Planke et al., 2005; Rohrman, 2007;	
38	Holford et al., 2012, 2013; Rateau et al., 2013; Millett et al., 2016; Schofield et al., 2016).	
39	A particular focus of previous work has been to assess the influence of intrusive igne	ous
40	bodies on subsurface fluid migration. Mafic sills and laccoliths can generate focused subsurf	ace
41	fluid flow through the high flux of hydrothermal fluids derived from the magma by devolitiz	ation,
42	and from host sediments by conductive heating and thermal pumping of pore fluids (Delaney	r, 1987;
43	Einsele, 1992; Cartwright et al., 2007). This flux often leads to the formation of hydrotherma	d pipes,
44	which typically emanate from the inclined lateral margins of sills or from ridge-like junction	S
45	within sills, and which exhibit a considerable range of diameter (~0.1 to 3 km) and height (up	p to 2.5
46	km) (Svensen et al., 2004; Hansen, 2006; Cartwright et al., 2007). Several recent studies hav	e
47	proposed that igneous intrusions can also influence the post-emplacement migration pathway	vs of
48	other basinal fluids, including hydrocarbons, over long timescales (Holford et al., 2013; Rate	au et
49	al., 2013; Schofield et al., 2015, 2016). Based on a detailed analysis of wells that penetrate	
50	intrusions in the Faroe Shetland Basin, Rateau et al. (2013) suggest that some low-permeabil	ity
51	intrusions (and/or the surrounding contact metamorphic zones) have created barriers to fluid	flow,
52	whilst some intrusions may have acted as fractured conduits to migrating gas. Schofield et al	•

Submitted to Interpretation

Holford, Schofield and Reynolds

Interpretation

53 (2015) demonstrate a compelling spatial relationship between the Tormore gas field and underlying
54 sills, and proposed that fractured intrusions may have provided a preferential migration pathway
55 through otherwise impermeable Paleocene shales.

Though basaltic lava flows can act as productive aquifers (e.g. within the Columbia River Group in the NW United States; Fetter, 2001), the influence of buried volcanoes on subsurface hydrocarbon migration is less well understood. The primary and secondary porosity and permeability of volcanic rocks can vary widely (Schutter, 2003; Millett et al., 2016), and there are numerous instances of both pyroclastic rocks and lavas acting as either reservoirs or seals (Schutter, 2003; Holford et al., 2012), thus acting as end-points to migration pathways. Noteworthy examples include the Jatibarang Field in Java where >1.2 billion barrels of oil and >2.7 TCF of gas have been produced from fractured, late Eocene-early Oligocene andesitic tuffs (Kartanegara at el., 1996), and the Kipper Field in the Gippsland Basin, Australia where a 328 m gross gas column is top sealed by >100 m of altered Campanian basalts (Sloan et al., 1992).

However, there are comparatively few reported occurrences of buried volcanoes influencing focused subsurface fluid flow over long timescales. This is somewhat surprising because buried and relatively pristine volcanoes, are common within the oceanic domain (e.g. seamounts and off-ridge axis vents; Mottl et al., 1998) and are being increasingly identified along continental margins (e.g. Holtar and Forsberg, 2000; Jackson, 2012; Magee et al., 2013, 2015; Reynolds et al., 2017). The burial of extrusive sequences by post-eruption sediments can potentially result in profound permeability contrasts and therefore enhance the potential for focused subsurface fluid flow, as indicated by a number of intriguing case studies by Svensen et al. (2003, 2006, 2008). For example, Svensen et al. (2003) describe a ~50-million-year record of seep carbonate growth within Eocene-Pliocene sediments above an extinct sill-fed hydrothermal vent complex of Paleocene age in the Vøring Basin. Their analysis indicated that the hydrothermal vent complex acted as a long-lived, high permeability zone during burial of the basin.

Holford, Schofield and Reynolds Buried volcanoes and subsurface fluid flow The principal aim of this paper is to understand the relationship between buried volcanoes and focused cross-stratal fluid flow in sedimentary basins. We use three-dimensional (3D) seismic reflection data from the Bass Basin, offshore southeastern Australia (Fig. 1). This is an excellent location to address this aim because it contains multiple, well-imaged volcanic features that have been penetrated by drilling and are interpreted to be monogenetic pillow volcanoes and tuff cones, rather than hydrothermal vent complexes (Reynolds et al., 2017). Here we focus on an intriguing spatial linkage whereby the post-eruption sediments within the Yolla 3D seismic survey host a feature interpreted to be a fluid escape pipe, which directly overlies a monogenetic tuff cone. We explore how the buried volcano may have controlled fluid migration over a timescale of ~ 20 Myr since the cessation of eruptive activity. We also discuss the broader implications of fluid migration focused by buried volcanic complexes in sedimentary basins.

90 Geological Setting

The Bass Basin is an intracratonic rift basin located offshore between Victoria and northern Tasmania, southern Australia (Fig. 1). Active extensional deformation related to lithospheric stretching in the Southern Ocean and Tasman Sea culminated in the mid-Eocene, resulting in the formation of a number of NW-SE trending half-grabens including the Yolla Trough (Holford et al., 2012). Many petroleum exploration wells have penetrated intrusive and volcanic rocks of Cretaceous-Miocene age in this basin, with peaks in magmatic activity observed during the Paleocene (i.e. syn-rift) and Oligocene-Miocene (i.e. post-rift; Holford et al., 2012; Meeuws et al., 2016; Reynolds et al., 2017). The igneous rocks that have been encountered by drilling are generally mafic, consistent with the broader record of extensive late Cenozoic basaltic volcanism in northwestern Tasmania and in the Newer Volcanics Province, to the north of the Bass Basin (Holt et al., 2013; Meeuws et al., 2016).

102 The Yolla-1 well was drilled in 1985 resulting in the discovery of the Yolla gas field
103 (Lennon et al., 1999). A ~20 Ma volcaniclastic sequence was encountered at depths between 1237-

Interpretation

-		·
1		Holford, Schofield and Reynolds Buried volcanoes and subsurface fluid flow
2	104	1305 m (Fig. 2), comprising highly altered volcanic tuff, with abundant alteration to clays and
4 5	105	calcite, interbedded with sandstones, claystones and siltstones (Wheeler and Kjellgren, 1986). The
6 7	106	sandstones contained fragments of mafic rock (Boral Energy, 1998). This volcaniclastic sequence is
8 9	107	overlain by a ~500 m thick sequence of early Miocene marine calcareous claystones deposited in
10 11	108	water depths of between 90-140 m (Boral Energy, 1998). This volcaniclastic sequence is clearly
12 13	109	visible on the regional seismic profile presented in Fig. 3. Other igneous rocks encountered by the
14 15 16	110	Yolla-1 well include a medium to fine-grained gabbroic intrusion dated as latest Oligocene by K-Ar
17 18	111	and a sequence of highly altered basalts of probable late Cretaceous-early Paleocene age were
19 20	112	encountered in deeper sections of the well (Wheeler and Kjellgren, 1986). The Bass-1 well, drilled
21 22	113	~10 km to the NW of Yolla-1 penetrated a younger (~16 Ma) volcano that is also visible on Fig. 3
23 24	114	(Holford et al., 2012; Reynolds et al., 2017). The Tilana-1 well, drilled ~16 km to the SE,
25 26 27	115	penetrated ~150 m of vesicular basalts at a similar stratigraphic level to the volcaniclastic sequence
28 29	116	in Yolla-1, whilst ⁴⁰ Ar/ ³⁹ Ar dating of a gabbroic intrusion between 2172-2193 m yielded an early
30 31	117	Miocene age (Blevin and Cathro, 2008).
32 33	118	Reynolds et al. (2017) have recently conducted a detailed study of Miocene volcanism in the
34 35 36	119	Bass Basin, using the Yolla 3D and Labatt 3D seismic reflection surveys. They identified three
37 38	120	separate phases of volcanic mound construction occurring between approximately 20 and 16 Ma.
39 40	121	The ~20 Ma volcanism corresponds to that observed within the Yolla 3D survey, and the 16 Ma
41 42	122	volcanism corresponds to that drilled by Bass-1. On the basis of seismic reflection characteristics
43 44 45	123	supplemented by well data, Reynolds et al. (2017) interpreted the mounds to be monogenetic
45 46 47	124	volcanoes composed of hyaloclastite and/or pyroclasts.
48 49	125	
50 51	126	Data and methods
52 53	127	The Yolla 3D seismic reflection survey was acquired in 1994 and covers 260 km ² with 12.5
54 55	128	x 25 m bin spacing. The seismic data is pre-stack time migrated and is displayed with SEG Normal
оо 57	129	Polarity. The dominant frequency at Miocene levels is 40-50 Hz, and the frequency range is 5-125

Submitted to Interpretation

https://mc.manuscriptcentral.com/interpretation

1
2
3
4
5
6
0
1
8
9
10
11
12
13
1/
15
10
16
17
18
19
20
21
22
23
2/
24
20
26
27
28
29
30
31
32
33
34
25
30
36
37
38
39
40
41
42
43
44
44
40
46
4/
48
49
50
51
52
53
54
54
55
56
57
58
59
60

	interpretation
	Holford, Schofield and Reynolds Buried volcanoes and subsurface fluid flow
130	Hz. At an interval velocity of 3000 m s ⁻¹ (based on Yolla-1 well data) this results in a vertical
131	resolution of 15-19 meters.
132	We mapped five seismic horizons within the study area. The ages of these horizons were
133	constrained by synthetic seismograms that enabled them to be tied to stratigraphic information from
134	the Yolla-1 and Bass-1 wells. Further details on the well-seismic ties are provided in Reynolds et al.
135	(2017). The Mid Miocene and Lower Mid Miocene horizons occur above the volcano penetrated by
136	Yolla-1, which occurs within a package bound by the Top Volcanic and Base Volcanic horizons.
137	These horizons correspond to the TV3 and BV3 horizons in Reynolds et al. (2017). The Eastern
138	View Coal Measures horizon occurs below the volcanic package.
139	To assist our interpretation and help visualize volcanic and related features we computed a
140	coherency cube from the original reflection volume. We also generated a spectral decomposition
141	volume (Henderson et al., 2007), with a blend involving frequencies $red = 27$ Hz, green = 33 Hz
142	and blue = 57 Hz found to highlight supra-volcanic features clearly.
143	
144	Interpretation of 3D seismic data
145	Volcanic features
146	A representative inline from the 3D survey is shown in Fig. 4A. The TV horizon is marked
147	by a laterally discontinuous bright reflection. This horizon forms the highest amplitude event after
148	the seabed reflection due to the acoustic impedance contrast with the overlying claystones. The TV
149	horizon defines a mound-like structure with maximum dips of 15–20° that culminates at ~0.85 s
150	TWT (~0.2 s above its regional elevation), 2 km NE of the well location (Fig. 4A). An amplitude
151	time slice at ~1 s TWT shows that the mound comprised of several, partially overlapping smaller
152	mounds (V1-V3) that possess circular to elliptical planform geometries (Fig. 5A). A separate series
153	of smaller mounds aligned in an N-S orientation occur NW of Yolla-1 (V4-V6). The largest
154	identifiable mound, which is closest to Yolla-1 (V1), has a diameter of \sim 3 km at 1 s TWT.

Interpretation

		Holford, Schofield and Reynolds	Buried volcanoes and subsurface fluid flow
1 2 2	155	The diameter, height and volume of the mo	ounds, and their seismic reflection facies are
3 4 5	156	consistent with basaltic tuff cones (Reynolds et al.	, 2017). We hereafter refer to this as the Yolla
6 7	157	volcanic complex, which comprises three overlapp	bing volcanoes (V1-V3). Similar tuff cones of late
8 9	158	Oligocene age occur onshore at Airey's Inlet (Cas	et al., 1993), 215 km NW of Yolla-1 (Fig. 1). We
10 11	159	infer that the tuff cone was emplaced in a shallow	marine environment, similar to pristine
12 13	160	submarine Eocene volcanoes in the Ceduna sub-ba	asin described by Jackson (2012).
14 15 16	161	Sedimentological and palynological data from the	overlying calcareous claystones at Yolla-1
10 17 18	162	indicates deposition of these rocks in water depths	of >90 to 140 meters of water, with calcareous
19 20	163	sediments winnowed off a nearby bryozoan bank v	with associated clay flux (Boral Energy, 1998).
21 22	164	The construction of the volcano in a shallow marin	ne environment would have resulted in rapid
23 24 25	165	alteration of the volcaniclastic deposits (c.f. Kano,	1998), consistent with the highly altered nature
25 26 27	166	of the volcanic rocks encountered by Yolla-1.	
28 29	167	Sub-volcanic features	
30 31	168	An array of sub-linear, near-vertical, ~N-S	trending zones of seismic disturbance (Fig.
32 33	169	3A,B), occurs at >1 s TWT (Fig. 4A). In map view	these zones are can be distinguished from faults
34 35 36	170	on the basis of their orientation, cross-cutting relat	ionships and the fact that there is no evidence for
30 37 38	171	vertically offset reflections across them (Fig. 4A).	The maximum width of these zones is ~100 m,
39 40	172	and lengths vary between 2 to >15 km. There is str	rong alignment between the ~N-S orientations of
41 42	173	these zones and the volcanoes (Fig. 5B). We do not	ot interpret these zones to be sub-volcanic
43 44 45	174	artefacts, because they are not restricted to occurri	ng just beneath the volcanoes (Fig. 5B). We
45 46 47	175	instead interpret them to be near-vertical dikes, wh	nich supplied magma to the overlying volcanoes.
48 49	176	Though a number of small sills have been intersec	ted by wells in the Bass Basin (e.g. Yolla-1,
50 51	177	Tilana-1; Holford et al., 2012; Meeuws et al., 2016	6), and sills are present in the Labatt 3D survey
52 53	178	situated NW of the Yolla survey (Reynolds et al.,	2017), we find no clear evidence for large,
54 55 56	179	seismically-resolvable sills located beneath the Yo	olla volcanic complex.
50 57 58	180		

		Holford, Schofield and Reynolds Buried volcanoes and subsurface fluid flow
1 2	181	Supra-volcanic features
3 4 5	182	The Yolla volcanic complex is overlain by a sequence of calcareous claystones that reaches
5 6 7	183	~400 m in thickness SW of Yolla-1, and which contains a conspicuous polygonal fault system
8 9	184	(PFS) (Figs. 3, 4A, 5E). The LMM horizon, which is a prominent reflection event (LMM) of lower
10 11	185	mid-Miocene age (~16 Ma) that bounds the top of this package, is gently folded over the volcanic
12 13	186	complex. A prominent dome is situated above V1, and divergent reflections are observed within thi
14 15 16	187	claystone package. These observations are suggestive of differential compaction of the claystone
10 17 18	188	package, which thins by up to 40% above the volcanic complex. The flanking claystones would
19 20	189	compact more and at shallower burial depths than across the adjacent volcano.
21 22	190	Mapping of LMM reveals several amplitude anomalies that overlie the volcanic complex.
23 24 25	191	These anomalies are well imaged using spectral decomposition, which can reveal subtle frequency
25 26 27	192	response characteristics. An RGB blend displayed on LMM shows a subcircular feature (labelled
28 29	193	feature A; diameter ~1 km), which is domal in cross-section and directly overlies the largest vent
30 31	194	(V1) of the volcanic complex (Fig. 5C). Several frequency anomalies occur around the subcircular
32 33	195	feature, the largest of which (labelled feature B) occurs to the NE and covers an area of $\sim 13 \text{ km}^2$.
34 35 36	196	These features have lower seismic amplitude than the TV reflection (Fig. 4), and we do not interpre
37 38	197	them to be volcanic in origin. The frequency response is also not consistent with these features
39 40	198	being volcanic, as volcanic rocks tend to produce responses from across the frequency spectrum.
41 42	199	We are uncertain as to what is driving the frequency response, other than a contrast in lithological
43 44 45	200	properties and/or fluid content.
46 47	201	The shallow (<0.7 s TWT) section above the LMM horizon is characterized by parallel,
48 49	202	unfaulted strata, corresponding to a sequence of mid-Miocene-Recent shallow marine calcarenites
50 51	203	(Wheeler and Kjellgren, 1986). A ~700 m high, near-vertical zone of disrupted reflections forming
52 53	204	a pipe-like structure is developed directly over both the mid-Miocene dome (A), the largest vent
55 56	205	within the volcanic complex and the zone of discontinuous reflections linking the two (V1; Fig.
57 58	206	4C). A series of amplitude time slices through the mid-Miocene-Recent section confirm this spatial
59 60		

Holford, Schofield and Reynolds

Interpretation

1 2	207	alignment and show that this structure possesses a circular planform (maximum diameter ~625 m)				
3 4 5	208	and extends to just beneath the sea floor (Fig. 5E).				
5 6 7	209					
, 8 9	210	Discussion				
10 11	211	We have described a pristine early Miocene (~20 Ma) volcanic complex buried within the				
12 13	212	post-rift succession of a sedimentary basin offshore southeastern Australia. An unusual finding is				
14 15	213	that both a series of amplitude and frequency anomalies and a ~700 m high, sub-vertical pipe-like				
16 17 18	214	structure directly overlie the main volcano within the complex.				
19 20	215	Relationship between buried volcanic complex and supra-volcanic features				
21 22	216	We first present two alternative interpretations for the anomalies that are observed from				
23 24	217	mapping of the LMM horizon. One interpretation is that they are related to differential compaction				
25 26 27	218	of the claystone sequence, because the lateral extent of feature B broadly corresponds to the				
27 28 29	219	topography of the underlying volcanic complex. The second interpretation is that feature B is a				
30 31	220	sedimentary density current deposit extending away from a source sedimentary volcano, which here				
32 33	221	is expressed as a subcircular frequency anomaly (feature A). In cross section the sequence beneath				
34 35	222	the conduit is characterised by a pipe-like zone of discontinuous reflections (Fig. 4B), and in				
36 37 38	223	combination, these features are reminiscent of analogous structures within fine-grained calcareous				
39 40	224	sediments in the North Sea interpreted to be mud volcanoes (Andresen et al., 2010). Based on the				
41 42	225	spatial correspondence between the frequency anomalies and the underlying topography of the				
43 44	226	individual volcanoes within the complex, we consider that an origin related to differential				
45 46 47	227	compaction is most likely. However, we cannot discount the possibility that features A and B				
48 49	228	represent a sediment volcano and sedimentary density current deposit, respectively.				
50 51	229	We interpret the supra-volcanic, pipe-like structure to be a fluid-escape pipe (Fig. 6C).				
52 53	230	Similar structures are recognized on 3D seismic data from many continental margin basins (e.g.				
54 55 56	231	Ligtenberg, 2005; Cartwright et al., 2007; Moss and Cartwright, 2010). Many of these structures are				
50 57 58	232	thought to represent natural hydraulic fractures that form following critical pressurization of				
59 60						

Interpretation

		Holford, Schofield and Reynolds	Buried volcanoes and subsurface fluid flow
1 2	233	subsurface aquifers and hydrocarbon res	ervoirs, enabling fluid escape (Moss and Cartwright, 2010),
3 4 5	234	though other potential mechanisms for p	ipe genesis include erosive fluidization and capillary
5 6 7	235	invasion (Cartwright and Santamarina, 2	015).
, 8 9	236	We speculate that the supra-volca	anic pipe that extends towards the seabed formed
10 11	237	geologically recently, when highly press	ured fluids and/or gases originating from deeper parts of
12 13	238	the basin migrated upwards and were for	cused by the Yolla volcanic complex. Basin modeling
14 15 16	239	indicates that the late Paleocene-early Eq	ocene-age coals, thought to have sourced the nearby Yolla
10 17 18	240	gas accumulation, began to expel hydroc	arbons at ~5 Ma (Arian et al., 2010). Furthermore,
19 20	241	significant overpressures occur at depths	>2.7 km in the Bass Basin, coincident with the depth of
21 22	242	the oil expulsion window (Arian et al., 2	010).
23 24	243	The integrity of the seal above th	e reservoir that hosts the proximal Yolla gas field is
25 26 27	244	uncompromised, implying significant co	mpartmentalization of fluid flow and pressure regimes at
28 29	245	depths >1.5 km, possibly aided by the ne	twork of subvolcanic dikes. We suggest that fluids and/or
30 31	246	gases from mature source rocks to the ea	st of the fault-bounded Yolla closure migrated upwards to
32 33	247	the base of the claystone sequence, whic	h we infer has low-permeability, and were then focused by
34 35 26	248	the volcanic complex, which formed a st	ructurally-high pressure foci (c.f. Sun et al., 2012;
30 37 38	249	Cartwright and Santamarina, 2015). Flui	ds may have been preferentially exploited and focused by
39 40	250	internal fractures and high permeability	pathways within the volcanic complex, or along its margins
41 42	251	by lateral pressure transfer. Because the	e is no core from the Torquay Group, we are unable to
43 44 45	252	directly constrain the permeability of the	claystones or the volcanic rocks.
45 46 47	253	The pipe itself may have formed	due to hydraulic fracturing following fluid expulsion from
48 49	254	a deep, overpressured sub-volcanic source	e region, or due to differential compaction of the
50 51	255	overburden of the Yolla volcanic comple	ex, which is most pronounced over the largest volcano (V1).
52 53	256	We cannot discriminate between these se	cenarios, but in both cases we infer that the volcanic
54 55 56	257	complex has acted to focus fluids to the	base of the pipe.
57 57			

Holford, Schofield and Reynolds

Interpretation

1 2	258	An alternative explanation for the supra-volcanic fluid escape pipe is that it formed due to
3 4 5	259	the dewatering or reactivation of the polygonally-faulted claystone sequence. A number of studies
5 6 7	260	have identified spatial associations between pockmarks or fluid escape pipes and polygonal faults
8 9	261	(Berndt et al., 2003; Gay and Berndt, 2007; Tewkesbury et al., 2014). Gay and Berndt (2007)
10 11	262	present a case study from the Vøring Basin, Norwegian Margin, where the genesis of a PFS within
12 13	263	the late Pleistocene Naust Formation prompted the reactivation of an inactive PFS within the
14 15 16	264	deeper, upper Miocene-lower Pliocene Kai Formation. The interconnectivity between these tiered
17 18	265	PFSs permitted upward migration of fluids, resulting in a range of pipes and seabed pockmarks.
19 20	266	However, we note that Cartwright (2014) points out that there are many examples of PFSs where
21 22	267	there is no association with fluid escape pipes.
23 24 25	268	Although we consider the above hypothesis plausible, our preferred hypothesis is that the
25 26 27	269	location of the fluid escape pipe has been directly controlled by the deeper volcanic complex.
28 29	270	Critically, we note that the seismic data shows evidence for disrupted reflectors between the TV ar
30 31	271	LMM horizons, directly above V1 (Fig. 4C, Fig. 5E). This suggests that the base of the fluid escap
32 33	272	pipe is directly linked to the volcanic complex, which acted as a structurally-high pressure foci.
34 35 36	273	Furthermore, whilst other regions that potentially show associations between PFSs and fluid escap
37 38	274	typically contain multiple pipes, the only clear fluid escape pipe within the seismic survey is that
39 40	275	which is located directly above V1. Because the supra-volcanic pipe almost extends to the seabed,
41 42	276	is likely to have formed geologically recently, which rules out a link to dewatering of the PFS-
43 44 45	277	hosting claystones during early burial, though it is plausible that the PFS may have retained fluids
45 46 47	278	during burial and released these through the pipe during later seepage. It is also possible that the
48 49	279	pipe may have formed through a combination of the genetic processes above. Whatever the origin
50 51	280	of the pipe, it does not appear to be sustaining an active fluid flow system, as geochemical
52 53	281	surveying over the Yolla gas field conducted in 1989 found no evidence for seepage of
54 55 56	282	hydrocarbons at this location (O'Brien et al., 1992).
57 58	283	
59		

60

	Holford, Schofield and ReynoldsBuried volcanoes and subsurface fluid flow
284	Model accounting for spatial linkages between buried volcanic complex and focused fluid flow
285	Here we advance our preferred three-stage model to account for the spatial linkage between
286	the Yolla volcanic complex and the supra-volcanic fluid expulsion pipe. Stage one involves the
287	development of the Yolla volcanic complex at ~20 Ma, as a result of the eruption of basaltic magma
288	in a shallow marine setting (Fig. 6A). The complex comprises a number of partially overlapping
289	volcanoes, and we infer that these were fed via N-S trending dikes (Fig. 5B).
290	The next stage involves the burial beneath a package of calcareous claystones (Fig. 6B),
291	which likely protected the Yolla volcanic complex from large-scale degradation by post-eruption
292	erosion. This claystone package contains an extensive polygonal fault system (PFS), which
293	presumably developed early burial (c.f. Cartwright, 2011). The frequency anomalies observed at the
294	top of this sequence (on the LMM horizon) probably represent differential compaction structures,
295	though we cannot discount the possibility that these formed because of sediment expulsion from a
296	mud volcano; this would imply that the volcanic complex has repeatedly modulated subsurface
297	fluid and sediment recycling.
298	The third and final stage of our model pertains to the genesis of the supra-volcanic pipe
299	overlying V1. We hypothesize that the regionally extensive sequence of fine-grained lower
300	Miocene claystones acted as a low-permeability sealing sequence, forming a barrier to the vertical
301	migration of pressured fluids and/or gases expelled from sub-volcanic source rocks. Migrating
302	fluids were subsequently focused by the volcanic complex, which acted as a structurally-high
303	pressure foci.
304	Implications for fluid flow focused by buried volcanoes
305	Our preferred model for fluid flow focused by an extinct volcanic complex is analogous that
306	proposed by Svensen et al. (2003) to explain the presence of seep carbonates in Eocene-Pliocene
307	strata above a late Paleocene age hydrothermal vent complex in the Vøring Basin. Svensen et al.
308	(2003) argued that hydrocarbons from deeper in the basin migrated towards and through the

Holford Schofield and Reynolds

Interpretation

1 2	309	hydrothermal vent complex and underlying zone of brecciation, which acted as a zone of high
3 4 5	310	vertical-permeability, focussing fluid migration during basin subsidence.
5 6 7	311	Though the early Miocene volcanic section drilled by Yolla-1 comprises altered pyroclastic
7 8 9	312	deposits, based on detailed seismic mapping of numerous volcanoes of similar age in the Bass
10 11	313	Basin, (Reynolds et al., 2017), we think it likely that the composition of the volcanoes within the
12 13	314	Yolla volcanic complex includes basaltic hyaloclastite and tuff, similar to the late Oligocene
14 15	315	Airey's Inlet Volcanic Complex, to the NW of our study area (Cas et al., 1993). Porosity and
16 17	316	permeability within volcanic rocks can be highly variable, and is dependent on a wide range of syn
18 19 20	317	and post-eruption processes (Millett et al., 2016). Whilst individual units of highly vesicular basalts
20 21 22	318	and unaltered hyaloclastite may have high permeabilities (i.e. $>10^{-12}$ m ²) (Millett et al., 2016), facies
23 24	319	variations and internal heterogeneities within layered volcanic sequences (Planke, 1994; Archer et
25 26	320	al., 2005) suggest that the potential for bulk vertical permeability in an undeformed volcanic pile is
27 28	321	low However volcances such as those within the Yolla volcanic complex typically include many
29 30	322	sub-vertical pipes fractures and faults (e.g. Sohn and Chough 1992). If such pipes fractures and
31 32 33	323	faults are not mineralized, they could enhance vertical permeability. Fracturing at the margins of
34 35	323	sub-vertical dikes within the volcanic complex may also provide pathways for fluid flow (Senger et
36 37	325	al 2015)
38 39	525	

The precise mechanisms of fluid migration through buried volcanoes remains uncertain, and may require targeted scientific drilling (e.g. through IODP or ICDP) to obtain high quality data on the permeability, internal architecture and diagenetic state of buried volcanoes, in relation to the fluid flow properties of surrounding sedimentary sequences. However, given that buried volcanoes are being increasingly recognised within sedimentary successions at continental margins, focused fluid migration associated with 'leaky' volcanoes may be more common than presently assumed. Several recent studies have argued that fractured sub-volcanic sills can provide conduits for fluid migration (Rateau et al., 2013; Schofield et al., 2015). The highest potential for subsurface fluid

	Holford, Schofield and Reynolds Buried volcanoes and subsurface fluid flow		
334	flow through volcanoes may therefore be associated with sill-fed volcanoes (e.g. Jackson, 2012;		
335	Magee et al., 2013, 2016).		
336			
337	Conclusions		
338	1. Buried volcanoes, which are common features in continental margin basins, can potentially		
339	influence subsurface fluid flow over long timescales after their extinction.		
340	2. Earlier studies have identified links between igneous intrusions, hydrothermal vent		
341	complexes and long-term fluid migration, yet we are unaware of any prior demonstrations of		
342	subsurface fluid flow focused by buried volcanoes using 3D seismic data.		
343	3. The volcanic complex located offshore southern Australia described in this study was		
344	presumably able to directly focus the vertical migration of fluids because its bulk		
345	permeability was higher than that of the overlying polygonally-faulted claystone sequence.		
346	4. Our results imply that buried volcanic complexes may play a hitherto underappreciat		
347	in dynamic processes in sedimentary basins by modulating subsurface fluid and pressure		
348	regimes.		
349	5. There is growing evidence that sub-volcanic igneous intrusions can influence the post-		
350	emplacement migration pathways hydrocarbons, and our findings suggest that buried		
351	volcanoes may also play an important role in assisting the cross-stratal migration of		
352	hydrocarbons from source to reservoir, or through sealing horizons.		
353			
354	Acknowledgments		
355	We acknowledge funding from ARC Discovery Projects DP0897612 and DP1601158, and		
356	IHS and ffA for provision of software. We thank Sverre Planke, Chris Jackson, Qiliang Sun, Joe		
357	Cartwright, Gerome Calves, Henrik Svensen and Mads Huuse for helpful and constructive reviews		
358	of this manuscript. We also thank Chris Jackson for editorial assistance. This contribution		
359	represents TRaX #XXX.		

Holford, Schofield and Reynolds

Interpretation

1 2	360	
3 4 5	361	References
5 6 7	362	Archer, S. G., S. C. Bergman, J. Iliffe, C. M. Murphy, and M. Thornton, 2005, Palaeogene igneous
8 9	363	rocks reveal new insight into the geodynamic evolution and petroleum potential of the
10 11	364	Rockall Trough, NE Atlantic Margin: Basin Research, 17, 171-201.
12 13	365	Arian. N., P. Tingate, R. R. Hillis and G. W. O'Brien, 2010, Petroleum systems of the Bass Basin:
14 15 16	366	A 3D modeling perspective: APPEA Journal, 50, 511-534.
17 18	367	Andresen, K. J., O.R. Clausen and R. B. Jørgensen, 2010, A composite mud volcano system in the
19 20	368	Chalk Group of the North Sea Central Graben: Journal of the Geological Society, 167, 1209-
21 22	369	1224.
23 24 25	370	Berndt, C., S. Bünz and J. Mienert, 2003, Polygonal fault systems on the mid-Norwegian margin: a
25 26 27	371	long-term source for fluid flow: Geological Society of London, Special Publications, 216,
28 29	372	283-290.
30 31	373	Blevin, J. E. and D. L. Cathro, 2008, Australian Southern Margin Synthesis, Project GA707: Client
32 33	374	report to Geoscienec Australia by FrOG Tech Pty Ltd.
34 35 36	375	Blevin, J. E., K. R. Trigg, A. D. Partridge, C. J. Boreham and S. C. Lang, 2005, Tectonostratigraphy
37 38	376	and potential source rocks of the Bass Basin: APPEA Journal, 45, 601-621.
39 40	377	Boral Energy, 1998, Yolla 2 Well Proposal T/RL1.
41 42	378	Cartwright, J., 2011, Diagenetically induced shear failure of fine-grained sediments and the
43 44 45	379	development of polygonal fault systems: Marine and Petroleum Geology, 28, 1593-1610.
45 46 47	380	Cartwright, J., 2014. Are outcrop studies the key to understanding the origins of polygonal fault
48 49	381	systems? Geology, 42 , 559-560.
50 51	382	Cartwright, J., M. Huuse, and A. Aplin, 2007, Seal bypass systems: AAPG Bulletin, 91,
52 53	383	1141-1166.
54 55 56 57 58 59	384	Cummings, A. M., R. R. Hillis and P. R. Tingate, 2004, New perspectives on the structural

	Holford, Schofield and Reynolds	Buried volcanoes and subsurface fluid flow	
385	evolution of the Bass Basin: implications for petroleum prospectivity: PESA Special		
386	Publications, 133-149.		
387	Cas, R., C. Simpson. and H. Sato, 1993, New	Cas, R., C. Simpson. and H. Sato, 1993, Newer volcanics province: Processes and products of	
388 phreatomagmatic activity: Geoscience Australia Record 1993/64.		Australia Record 1993/64.	
389	Delaney, P. T., 1987, Heat transfer during the	emplacement and cooling of dykes: Geological	
390	Association of Canada, Special Paper,	34, 31-46.	
391	Einsele, G., 1992, Sedimentary basins, evolut	ion, facies and sediment budget: Berlin, Springer-	
392	Verlag, 628 p.		
393	Fetter, C. W., 2001, Applied hydrogeology (f	ourth edition): New Jersey, Prentice-Hall, 599 p.	
394	Gay, A. and C. Berndt, 2007, Cessation/react	vation of polygonal faulting and effects on fluid flow	
395	in the Vøring Basin, Norwegian Marg	in: Journal of the Geological Society, 164, 129-141.	
396 Grove, C., 2013. Submarine hydrothermal vent complexes in the Faroe-Shet		nt complexes in the Faroe-Shetland basin: insights	
397	from 3D seismic and petrographical d	ata. Geology 41, 71-74.	
Hansen, D. M., 2006, The morphology of intrusion-related vent structures and their impli		usion-related vent structures and their implications for	
399	constraining the timing of intrusive events along the NE Atlantic margin: Journal of the		
400	Geological Society, 163 , 789-800.	Geological Society, 163 , 789-800.	
401	Henderson, J., S. J. Purves, and C. Leppard, 2	Henderson, J., S. J. Purves, and C. Leppard, 2007, Automated delineation of geological elements	
402	from 3D seismic data through analysis	s of multi-channel, volumetric spectral decomposition	
403	data: First Break, 25, 87-93.		
404	Holford, S. P., N. Schofield, J. D. MacDonald	l, I. R. Duddy and P. F. Green, 2012, Seismic analysis	
405	of igneous systems in sedimentary bas	of igneous systems in sedimentary basins and their impacts on hydrocarbon prospectivity:	
406	examples from the southern Australian margin: APPEA Journal, 52, 229-252.		
407	Holford, S. P., N. Schofield, C. AL. Jackson, C. Magee, P. F. Green and I. R. Duddy, 2013,		
408	Impacts of igneous intrusions on source	Impacts of igneous intrusions on source and reservoir potential in prospective sedimentary	
409	basins along the western Australian co	basins along the western Australian continental margin: West Australian Basins	
410	Symposium, 18–21 August 2013.	Symposium, 18–21 August 2013.	

Interpretation

	Holford, Schofield and Reynolds Buried volcanoes and subsurface fluid flow		
411	Holford, S. P., A. K. Tuitt, R. R. Hillis, P. F. Green, M. S. Stoker, I. R. Duddy, M. Sandiford and D.		
412	R. Tassone, 2014, Cenozoic deformation in the Otway Basin, southern Australian margin:		
413	implications for the origin and nature of post-breakup compression at rifted margins: Ba		
414	Research, 26 , 10-37.		
415 Holtar, E. and A. W. Forsberg, 2000; Postrift development of the Walvis Basin, Nat			
416	from the exploration campaign in Quadrant 1911: AAPG Memoirs, 73, 429-446.		
117	Jackson, C. AL., 2012, Seismic reflection imaging and controls on the preservation of ancient sill-		
18	fed magmatic vents: Journal of the Geological Society, 169, 503-506		
19	Kano, K., 1998, A shallow-marine alkali-basalt tuff cone in the Middle Miocene Jinzai, Formation,		
420	Izumo, SW Japan: Journal of Volcanology and Geothermal Research, 87, 173-191.		
421	Kartanegara, A.L., R. N. Baik and M. A. Ibrahim, 1996, Volcanics oil bearing in Indonesia: AAPG		
5 422 1996 Annual Convention, Meeting Abstracts, 5 , A73.			
 423 Ligtenberg, J. H., 2005, Detection of fluid migration pathways in seismic data: 			
424	fault seal analysis: Basin Research, 17, 141-153.		
125	Lennon, R. G., R. J. Suttill, D. A. Guthrie, and A. R. Waldron, 1999, The renewed search for oil		
26	and gas in the Bass Basin: results of Yolla-2 and White Ibis-1: APPEA Journal, 37, 248-		
427	262.		
428	Magee, C., E. Hunt-Stewart, and C. AL. Jackson, 2013, Volcano growth mechanisms and the role		
429	of sub-volcanic intrusions: insights from 2D seismic reflection data: Earth and Planetary		
430	Science Letters, 373, 41–53.		
431	Magee, C., O. B. Duffy, K. Purnell, R. E. Bell, C. AL. Jackson and M. T. Reeve, 2015, Fault-		
432	controlled fluid flow inferred from hydrothermal vents imaged in 3D seismic reflection data,		
433	offshore NW Australia: Basin Research, 28, 299-318.		
434	Magee, C., J. D. Muirhead, A. Karvelas, S. P. Holford, C. AL. Jackson, I. D. Bastow, N.		
435	Schofield, C. T. E. Stevenson, C. McLean, W. McCarthy and O. Shtukert, 2016, Lateral		
436	magma flow in mafic sill complexes: Geosphere, 12 , 809-841.		

Interpretation

		Holford, Schofield and ReynoldsBuried volcanoes and subsurface fluid flow		
1 2 2	437	Meeuws, F. J. E., S. P. Holford, J. D. Foden and N. Schofield, 2016, Distribution, chronology and		
5 4 5	438	causes of Cretaceous-Cenozoic magmatism along the magma-poor rifted southern		
6 7	439 Australian margin: Links between mantle melting and basin formation: Marine and			
8 9	440	Petroleum Geology, 73 , 271-298.		
10 11	441	Millett, J. M., A. D. Wilkins, E. Campbell, M. J. Hole, R. A. Taylor, D. Healy. D. A. Jerram, D.		
12 13	442	Jolley, S. Planke, S. G. Archer and A. Blischke, 2016, The geology of offshore drilling		
14 15 16	443	through basalt sequences: Understanding operational complications to improve efficiency:		
17 18	444	Marine and Petroleum Geology, 78, 1177-1192.		
19 20	445	Moss, J. L. and J. Cartwright, 2010, 3D seismic expression of km-scale fluid escape pipes from		
21 22	446	offshore Namibia: Basin Research, 22, 481-501.		
23 24 25	447	Mottl, M. J., G. Wheat, E. Baker, N. Becker, E. Davis, R. Feely, A. Grehan, D. Kadko, M. Lilley,		
25 26 27	448	G. Massoth, C. Moyer and F. Sansone, 1998, Warm springs discovered on 3.5 Ma oceanic		
28 29	449	crust, eastern flank of the Juan de Fuca Ridge: Geology, 26, 51-54.		
30 31	450	Planke, S., 1994, Geophysical response of flood basalts from analysis of wire line logs: Ocean		
32 33	451	Drilling Program Site 642, Vøring volcanic margin: Journal of Geophysical Research: Solid		
34 35 26	452	Earth, 99, 9279-9296.		
30 37 38	453	Planke, S., P. A. Symonds, E. Alvestad and J. Skogseid, 2000, Seismic volcanostratigraphy of		
39 40	454	large-volume basaltic extrusive complexes on rifted margins: Journal of Geophysical		
41 42	455	Research: Solid Earth, 105, 19335-19351.		
43 44	456	Planke, S., T. Rasmussen, S. S. Rey and R. Myklebust, 2005, Seismic characteristics and		
45 46 47	457	distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre		
48 49	458	basins: Geological Society, London, Petroleum Geology Conference, 6, 833-844.		
50 51	459	Rateau, R., N. Schofield and M. Smith, 2013, The potential role of igneous intrusions on		
52 53	460	hydrocarbon migration, West of Shetland: Petroleum Geoscience, 19, 259–272.		
54 55	461	Reynolds, P., N. Schofield, R. J. Brown and S. Holford, 2017, The architecture of submarine		
56 57 58 59	462	monogenetic volcanoes - insights from 3D seismic data: Basin Research,		

Submitted to Interpretation

Interpretation

		Holford, Schofield and Reynolds Buried volcanoes and subsurface fluid flow	
1 doi:10.1111/bre.12230.		doi:10.1111/bre.12230.	
3 4 5	464	Rohrman, M., 2007, Prospectivity of volcanic basins: Trap delineation and acreage delineation:	
 465 AAPG Bulletin, 91, 9 466 Rollet, N., S. McGiveron, T. 467 A. Logan, 2012, Seafl 		AAPG Bulletin, 91, 915-939.	
		Rollet, N., S. McGiveron, T. Hashimoto, R. Hackney, P. Petkovic, K. Higgins, E. Grosjean and G.	
		A. Logan, 2012, Seafloor features and fluid migration in the Capel and Faust basins,	
12 13 14	468	offshore eastern Australia: Marine and Petroleum Geology, 35, 269-291.	
14 15 16	469	Schofield, N., S. Holford, J. Millett, D. Brown, D. Jolley, S. Passey, D. Muirhead, C. Grove, C.,	
17 18	470	Magee, J. Murray, M. Hole, C. Jackson and C. Stevenson, 2015, Regional magma plumbing	
19 20	471	and emplacement mechanisms of the Faroe-Shetland Sill Complex: implications for magma	
21 22 23	472	transport and petroleum systems within sedimentary basins: Basin Research,	
23 24 25	473	doi:10.1111/bre.12164.	
 474 Schofield, N., D. A. Jerram, S. Holford, S. Archer, N. Mark, A. Hartley, J. Howell, S 475 Green, D. Hutton and C. Stevenson, 2016, Sills in sedimentary basins and pe 		Schofield, N., D. A. Jerram, S. Holford, S. Archer, N. Mark, A. Hartley, J. Howell, S. Muirhead, P.	
		Green, D. Hutton and C. Stevenson, 2016, Sills in sedimentary basins and petroleum	
30 31	30 31 476 systems: Advances in Volcanology, 10.1007/11157_2015_17.		
32 33 34	477	Schutter, S. R, 2003, Hydrocarbon occurrence and exploration in and around igneous rocks:	
35 36	478	Geological Society of London, Special Publications, 214, 7-33.	
37 38	479	Senger, K., S. J. Buckley, L. Chevallier, Å. Fagereng, O. Galland, T. H. Kurz, K. Ogata, S. Planke	
39 40	480	and J. Tveranger, 2015, Fracturing of doleritic intrusions and associated contact zones:	
41 42 43	481	Implications for fluid flow in volcanic basins: Journal of African Earth Sciences, 102, 70-85.	
43 44 45	482	Sibson, R. H., 1995, Selective fault reactivation during basin inversion: potential for fluid	
46 47	483	redistribution through fault-valve action: Geological Society of London, Special	
48 49	484	Publications, 88 , 3-19.	
50 51 52	485	Sloan, M. W., P. S. Moore and A. McCutcheon, 1992, Kipper – a unique gas discovery, Gipplsand	
52 53 54	486	Basin, Australia; APEA Journal, 35, 1-8.	
55 56	487	Sohn, Y. K. and S. K. Chough, 1992, The Ilchulbong tuff cone, Cheju Island, South	
57 58	488	Korea: Sedimentology, 39, 523-544.	
59 60			

Submitted to Interpretation

		Holford, Schofield and ReynoldsBuried volcanoes and subsurface fluid flow		
1 2	489	Sun, Q., S. Wu, J. Cartwright and D. Dong, 2012, Shallow gas and focused fluid flow systems in		
3 4 5	490) the		
5 6 7	491	Pearl River Mouth Basin, northern South China Sea: Marine Geology, 315-318 , 1-14.		
8 9	492	Svensen, H., S. Planke, B. Jamtveit and T. Pedersen, 2003, Seep carbonate formation controlled by		
10 11	493	hydrothermal vent complexes: a case study from the Vøring Basin, the Norwegian Sea: Geo-		
12 13 14	494	Marine Letters, 23 , 351-358.		
14 15 16	495	Svensen, H., S. Planke, A. Malthe-Sørensen, B. Jamviet, R. Myklebust, T. R. Eidem and S. S. Rey,		
17 18	496	2004, Release of methane from a volcanic basin as a mechanism for initial Eocene global		
19 20	497	warming: Nature, 429, 542-545.		
21 22 22	498	Svensen, H., B. Ø. Jamtveit, S. Planke and L. Chevallier, 2006, Structure and evolution of		
23 24 25	499	hydrothermal vent complexes in the Karoo Basin, South Africa: Journal of the Geological		
26 27	500	Society, 163 , 671-682.		
28 29	501	Svensen, H., G. Bebout, A. Kronz, L. Li, S. Planke, L. Chevallier and B. Jamtveit, 2008, Nitrogen		
30 31 22	502	geochemistry as a tracer of fluid flow in a hydrothermal vent complex in the Karoo Basin,		
32 33 34	503	South Africa: Geochimica et Cosmochimica Acta, 72, 4929-4947.		
35 36	504	Tewkesbury, B. J., J. P. Hogan, S. A. Kattenhorn, C. J. Mehrtens and E. A. Tarabees, 2014,		
37 38	505	Polygonal faults in chalk: Insights from extensive eposures of the Khoman Formation,		
39 40	506	Western Desert, Egypt: Geology, 42 , 479-482.		
41 42 ⊿3	507	Wheeler, B.F. and R. M. Kjellgren, 1986, Yolla-1 final well report: Amoco Australian Petroleum		
43 44 45	508	Company.		
46 47	509	White, N., M. Thompson and T. Barwise, 2003, Understanding the thermal evolution of deep-water		
48 49	510	continental margins: Nature, 426 , 334-343.		
50 51 52	511			
52 53 54	512			
55 56	513			
57 58	514			
59 60		Submitted to Interpretation 20		

Page 21 of 28

Holford, Schofield and Reynolds

1 2	515				
3 4 5	516	Figure captions			
5 6 7	517	Figure 1. A: Location of Bass Basin, including approximate distribution of Cretaceous-			
8 9	518	Cenozoic age igneous rocks, location of the Yolla 3D seismic survey and the regional seismic			
10 11	519	profile shown in Figure 3. Inset map shows location of study area in relation to the Australian			
12 13	520	continent. B: Summary chart of Bass Basin stratigraphy, depositional environments, tectonic			
14 15 16	521	events, interpreted seismic horizons, and recorded episodes of extrusive and intrusive			
17 18	522	magmatism. Modified after Cummings et al. (2014), timing of deformation modified after			
19 20	523	Holford et al. (2014) and timing of magmatic events from Meeuws et al. (2016).			
21 22	524	Figure 2. Lithologic, stratigraphic and sonic velocity and gamma ray log data for the shallowest			
23 24 25	525	1600 m of rock section penetrated by the Yolla-1 well, showing the context of the interpreted			
26 27	526	horizons within the Torquay Group.			
28 29	527 Figure 3. A: Uninterpreted two-dimensional seismic reflection profile through the Bass				
30 31	528	Yolla volcanic complexes, highlighting multiple phases of Miocene volcanism. B: Interpreted			
32 33	529	seismic profile, highlighting volcanoes (shaded in grey), sub-volcanic dikes (indicated by			
34 35 36	530	dashed lines) and well penetrations of extrusive and intrusive igneous rocks. BV-Base of the			
37 38	531	volcanic sequence penetrated by Yolla-1; EVCM-Top Eastern View Coal Measures (late			
39 40	532	Eocene); LMM –Lower Mid-Miocene regional seismic marker; MM–Mid Miocene regional			
41 42	533	seismic marker; PFS–Polygonal fault system bounded by LMM and TV; TV–Top volcanic			
43 44 45	534	sequence.			
46 47	535	Figure 4. A: Interpreted two-dimensional seismic inline 530 from the Yolla 3D survey tied to			
48 49	536	the Yolla-1 well. Volcanoes 1, 2 and 3 of the Yolla volcanic complex are visible between 1.0-			
50 51	537	1.2 s TWT, with V1 ca. 2 km to the NE of Yolla-1. A sub-vertical, supra-volcanic pipe occurs			
52 53 54	538	between ca. 0.15-0.7 s TWT, directly above V1. BV–Interpreted base of the volcanic sequence			
55 56	539	drilled by Yolla-1; EVCM-Top Eastern View Coal Measures (late Eocene); LMM -Lower Mid-			
57 58 59	540	Miocene regional seismic marker; MM-Mid Miocene regional seismic marker; PFS-Polygonal			

Submitted to Interpretation

60

https://mc.manuscriptcentral.com/interpretation

Interpretation

		Holford, Schofield and Reynolds	Buried volcanoes and subsurface fluid flow		
1 2	541	fault system; TV–Top volcanic seque	nce. B: Interpreted two-dimensional seismic crossline		
4 542 1253 highlighting the folding of the LMM horizon directly above the largest volcar			MM horizon directly above the largest volcano (V1) of		
5 6 7	543	the Yolla volcanic complex. C: Interpreted two-dimensional seismic inline 545 highlighting			
, 8 9	544	sub-vertical supra-volcanic pipe above V1. Location of these lines is shown in Fig. 5A.			
10 11	545	Figure 5. A: Seismic amplitude time	slice (1.052 s TWT). Volcanic sequences are marked by		
12 13	546	high amplitude events that are easily	listinguishable from surrounding sedimentary rocks. Gas-		
14 15 16	547	water contact of the Yolla hydrocarbo	n field is projected upwards onto this slice. Six main		
10 17 18	548	volcanoes (V1-V6) and a number of s	maller parasitic cones (PC) are identified. B: Seismic		
19 20	549	semblance time slice (1.880 s TWT),	highlighting discontinuities within the seismic volume		
21 22	550	(shown in black). Slice is annotated to	distinguish between generally curvilinear faults (shown		
23 24	551	by blue dashed lines), interpreted dike	es (shown by red dashed lines) and the outlines of		
25 26 27	552	overlying volcanoes (orange). C: Spe	overlying volcanoes (orange). C: Spectral decomposition blend of three frequency magnitude		
27 28 29	553	volumes (red = 27 Hz, green = 33 Hz, blue = 57 Hz) draped on the LMM horizon, showing			
30 31	554	domal feature (A) located above V1,	and frequency anomaly (B) located above V2 and V3.		
32 33	555	lobate flow feature interpreted to repr	esent material extruded through the mud volcano. D:		
34 35	556	Perspective view of LMM horizon wi	th draped spectral decomposition blend highlighting pipe		
36 37 38	557	located above domal feature (A), and	frequency anomaly (B) above V2 and V3. E: Amplitude		
39 40	558	time slices at 0.1 s increments betwee	n 0.5 and 0.9 s TWT. Pipe is clearly visible within Upper		
41 42	559	Miocene carbonates on 0.5 and 0.6 s	lices. Domal feature (A) and amplitude anomaly (B) are		
43 44	560	visible on 0.7 s slice, which correspon	nds to the approximately flat-lying LMM horizon.		
45 46	561	Polygonally faulted Lower Miocene	laystone sequence (PFS) located beneath C and above the		
47 48 49	562	largest volcanic edifice (V1) is visible on 0.8 and 0.9 s slices.			
50 51	563	Figure 6. Three-stage schematic model for burial of volcanic complex and subsequent influence			
52 53 54	564	on subsurface fluid flow.			
55 56 57					

Figure 1. A: Location of Bass Basin, including approximate distribution of Cretaceous-Cenozoic age igneous rocks, location of the Yolla 3D seismic survey and the regional seismic profile shown in Figure 3. Inset map shows location of study area in relation to the Australian continent. B: Summary chart of Bass Basin stratigraphy, depositional environments, tectonic events, interpreted seismic horizons, and recorded episodes of extrusive and intrusive magmatism. Modified after Cummings et al. (2014), timing of deformation modified after Holford et al. (2014) and timing of magmatic events from Meeuws et al. (2016).

107x216mm (300 x 300 DPI)

Lithologic, stratigraphic and sonic velocity and gamma ray log data for the shallowest 1600 m of rock section penetrated by the Yolla-1 well, showing the context of the interpreted horizons within the Torquay Group.

148x152mm (300 x 300 DPI)

Figure 5. A: Seismic amplitude time slice (1.052 s TWT). Volcanic sequences are marked by high amplitude events that are easily distinguishable from surrounding sedimentary rocks. Gas-water contact of the Yolla hydrocarbon field is projected upwards onto this slice. Six main volcanoes (V1-V6) and a number of smaller parasitic cones (PC) are identified. B: Seismic semblance time slice (1.880 s TWT), highlighting discontinuities within the seismic volume (shown in black). Slice is annotated to distinguish between generally curvilinear faults (shown by blue dashed lines), interpreted dikes (shown by red dashed lines) and the outlines of overlying volcanoes (orange). C: Spectral decomposition blend of three frequency magnitude volumes (red = 27 Hz, green = 33 Hz, blue = 57 Hz) draped on the LMM horizon, showing domal feature (A) located above V1, and frequency anomaly (B) located above V2 and V3. lobate flow feature interpreted to represent material extruded through the mud volcano. D: Perspective view of LMM horizon with draped spectral decomposition blend highlighting pipe located above domal feature (A), and frequency anomaly (B) above V2 and V3. E: Amplitude time slices at 0.1 s increments between 0.5 and 0.9 s TWT. Pipe is clearly visible within Upper Miocene carbonates on 0.5 and 0.6 s slices. Domal feature (A) and amplitude anomaly (B) are visible on 0.7 s slice, which corresponds to the approximately flat-lying LMM horizon. Polygonally faulted Lower Miocene claystone sequence (PFS) located beneath C and above the largest volcanic edifice (V1) is visible on 0.8 and 0.9 s slices.

198x203mm (300 x 300 DPI)

Figure 6. Three-stage schematic model for burial of volcanic complex and subsequent influence on subsurface fluid flow.

75x138mm (300 x 300 DPI)