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Abstract:

Models simulating stream flow and conservative tracers can provide a representation of flow paths, storage distributions and
mixing processes that is advantageous for many predictive purposes. Compared with models that only simulate stream flow,
tracer data can be used to investigate the internal consistency of model behaviour and to gain insight into model performance.
Here, we examine the strengths and weaknesses of a data-driven, spatially distributed tracer-aided rainfall-runoff model. The
model structure allowed us to assess the influence of landscape characteristics on the routing and mixing of water and tracers.
The model was applied to a site in the Scottish Highlands with a unique tracer data set; ~4 years of daily isotope ratios in stream
water and precipitation were available, as well as 2 years of weekly soil and ground water isotopes. The model structure was
based on an empirically based, lumped tracer-aided model previously developed for the catchment. The best model runs were
selected from Monte Carlo simulations based on dual calibration criteria using objective functions for both stream isotopes and
discharge at the outlet. Model performance for these criteria was reasonable (Nash—Sutcliffe efficiencies for discharge and
isotope ratios were ~0.4—0.6). The model could generally reproduce the variable isotope signals in the soils of the steeper hill
slopes where storage was low, and damped isotope responses in valley bottom cells with high storage. The model also allowed us
to estimate the age distributions of internal stores, water fluxes and stream flow. Average stream water age was ~1.6 years,
integrating older groundwater in the valley bottom and dynamic younger soil waters. By tracking water ages and simulating
isotopes, the model captured the changes in connectivity driven by distributed storage dynamics. This has substantially improved
the representation of spatio-temporal process dynamics and gives a more robust framework for projecting environmental change
impacts. Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.
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INTRODUCTION reasons (Kirchner, 2006). The importance of using both
hydrograph data and tracer data in catchment
investigations and integrating tracer data in models was
emphasised by McDonnell and Beven (2014). They
argued that such a dual approach was essential to be able
to distinguish and reconcile both the rapid celerity of the
hydrological response and the slower movement of water
particles inferred by conservative tracers. In many studies,
tracers have been traditionally used simply to estimate the
mean transit time of the water in a catchment (McGuire
and McDonnell, 2006), but more recent empirical and
theoretical work has stressed the need to characterise the
transit time distribution and its time variance (Botter
et al., 2010; McDonnell et al., 2010; Heidbiichel et al.,
2012; Hrachowitz et al, 2013). This then allows us to
understand the time-variance of stream water age in terms
, ) _ of the dynamics and integration of hydrological flow
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Conservative tracers, including stable isotopes, are
increasingly used in hydrological models to explore the
mixing relationships between fluxes and storages in
catchment systems (see review by Birkel and Soulsby,
2015). Tracers can be used to directly infer travel time
distributions in hydrological models and thus, to
investigate the internal consistency of the model
behaviour (Dunn et al, 2010). Tracer data can also
provide additional insight into model performance and
can be used as extra criteria besides the more common
hydrometric-based goodness of fit measures (Uhlenbrook
and Sieber, 2005; Fenicia et al., 2008). This can help in
selecting a model that gives the right answer for the right
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Within models, stable isotopes can be used to ‘track’
water fluxes, infer mixing relationships in internal stores
and explore how the evolution of water ages occurs in
relation to flow path dynamics (Sayama and McDonnell,
2009; McMillan et al., 2012; Davies et al., 2013;
Hrachowitz et al.,, 2013; Birkel et al., 2015). Building
on earlier work (e.g. Neal et al., 1988; Barnes and Bonell,
1996), several conceptual models that link flow with
tracers have been developed over recent years (e.g.
Fenicia et al., 2008; Birkel et al., 2011b). Some of these
models also include the simulation of water ages in a
catchment that are spatially explicit (Birkel et al., 2015).
These models have been insightful with regards to how
catchments function in terms of partitioning, storing and
releasing water. However, such models have the tendency
to be lumped and can give overly simplistic representa-
tions of complex, spatially distributed processes. Beyond
using tracers to identify dominant flow paths, stable
isotopes can be of added value in hydrological modelling,
because they enable mixing relationships in internal stores
to be characterised whilst the evolution of water ages is
estimated (McMillan et al., 2012; Davies et al., 2013;
Birkel et al., 2015). Within such models, it is important to
appropriately conceptualise the key spatial controls on the
fluxes of water and tracers, such as how distributed
storage dynamics drive non-linearities in connectivity, as
well as the associated mixing relationships in order to
estimate the age of stream flow. The non-linearities in
connectivity refer to the non-linear increase in streamflow
response to precipitation events because of the expansion
of the saturated area, which connects runoff generating
areas to the channel network, during wetter periods
(Birkel et al., 2010). Recent work suggested that more
spatially distributed tracer-aided models could help
capture these interactions more successfully and improve
tracer simulations in particular (Birkel and Soulsby,
2015). Several spatially-distributed models including
either water ages (e.g. Sayama and McDonnell, 2009)
or tracer data (e.g. Uhlenbrook et al., 2004) have been
developed previously; however, they did not combine
tracking water ages and simulating stable isotopes.

In previous model studies, relatively coarse (weekly) or
short term (1-2 years) data sets have also usually been a
constraint (Birkel et al., 2010). Decreasing costs of stable
isotopes analysis have increased the availability of high
quality data sets that have a high spatial and temporal
resolution. The data sets now available are usually of
either daily or sub-daily resolution and extend over
several years (Kirchner and Neal, 2013). This creates
opportunities for more detailed modelling and increases
the potential for using spatially-distributed models instead
of lumped models.

Here, we develop such a spatially semi-distributed
tracer-aided rainfall-runoff model for an experimental site
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in the Scottish Highlands with rich stable isotope data sets
and empirically based perceptual models of catchment
function. Previous tracer-based models have been
developed for this catchment (e.g. Birkel et al., 2011b),
and existing models [e.g. Hydrologiska Byrans
Vattenbalansavdelning (HBV), Seibert and Vis, 2012]
have been used for the simulation of discharge (Tetzlaff
et al, 2015), but these showed limitations in capturing
more subtle internal catchment processes which affect
variations in the tracer response. With the model
presented here, we improve the conceptualisation of
these internal catchment processes by using a more
spatially distributed approach. We have also changed the
interception of precipitation in the model compared with
previous model work to more accurately characterise the
influence of vegetation on water partitioning (Tetzlaff
et al., 2015). At the same time, the aim was to keep the
model relatively simple in order to derive a generic tool
that can be applied across northern sites (Tetzlaff et al.,
2015). The main research aims of this study are therefore
to: (1) develop a spatially explicit representation of water
and tracer fluxes at the catchment scale using a conceptual
spatially distributed, tracer-aided runoff model, (2)
understand how landscape structure affects the routing
and mixing of water, (3) characterise how these
interactions affect the dynamics of water ages in different
components of the system and how this affects the non-
stationarity in stream water ages.

STUDY SITE AND DATA
Study site

The Bruntland Burn (3.2km?) is a tributary of the
30km? Girnock experimental site in the northeast of
Scotland (Figure 1). Detailed descriptions of the
Bruntland Burn can be found in Tetzlaff et al. (2014)
and Geris ef al. (2015). Mean annual precipitation and
mean annual discharge are ~1000 and ~600mm,
respectively. The catchment has been glaciated and has
a wide flat valley bottom surrounded by steeper slopes
(average 13°). The elevation ranges from 248 to 538 m
asl. The catchment can be divided in distinct
hydropedological units. In the riparian zone located in
the valley bottom the main soil type is peat (~9% of the
area), covering glacial drift deposits, which can be up to
30m deep. The riparian zone includes a quasi-
permanently saturated area around the stream that has a
significant influence on the hydrology (Birkel et al,
2011b). On the lower slopes, the soil type changes to a
peaty gley (~12% of the area), whereas the steeper hill
slopes are covered by freely draining podzols (~36%) that
become thinner with higher elevation and grade to
shallow regosols (leptosols, ~14%) and bedrock outcrops
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Figure 1. Location and topographical wetness index (TWI) for the
Bruntland Burn catchment based on a 100 by 100 metres grid with an
overview of the measurement locations and cells selected as examples of
the response in the hill slope and valley bottom landscape units. Contour
lines indicate the elevation (m). The two classes of the TWI are based on
the threshold chosen to represent the difference between the freely
draining soils at the hill slopes and the semi-permanently saturated soils in
the valley bottom

(~29%). The glacial drifts get thinner with elevation and
are absent above 400m asl. The dominant land cover is
heather (Calluna and Erica species) moorland and around
10% of the catchment is forested, mainly with Scots Pine
(Pinus sylvestris).

Previous work has shown that the hydrological regime
of the stream has a flashy response to precipitation inputs,
which is largely generated from saturation overland
and/or shallow subsurface flow in the peaty soils in the
riparian area (Birkel et al, 2011b). In the largest runoff
events (>10mm d™') with large precipitation inputs, the
steeper hill slopes also saturate due to wet antecedent
conditions and connect to an extended saturated riparian
area for transient periods lasting from a few days to a few
weeks (Tetzlaff er al., 2014). Deeper groundwater
accounts for 25-35% of annual runoff. Geochemical
and geophysical surveys in the catchment suggest that this
is mainly sourced from the drift deposits in the valley
bottom (Blumstock et al., 2015; Soulsby et al., 2016).

Data

Daily discharge from the outlet (Figure 2) was available
from 1st June 2011 until 15th October 2014. Precipitation
measurements were available from within the catchment
from December 2013 till October 2014, but precipitation
data from several neighbouring stations (max. 20 km away)
were available for the whole period. The data from nearby
stations were compared with the precipitation data from
within the catchment. The station that corresponded best to
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Figure 2. Observed data of the Bruntland Burn (June 2011 to October
2014), (a) Daily temperature and precipitation data, (b) Daily discharge
data and isotope ratios (8°H) for stream water and precipitation

these values (distance + 5 km) was selected as input for the
modelling. Potential Evapotranspiration (PET) was esti-
mated with the Penman—Monteith method (Allen et al.,
1998) using observations from a nearby automatic weather
station (distance =1 km) for wind speed, humidity and net
radiation. The annual estimated value for PET was
~420 mm. Temperature data were available from the same
weather station. The available data included several events
that were relatively extreme for this region and which are
described in detail by Geris et al. (2015). The spring in
2013 (January to April) was the coldest for over 50 years,
whereas the summer 2013 (June to September) was the
warmest and driest period for over 10 years. This was then
followed by the wettest winter period on record (December
2013-January 2014) (Geris et al., 2015).

Daily samples for analysis of stable isotopes were
collected from precipitation and the stream at the outlet
using ISCO 3700 autosamplers. Paraffin was added to each
bottle to prevent sample evaporation and freezing in the
field. Soil water samples were taken on a weekly basis from
the hill slope and in the valley bottom (Figure 1) from June
2011 until November 2013. Soil water was sampled from a
30 cm depth using small suction lysimeters (see Geris et al.,
2015 for details). All samples were analysed for deuterium
(8°H) and oxygen-18 (5'%0) ratios using a Los Gatos DLT-
100 laser spectrometer (Los Gatos Research, San Jose,
California, USA) (precision +0.4%o for 8*H and =0.1%. for
5'80). Analytical results were expressed as parts per mille
relative to Vienna Standard Mean Ocean Water . Because
of the greater relative precision, we used the §?H data in the
modelling. Occasional gaps in the precipitation isotope
ratios were infilled with a multiple linear regression model
based on climatic variables (Soulsby et al., 2015).

Additionally, spatial data of the catchment was needed
for the modelling. A digital elevation map (DEM) and
Light Detection and Ranging (LiDAR) data were available
for the Bruntland Burn at 1 m resolution. Coarser scale land
use, soil and geology maps were also available (Tetzlaff
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Figure 3. Schematic model structure of the STARR model, isotope ratios in the different stores and fluxes are indicated with i. This structure represents

the conceptual model for each grid cell with P, precipitation; TT, threshold temperature to partition snow and rain; ET, evaporation; Q, surface runoff;

Qgp.» subsurface runoff; Qy, lateral groundwater flow in and out of the grid cell; igy,up, iSotope ratio in groundwater upstream from the cell; Q.. outflow
from groundwater; and Qg;y,, total discharge

et al., 2007). The DEM data were used to spatially
distribute the temperature, PET and precipitation data, to
estimate the local drainage direction for each cell and to
determine the slope for each cell. The LiDAR data and
spatial maps were used to determine the vegetation patterns
and extent of the saturated area in the catchment.

MODEL DESCRIPTION

The Spatially distributed Tracer-Aided Rainfall-Runoff
(STARR) mod18el integrated the general hydrological
structure of the HBV-light runoff model (Lindstrom et al.,
1997; Seibert and Vis, 2012) and the parameterisation of
tracer mixing and flux tracking developed as part of an earlier
conceptual tracer-aided model for the catchment (Birkel
et al, 2011b). STARR was built in a PCRASTER PYTHON
framework (Karssenberg et al, 2010, 2007) consisting of

Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.

several separate modules (Figure 3 and Appendix 1), which
were conceptualised using a range of free and fixed
parameters (Table I). Main balance equations are included
in the model description section; a complete overview of the
equations is given in Appendix 1. Input time series needed to
drive the model were precipitation, temperature, potential
evapotranspiration and isotopes ratios in precipitation.
Observed discharge data and stream isotope ratios were used
for dual calibration. To reduce computation time the model
was run on a 100 by 100 m resolution grid (Figure 1) using a
daily time step, although the framework could be used with a
finer grid.

Model set-up

Snow module. The influence of snow in the Bruntland
Burn catchment is usually limited (<5% of annual
precipitation). However, we incorporated a snow module
to capture years when the snowfall contribution is higher

Hydrol. Process. 30, 4761-4778 (2016)
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Table I. Overview of the parameters and their units in the STARR model

Parameter Unit Description Initial range
Snow module
TT** °C Threshold temperature snow and rain 0 (—=1.5-2.5)
SFCF* - Snowfall correction factor 1
CEMAX** mmday ' °C Degree day factor 5 (1-10)
CFR* - Refreezing coefficient 0.05
CWH* - Maximum snowmelt retained by snow pack 0.1
Interception module
Canopy Gap - Fraction of precipitation that does not hit 0.3 (forest)*
Fraction* canopy 0.6 (heather)*
R* mmhr™’ Mean rainfall ratec 1.38"
E* mmhr™! Mean canopy evaporation rate 0.2 (forest)™
0.02 (heather)**
Cmax* mm Canopy interception storage capacity 1.5 (forest)*
0.7 (heather)*
Soil module
FC mm Fieldcapacity, total water holding capacity of the soil 200-500 (valley) 0-100 (hill slope)
Lp#* - Fraction of fieldcapacity below which actual evaporation 0.8 (0.3-1)
equals potential evaporation
BetaSeepage - Exponent to determine soil recharge into lower box 0.01-4
s day ™’ Recession coefficient of discharge from soil store 0.001-0.5
Cflux* mm day ™" Maximum capillary flux 2 (valley)
0.5 (hill slope)
SMpas valley mm Passive soil store in valley bottom 0-300
Frac SMpas - Fraction passive soil store hill slopes 0-1
Groundwater module
K, day ™! Recession coefficient baseflow 0.001-0.1
Ksat mm day” Saturated conductivity to determine lateral flow 1074200
GWpas mm Passive groundwater storage 0-1000

STARR, Spatially distributed Tracer-Aided Rainfall-Runoff.
*These parameters were fixed and not calibrated.

**Parameters fixed after initial STARR runs and sensitivity analysis, initial range given between brackets

* Values derived from observations
** Values derived using both observations and literature
# Values derived from literature (Dunn and Mackay, 1995)

and to make the model more generic and transferrable to
other northern snow-influenced catchments. The snow
module was identical to that in the HBV model and used
the degree-day method to divide precipitation into rain
and snow (Table I).

Interception module. The interception module used the
Gash interception model (Gash et al., 1995). Parameters
related to the interception module (Table I) were derived
either from literature or from observed meteorological
data. The catchment was divided in two major vegetation
units based on LiDAR data to estimate the interception
from vegetation higher than 1 m (forested parts) and lower
than 1m (heather dominated parts). Average canopy

Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.

evapotranspiration for Scots pine and heather were
calculated using the Penman—Montheith equation with
values derived from literature (Dunn and Mackay, 1995)
and observations from a nearby weather station (Section
on Data). The values for canopy storage were derived
from Dunn and Mackay (1995) as well. Mean rainfall rate
was calculated from hourly observed precipitation data
with a threshold rate of 0.5 mm/h to represent saturated
canopy conditions (Gash, 1979).

Soil storage module. The soil storage module was
based on that of HBV, except for an additional runoff
component from the soil store (Qy,, Figure 3). This was
added to conceptualise the faster-responding flow paths in

Hydrol. Process. 30, 4761-4778 (2016)
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the catchment, and because although an overland flow
component (Qg) was included, it rarely activates. The soil
store was treated as a linear reservoir to determine this
direct discharge (Qg,). The change in storage in the soil
store (SM) for each time step was given by

SM(t) =SM(t — 1) + Py — ET — Q, — Oy, — Seepage
+ CapFlux

where P,y is effective liquid precipitation (sum of
throughfall, stemflow and snowmelt), Seepage is recharge
to the groundwater store, and CapFlux is capillary flux
from the groundwater store.

To distinguish between the valley bottom and the hill
slopes, the FC and CFlux parameters related to the soil
storage module (Table I) were divided over the catchment
using the Topographic Wetness Index (TWI; Figure 1). The
TWI was calculated using the System for Automated
Geoscientific Analyses Wetness Index routine (Bohner and
Selige, 2006). A threshold value of 9 was chosen to represent
the difference between the freely draining soils at the hill
slopes and the semi-permanently saturated soils in the valley
bottom, based on previous field campaigns and model studies
in the Bruntland Burn (Birkel et al, 2011b). The TWI
threshold gave a better representation of the difference
between the hill slopes and the valley bottom at 100m
resolution than the soil map.

A passive storage component (SMpas) was added to the
soil store to increase the mixing volume available in the
catchment. This passive storage represents storage that did
not contribute directly to the discharge, but increased the
total mixing volume for isotope ratios (Birkel et al., 2015).
The passive storage in the soil store was distributed
between the valley bottom (SMpas valley) and hill slope
(fracSMpas*SMpas valley) using the TWI threshold,
where the passive storage at the hill slopes was calibrated
as a fraction of the passive storage in the valley bottom.

Groundwater storage module. The groundwater
module represented the slower pathways in the catch-
ment. The groundwater outflow (Q,, Figure 3) was
derived from a linear reservoir. In addition to the outflow
to the stream, lateral flow between the grid cells was
simulated as well. This was calculated using the hill slope
gradient and a calibrated saturated conductivity parameter
(Ksap)- A passive storage component (GWpas) was added
to the groundwater to increase the mixing volume
available in the catchment. The change in groundwater
storage (GW) for each time step was given by

GW(t) = GW(t — 1) + Seepage — Qgw + AQ),
— CapFlux

where 40y is net lateral groundwater flow.

Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.
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Routing module. The outflow fluxes from the different
modules, i.e. direct runoff (Qy), subsurface runoff (Qg)
and groundwater runoff (Q,,,) for each cell, were routed
through the catchment based on the local drainage
direction map derived from the DEM and a mean velocity
value based on observed velocities at the catchment
outlet. From the mean velocity, a hydraulic travel time
was computed; this indicated the time it took the water to
cross each grid cell.

Simulation of isotope ratios and estimation of water ages

The model simulated the isotope ratios for every cell
separately; the daily precipitation isotope ratios were used
as the input. Because the precipitation isotope ratios were
only available at the outlet, the input values were similar
for each grid cell. Previous work in the catchment
established that the relatively small area and limited
altitudinal range resulted in insignificant spatial varia-
bility in precipitation isotope inputs (Birkel et al., 2011b).
For each of the model stores, a complete and instanta-
neous mixing of the isotope ratios was assumed within
each cell. For example, for the isotope ratios in the soil
store (i), this led to the following mixing equation:

di,(SM + SMpas)
dt

= lppeff - iSst - ist — lsET
— igSeepage + ig,CapFlux

where i, is precipitation isotope ratio and i, is isotope
ratio in groundwater store.

The values in the outflow fluxes for each store were
then also mixed during routing, as were the values routed
from upstream cells. Although the model assumed
complete mixing at the scale of a single cell, the coupling
of water and solute transport resulted in time-variant
partial mixing at the catchment scale depending on spatial
and temporal variation in the dynamics of fluxes and
storage at this larger scale. Although it was recognised
that the 100m by 100 m cell size is relatively large, more
detailed assessment of the spatial extent of mixing zones
in the catchment showed that it was an appropriate initial
scale for capturing much of the variation empirically
observed (Lessels et al., 2016). Fractionation was not
parameterised in the model, although previous work has
shown that this can affect summer stream flow isotope
ratios (Birkel et al., 2011Db).

To further quantify how catchment functioning affected
the partitioning, storage and mixing of water, the
estimation of water ages was included in the model. For
the water ages in the soil and groundwater stores, again a
complete, instantaneous mixing of the inputs was
assumed according to the dynamic and passive storage
volumes, and the ages of the water stores were tracked on

Hydrol. Process. 30, 4761-4778 (2016)
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a daily time step. For the age of the evaporated water
from the soil, it was assumed that the youngest water
would evaporate first and that the water in the soil was
never older than 2000days. This assumption was based
on the previous estimates of the transit times in the
different hydropedological units reported in Tetzlaff et al.
(2014). For example, the water age in the soil (Agey,,) was
determined by

dAgesy (SM + SMpas
: SM( dt z ) :AgePpeff _AgeSMst - 1*Qs
— AgergET — AgesySeepage
+ Agegw CapFlux

where Agep is age of precipitation, Ager is age of
evaporated water and Ageg,, is age of groundwater store.

Model calibration

The STARR model was calibrated using Monte Carlo
simulations for the period 1/4/12 until 31/3/14. In total,
nine parameters were calibrated; some parameter values
were based on observations or literature values, and other
parameters were fixed based on previous model experience
and sensitivity analysis of previous model runs (Table I).
After preliminary testing, STARR was calibrated for the
9 parameters of which the initial range in the Monte Carlo
simulations is given in Table II. From this initial range,
the 100 best runs from a total of 30000 were retained
(Table II). These were selected based on a dual
calibration criteria which took into account both the
isotope ratios and discharge at the outlet of the catchment.
Both the isotope ratios (NS;s,) and the discharge data
(NSq) were compared using the Nash—Sutcliffe (NS)
efficiency statistic (Nash and Sutcliffe, 1970). These
criteria were combined in a single objective function
(OF),

4767

OF = \/(1 — NSg)* + (1 — NSis)

For the evaluation of the model, several other
goodness-of-fit measures were calculated over the entire
time series, the Kling—Gupta efficiency (KGE; Gupta
et al., 2009) for both the discharge and isotope ratios, the
logarithmic Nash—Sutcliffe efficiency (logNSq) for the
discharge and the correlation coefficient (R;y,) for isotope
ratios. This way, the effect of the chosen dual calibration
criteria could be estimated by comparing the of values
with values of the single goodness of fit measures over a
range of conditions.

The initial conditions were determined by looping the
input data for the best performing parameter set derived
from a preliminary model evaluation. After the selection
of the 100 best runs, the input data were looped twice for
each run for the whole period to make sure that the stores
were filled and the isotopic composition stable.

RESULTS

Simulated discharge and tracer dynamics

In general, the retained parameters gave a reasonable
performance in the simulation of the discharge and
isotope ratios (Figure 4). The NS efficiencies for both
variables were generally in the range of ~0.4-0.6 for the
calibration period. For the ‘best run’ — according to the
minimised dual objective function — the NS, and NS;q,
were 0.52 and 0.56, respectively, reflecting the trade off
in the goodness of fit in flow simulations needed to get
reasonable isotope simulations. Over the whole period,
NS, decreased slightly for the best simulations to 0.5,
although other objective functions for the retained models
remained high with a KGEq of ~0.6 and the logNSq had
values around 0.5. The NS;,, also decreased for the whole

Table II. Resulting range in parameter values after calibration for the 100 selected runs

Parameters FC FC hill Beta K K, Keat GWpas SMpas  Frac
valley slope  Seepage valley SMpas
(mm)  (mm) ¢ (day ™) (day™")  (mmday ) (mm) (mm) ()

Initial range 200-500 0-100 0.01-4 0.001-0.5 0.001-0.1 104200  0-1000 0-300  0-1

Values best run based on 232 46 0.16 0.1 0.016 176 603 295 096

calibration period

Min values 201 34 0.01 0.012 0.0011 0.05 33 154 0.37

Max values 499 100 322 0.23 0.0997 198 996 300 1

FC, Fieldcapacity, total water holding capacity of the soil; K, recession coefficient of discharge from soil store; K,, recession coefficient baseflow;
GWpas, passive groundwater storage; SMpas, passive soil store in valley bottom; Frac SMpas, fraction passive soil store hill slopes.

Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.

Hydrol. Process. 30, 4761-4778 (2016)



a —6— Obs —— Sim best ---- Sim median

Range Sim

0

Q(m3s™

T
b Stream

-40 0.01

82 H
-60

° ‘

T
Soil valley

-40 -80
o

o0®C00d00000)

82 H
-60

-40 -80

82H
-60

-80

T T
2013 2014

T
2012

Figure 4. Model results for the Bruntland Burn, solid lines for the
simulations give the results of the best run, dotted lines for the simulations
give the median from the 100 runs, and the grey areas indicate the range
for the 100 selected runs, (a) simulated and observed discharge data for the
outlet of the Bruntland Burn, (b) simulated and measured isotope ratios in
the stream at the outlet of the Bruntland Burn, (c) simulated isotope ratios
for the soil store from a cell in the valley bottom corresponding to the
measurement location and measured isotope ratios from soil water
sampled in the valley bottom and (d) simulated isotope ratios for the soil
store from a cell on the hill slope corresponding to the measurement
location and measured isotope ratios from soil water sampled on the hill
slope

period, although the KGE;, for the best models varied
between 0.42 and 0.64 and R, values ranged between
0.52 and 0.65 indicating a reasonable fit.

The simulated discharge captured the main dynamics of
stream flow and generally; the uncertainty bounds from
the retained parameter sets bracketed the range of
measured discharge (Figure 4a). There was a tendency
for the best simulations to underestimate the low flows
that occurred, for example, in spring 2012 and spring
2013. Conversely, small peaks sometimes tended to be
overestimated, for example, autumn 2012. However, the
more extreme events that occurred during the simulated
period, the dry period in summer 2013 followed by a very
wet winter in 2014, were quite well captured by the
model. In general, the observed response in the catchment
seemed to be more dynamic than the response simulated
by the best performing parameter set and the median of
the ranges of the retained sets.

The simulated isotope ratios in the stream (Figure 4b)
successfully captured the large damping of the signal
observed in precipitation (Figure 2b). Similarly, the
seasonal cycles in the isotope ratios were well reproduced
by the model, as well as the range and dynamics in daily
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fluctuations although more extreme outliers (e.g. winter
2013) were not captured (Figure 4b). The model
underestimated the isotope ratios in spring and summer
2014. This underestimation occurred in periods where
fractionation of water stored in the riparian peatlands can
cause enrichment of isotopes in stream water (Blumstock
et al., 2015). The very wet winter in 2014 was followed
by a warm, dry spring; therefore, more fractionation could
take place due to the very wet conditions in the riparian
areas (Lessels et al., 2016). The model also
underestimated the isotope ratios after a single extreme
event in August 2014, where observed ratios were
restored to values similar to the pre-event conditions
faster than the modelled ratios.

To provide a qualitative evaluation of the internal
consistency of the model, the simulated isotope ratios in
the soil stores were compared with the measured isotope
ratios in the soil water (Section on Data) at different
locations. Within the model a distinction was made between
the soils in the saturated valley bottom and the hill slopes.
The isotope ratios simulated at the locations of the
observations showed the difference in dynamics between
these landscape units (Figure 4c—d). Simulated values had a
comparable mean and range with the observed isotope
ratios, where the isotope signal in the valley was more
damped than the signal on the hill slope. However, the
simulations in the valley were more variable than the
measured isotope ratios; this would suggest even more
mixing occurs in the riparian area than estimated by the
model or that the sample point was missing less well-mixed
overland flow waters. The model underestimated the
isotope ratios on the hill slope in the winter 2011-2012,
but followed the observations before and after that period.

Influence of landscape structure on routing and mixing of
water

The spatial distribution of water in the dynamic storage
across the catchment was determined for the soil store and
the groundwater store (Figures 5 and 6). Two randomly
selected cells in the model were used to represent the
valley and the hill slope (see their location in Figure 1).
As an example of the spatial distribution, results from the
‘best” model run (in terms of the OF) are given for a day
in the dry period (31/8/13) and the wettest period (1/2/
14). The mean values for the stores differed substantially
between the 100 runs (Table III), but the spatial patterns
and temporal dynamics were similar.

As dictated by the model set-up and calibration, the
saturated area is parameterized differently than the hill
slopes in the soil store, and the resulting dynamic storage
showed large differences between these landscape units
(Figures 5 and 6). The valley bottom cells had higher
values in the soil store on both days reflecting the higher
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Table III. Ranges in mean storage values over the 100 retained model runs for the dynamic storage in soil store and the dynamic storage
in groundwater store

Soil valley Soil hill GW valley GW hill
Mean storage values (best run) (mm) 27 13 1022 1
Standard deviation (mm) 25 10 1461 72
Coefficient of variation (-) 62 53 186 885

GW, ground water.

calibrated FC parameter. The dynamic storage values in
the soil store showed mean values over the 100 runs up to
137 and 51mm in the valley and the hill slopes,
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respectively. On both selected days, the area with higher
values is broadly consistent with the maximum saturation
area in the valley bottom (Figure 5). But whilst maximum
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storage is around 13 mm on the driest day, it is 65 mm on
the wettest. Similarly, the hill slope storage is only
1-2mm on the example dry day, but increases to 40 mm
on the wettest. The effects of interception losses from
forest cover were captured in some of the most northern
and most eastern cells, which had lower storage values
than the other valley bottom cells. The distribution of
storage indicated that the main mixing zones for isotopes
ratios were the valley bottom riparian soils rather than the
hill slopes. These patterns corresponded with the time
series from the soil isotope ratios (Figure 4c-d), where the
signal in the valley was more damped than the signal on
the hill slope.

In the ground water store, the dynamic storage values
were also much higher in the valley bottom than on the hill
slopes, with the mean values for the best run at 1022 and
1 mm, respectively (Table III). It should be emphasised
that there is also an additional passive storage component
involved in the tracer damping in each cell; this was
603 mm in the best run. The large differences in storage
values were caused by the lateral flow of groundwater,
which accumulated in certain cells in the valley where flow
lines converged (Figure 6). The scaling in the plots is
based on percentiles to emphasise the much higher values
of dynamic storage in the valley bottom cells, with only
10% of the whole catchment exceeding 1.2 and 12.1 mm
on the example dry and wet days, respectively. On both
selected days, there were parts of the catchment, mainly
the upper hill slope cells, where dynamic storage in
groundwater was Omm; this ranged from 30% of the
catchment during dry conditions to 20% during wetter
conditions (Figure 6). The spatial patterns of dynamic
storage were very similar on both days with upper hill
slopes with no water and large storage values in the valley
bottom (Figure 6a-b). As would be expected, the storage
values on the wetter day were higher than on the dry day in
the lower hill slope cells and the valley bottom. The
cumulative probability distribution of the dynamic storage
values are shown in Figure 6c, the probability of low
storage values is much higher on the dry day.

Evolution of water ages in different components of the
system and non-stationarity in stream water ages

The simulated water ages in the model were closely
linked to the simulated storage values in the catchment.
The cells with the higher storage values contained older
water than cells with less storage. The age of the water
therefore increased in fluxes from different components of
the system from the evaporation < soil < groundwater
(Figure 7). The median water age was taken from the time
series of the 100 retained model runs in the selected cells
or at the outlet (Age Q). The evaporation was assumed to
always consist of the youngest water that entered the soil.
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If no young water was available (e.g. no precipitation
events in preceding days), the evaporation was sourced
from the older water in the soil store or from capillary rise
from the groundwater. This resulted in very young
evaporation water for most of the period, but for a few
days evaporation was very old because of this capillary
rise (see difference mean and median age for evaporation
in Table IV). The average age of hill slope soil water was
generally younger (0.85years) than that in the valley
bottom (~2years), and both were younger than hill slope
groundwater (2.9 years) in most model realisations. The
groundwater in the valley bottom was estimated as the
oldest water in the catchment with a mean age of
~3.4years for the best run (Table IV). However, the
uncertainty in these estimates was large, with the largest
coefficient of variation in the evaporation ages (Table IV).
The water in the stream reflected the integration of runoff
derived from both the groundwater and the soil stores, as
the average stream water age at ~l.6years was
intermediate between that of groundwater and hill slope
soil water (Table IV and Figure 7). A visualisation of the
spatio-temporal dynamics of runoff generation from each
cell and the associated water ages is discussed by van
Huijgevoort et al. (in review).

In addition to the mean ages and age distributions, the
variations in the water age in all components of the
system showed marked contrasts (Figure 8). The ages in
the soil store were dynamic in time and changed most
rapidly in the hill slopes in response to most precipitation
inputs, reflecting the lower storage. In contrast, the age of
soil water in the valley bottom was older and exhibited a
more moderated response given the larger storage. The
age of the water in the groundwater store reacted much
more slowly; the age was almost constant over the whole
period in all model realisations. In the hill slopes where
the dynamic storage is low (Table III), this was mainly
caused by the constant value of the additional mixing
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Table IV. Ranges in the simulated water ages over the 100 retained model runs for different landscape units

Age ET Age ET Age SM Age SM Age GW Age GW Age
valley hill slope valley hill slope valley hill slope Q
Mean water age 24 25 727 311 1237 1056 578
(best run) (days)
Median water age 1 1 718 302 1232 1056 551
(best run) (days)
Standard deviation (days) 13 27 294 79 667 503 183
Coefficient of variation (-) 64 101 40 29 49 48 35
GW, ground water; ET, evaporation;SM; water in the soil store.
a Soil hillslope
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Figure 8. Simulated water ages within the catchment, solid line gives the ages derived from the best model run, dotted line gives the median of the 100
best runs, grey areas indicate the range between the 5th and 95th percentile of the 100 runs. (a) Simulated water ages for the soil store for a cell on the hill
slope, (b) Simulated water ages for the soil store for a cell in the valley, (c) Simulated water ages for the groundwater store for a cell on the hill slope, (d)
Simulated water ages for the groundwater store for a cell in the valley, (e) Simulated stream water ages for the discharge at the outlet of the catchment

volume, which provided a more stable age. The stream Focusing on the direct relationship between water age,
again integrated the differences in the contributing stores, discharge and total storage (Figure 9), the role of storage-
with a higher average age than the hill slope soil store, but  driven connectivity in the catchment and the non-
a more dynamic time series than the stable groundwater stationarity of the water age could be investigated in

store.

more detail. The dynamics of the stream water age at the
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outlet were related to the peak events in discharge, with
youngest waters generally dominant during the largest
events (Figure 9a). During wet periods and peak events,
the discharge and mean total storage in the catchment
increased and the water in the stream became younger.
The uncertainty bound of the youngest stream water age
in large events ranged from ~0.1 to 1.2years, with a
median of about 0.25 years (Figure 8). Because the age of
the groundwater showed limited variability (~2.9-
3.4years), this reflected the increased dominance of
contributions from faster reacting flow pathways in the
hill slope soil zones and their much younger
characteristics (~0.5 years) and surface runoff (Figure 9c).
The groundwater influence increased again during dry
periods, when the stream water became older. During the
dry periods, the hill slope cell was not connected for a few
days in summer 2013, indicated by the water age of zero
days (Figure 9c). The other very young water ages that
occurred in the soil hill slope indicate surface runoff.
The spatial distribution of the water age of total runoff
from each cell for a day in a dry period and a day in a
wetter period also showed younger water during the wet
period across the catchment (Figure 10). In this
realisation, the mean runoff age across the catchment on
the dry day was 540days, whereas for the day in the
wetter period the mean age decreased to 306 days.
Furthermore, the spatial distribution of the water ages
indicated again that, driven by the available storage, the
oldest water was found in the valley bottom and the

Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.

youngest water on the hill slopes on both days. The
influence of the increased flux of younger hill slope water
under wet conditions in decreasing water ages in the
valley bottom became apparent though (Figure 10).

DISCUSSION
Performance of a distributed, tracer-aided runoff model

Many hydrological models only focus on the
simulation of the hydrograph; however, this often gives
little information about the actual processes within a
catchment, as different model structures and parameter
sets can lead to the same result; the widely known
equifinality problem (e.g. Beven, 1993). Besides
equifinality, many studies have also described the
importance of differentiating between velocity and
celerity, or between long residence times of water
particles and the short-term response of the stream
hydrograph (e.g. McDonnell and Beven, 2014).
According to McDonnell and Beven (2014), ‘velocity
indicates the mass flux of the water itself, whereas celerity
relates to the speed with which a perturbation to the flow
propagates’. By incorporating tracer data into models, the
velocity or transit time can be estimated, while the
hydrograph response is also simulated. Tracers can have
an important role in constraining models; thus, tracer data
have been increasingly integrated into models (e.g.
Fenicia et al., 2008; Birkel et al., 2011b; Capell et al.,
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2012). The downside is that models incorporating tracer
data become more complex, and additional parameters are
needed to estimate the mixing volumes (McDonnell and
Beven, 2014). The STARR model presented here showed
that with three additional parameters (GWpas, SMpas
valley and fracSMpas); there was substantial information
gain from the simulation of isotope ratios on the spatial
distribution of mixing and partitioning of water. The
model improved the simulation of the small scale
dynamics in the isotope ratios compared with previous
more lumped modelling approaches (Soulsby et al,
2015), but this was a trade off in terms of higher
uncertainty because of the increase in parameters. The
simulated isotope ratios in the retained models provided
realisations of the possible distribution of stores in the
system and their temporal dynamics and connectivity. In
turn, this identified the areas most important for mixing,
in this case the riparian soils and drift in the valley
bottom. By tracking water ages and simulating isotopes,
STARR also captured the non-linearities in connectivity
driven by distributed storage dynamics successfully
without being highly parameterised.

Using tracer data in the hydrological model allowed us
to use an objective function for dual calibration criteria
based on discharge and isotope ratios. This has significant
advantages over using single-objective optimalisation
methods, which all have limitations (Wagener et al.,
2003). As indicated by McDonnell and Beven (2014), an
acceptable model performance for both tracers and the
hydrograph can help identify a model giving reasonable
simulations for the right reasons. However, as shown in
this study, using the dual calibration can lead to
compromises on the performance of the model for the
separate variables. The assessment of model performance
is also highly dependent on the specific choice of the
objective function used. In this study, we chose the NS
efficiency for discharge and isotope ratios. The NS
efficiency puts more emphasis on peak events, therefore
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identification of parameters linked to slow pathways is
more difficult (e.g. Dunn, 1999; Wagener et al., 2003).
Different objective functions that focus less on peak
events for discharge and isotope ratios, like the KGE
(focus on variability in streamflow) and logNS (focus on
low flows), were tested in the dual calibration. The
combination of the NS efficiency for both variables gave
the best overall calibration result for this specific
catchment. In particular, it provided a better reproduction
of event-based responses in terms of rapid depressions or
peaks in 6°H which corresponded to the flashy nature of
the hydrograph.

The STARR modelling framework was developed as a
generic approach and kept as simple as possible to
facilitate transferability to other catchments with similar
landscape units and hydroclimates where both
hydrometric and tracer data are available. Time series of
daily meteorological variables and daily precipitation
isotope ratios are still needed as input data. This is one of
the limitations of the model, because the opportunities for
application in ungauged basins are constrained (Tetzlaff
et al, 2013). However, the continued progress in the
development of analytical methods for isotopes will
provide future opportunities for measuring isotopes at
lower costs (Birkel and Soulsby, 2015), and identification
of minimal requirements for stream isotope time series
needed to usefully characterise the system response
(Seibert and Beven, 2009; Hrachowitz et al, 2011).
Thus, exploring the potential to use such minimal tracer
data with models may be a useful future framework for
sparsely monitored and ungauged catchments (Tetzlaff
et al., 2013).

Influence of landscape structure on storage, routing and
mixing of water

The model results showed much higher storage
volumes in the valley bottom cells compared with those
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on the hill slopes and more damped signals in isotope
ratios as a result. This indicated that mixing of the water
mainly occurred in the saturated area in the valley bottom.
These findings are in agreement with previous model and
field-related studies in the Bruntland Burn catchment that
have indicated the quasi-permanently saturated riparian
area plays a key role in determining the hydrological
response and mixing processes in the catchment (Birkel
et al., 2011b; Tetzlaff et al., 2014). The importance of the
riparian zone in controlling runoff and chemistry is not
catchment specific, but has been found in many other
studies (Bishop et al, 2004; Burt, 2005; Allan et al.,
2008; Seibert et al., 2009). It is therefore important to
account for the riparian zone in modelling. Our semi-
distributed model makes it possible to map out the
riparian zone in detail and assign different hydrological
properties to that area to assess the critical role in a more
quantitative way.

The higher storage values found in the valley bottom
are also in agreement with field studies using geophysical
measurements. These measurements showed that the
depth of the drift deposits in the valley can be more than
30m and equate to a catchment scale storage of
>2000mm (Soulsby et al, 2016). The values for
dynamic groundwater storage in the valley bottom found
in this study ranged up to 8.7 m, with a spatial pattern that
was consistent with independent geophysical measure-
ments. The dynamic storage values for the catchment
estimated by previous lumped model studies (e.g. Birkel
et al., 2011a) were lower than the storage values from the
best run estimated here. It is however difficult to compare
these storage estimates directly because of the different
model conceptualizations.

Evolution of water ages in different components of the
system and non-stationarity in stream water ages

The estimated mean stream water age from the best 100
parameter sets was 1.4 years and ranged between 0.5 and
2.4years. Using a two parameter gamma distribution,
Tetzlaff et al. (2014) estimated the mean transit time for
the catchment at 2.8 years, but this was based on only
1 year of data. Other studies using the gamma distribution
in the same catchment found values between 1.9
(Hrachowitz et al., 2010) and 1.2years (Soulsby et al.,
2015). Soulsby et al. (2015) also used a lumped tracer-
aided conceptual model to track water fluxes and estimate
their ages similar to model presented here. They found an
average stream water age of 1.8 years using the same data
set, varying between around 0.3 years at high flows and
>3 years at low flows. These values corresponded well
with the dynamics found in the stream water age in this
study. The range of the estimated age of the groundwater
in the valley (0.9-12 years) in the STARR model is large,
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but the mean age of the best runs (3.4years) is
comparable with the age found in the previous lumped
modelling study (~4 years, Soulsby et al., 2015).

Water ages in the model have been estimated by
tracking the input and output of water following the
approach of Hrachowitz et al. (2013). Other approaches
to estimate water ages are the approach by Porporato and
Calabrese (2015) and the use of storage age selection
functions (SAS, Botter et al., 2010; Harman, 2015;
Rinaldo et al., 2015). The complete mixing assumption in
the presented model for the outflow from the soil store
and the groundwater in individual cells coincides with
specific cases of both these approaches. A loss function
was included by Calabrese and Porporato (2015) with a
specific parameter that can be varied to define the
selection type (in this case uniform selection). The SAS
functions are equal to the ‘uniform selection’ assumption,
which has clear limitations in terms of oversimplifying
the complexity of actual processes (Harman, 2015).
Although complete mixing is not realistic usually, the
use of two different reservoirs that are spatially
distributed means that at the catchment scale partial
mixing is achieved leading to non-stationary estimates of
water ages. Compared with these approaches, the
proposed model framework gives more insight into the
spatial distribution of the evolution of water ages across
the catchment. This comes at the expense of more
parameters, but provides a basis for testing against
empirical observations and gives reasonable results
(Lessels et al., 2016).

The stream water ages found in this study showed a
decrease in water age with an increase in total storage but
decrease in the storage involved in mixing the tracer
signal. This is similar to the ‘inverse storage effect’
identified by Harman (2015) which was also shown by
Birkel et al. (2015) and Soulsby et al. (2015). During wet
periods or peak events, incoming water (and tracers) does
not completely mix with groundwater, but partly
bypasses this on a faster pathway through and over the
soil leading to younger water in the stream and reducing
the volumes of storage involved in damping the tracer
signal. During dry periods, the influence from ground-
water is larger, which increases the stream water age.
This is consisted with results from previous studies in this
catchment and a wider range of catchments in the
Scottish Highlands (Hrachowitz et al., 2013; Soulsby
et al., 2015).

CONCLUSIONS

This study presented the development and application of the
conceptual STARR model for an experimental catchment in
the Scottish Highlands. STARR simulates the hydrological
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storages and fluxes, isotope ratios and water ages of
different landscape components. The distributed nature of
the model made it possible to explore the connectivity-
driven relationships between different landscape units
(e.g. hill slopes and valley bottom riparian zones) and
their importance in the mixing and partitioning of water.
Compared with previous lumped conceptual models used
in the same catchment, more detailed, spatially nuanced
descriptions of water partitioning and an improved
simulation of stream water isotope dynamics were
achieved.

For the selected catchment, the model performed
reasonably for both discharge simulations and the isotope
ratios. Given the dual calibration on both variables, some
compromises had to be made regarding the performance
of the model for the separate variables. The spatial
distribution of the hydrological stores showed a clear
distinction between the hill slopes and the valley bottom
with much higher storage values in the latter. These
different storage values also created a distinctive pattern
in the isotope mixing where the isotope ratios were
damped in the valley compared with the hill slopes, which
was broadly consistent with observed soil isotope ratios.
The simulated water ages were linked to the simulated
storage values, and the oldest water was found in the
groundwater stores in the valley bottom. The stream water
ages reflected the time variant integration of the
groundwater and soil stores. The influence of the
groundwater led to mean stream water ages older than
the water in the soil store, but the influence of the water
from the hill slope soil store led to a non-stationary stream
water age with a larger young water component during
wet periods. This indicated fast lateral flow paths during
wet events that bypassed the complete mixing within the
groundwater.

The capability of the model to track storage dynamics
and simulate hydrological fluxes, isotope ratios and water
ages led to a more comprehensive description of the
partitioning within the catchment. In that way, STARR
can be a possible way forward for investigating the
relationships within catchments between the different
stores and the role of landscape structure in more detail.
The effect of land use changes, for example reforestation,
on the partitioning of the water can also be explored with
this model. The model was developed as generic and as
simple as possible to be applicable to other catchments.
One of the next steps will be testing the model for inter-
site comparison in other northern catchments (Tetzlaff
etal., 2015). Another next step will be the development of
a more sophisticated calibration strategy. STARR has
substantially improved the representation of the spatial
and temporal dynamics of dominant hydrological
processes and gives a more robust framework for
projecting the effects of environmental change.
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APPENDIX 1. ALGORITHMS IN STARR MODEL INVOLVING HYDROMETRIC AND ISOTOPE DATA

Snow module (degree day method, Seibert, 1999)

Snow melt

Refreezing liquid water in
snowpack

melt= CFMAX(T(t) — TT)

refreezing= CFR* CFMAX(TT — T(¢))

TT =Threshold temperature snow and rain
CFMAX =Degree day factor
CFR =Refreezing coefficient

Interception module
(Gash et al., 1995)

P needed for saturation of P, = —é—sﬂn(l —

canopy

Interception small storms, insufficient
to saturate the canopy

Wetting up the canopy

Evaporation from saturation until
rainfall ceases

~cP;

Evaporation after rainfall ceases cS,
pPc

Stemflow

CPG

E . SC
c;‘*@”r%)

R = average rainfall rate

Il
SN——

¢=canopy cover
E~. = evaporation rate from canopy

S. = canopy capacity per unit area of
cover

Pg=rainfall

p,=proportion of the rainfall diverted
to stemflow

Soil module

Evaporation soil

Recharge from soil to the
groundwater
Soil discharge

Direct runoff
CapFlux

Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.

_ : SM
ET = PET*min (F—C*LP, 1)

SM

BetaSeepage
Seepage = (FC)

st = kSSM

PET=Potential evaporation

SM = Soil moisture

FC=Field capacity

LP =Fraction of

fieldcapacity below which actual
evaporation equals potential

evaporation

BetaSeepage =Exponent to determine
soil recharge into groundwater
ks=Recession coefficient discharge from
soil store

O, =max(SM — FC, 0)
CapFlux = CFlux* (E€5M)

CFlux =Maximum capillary flux
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Snow module (degree day method, Seibert, 1999)

Soil moisture store

SM(t)=SM(t — 1)+ Poy— ET — Q5 — Oy
— Seepage + CapFlux

P,y=effective precipitation (sum
throughfall, stemflow and snowmelt)

Groundwater module

Groundwater discharge
Lateral groundwater flow

Groundwater store

O =k,GW
Oy=ksaslope(DEM + GW)

GW(t)=GW(t — 1) + Seepage — O,
+4Q;— CapFlux

kqg=Recession coefficient baseflow
ks =Saturated conductivity

DEM =elevation difference between
cells

AQy=net lateral flow

Routing

Total discharge

Qtot,cell = Qs + st + ngQtot

= accutraveltimeflux(ldd, Q,,,, velocity)

ldd =map with local drainage direction
accutraveltimeflux =routing function
in PCRaster"

Isotopes ratios

Isotopes ratio soil (i)

Isotopes ratio groundwater (ig,)

dis(SM+SMpas . . . .
w = lpPe@jf - lSst - lSQS - ISET

—isSeepage + iq,CapFlux

dig,,(GW+GWpas) . .
= lSSeepc.zge — lngapFlux

_igWng - lgWQlf,out + lgWﬂlefAin

i, =isotopes ratios effective
precipitation
SMpas = passive storage component

igw,up = isotopes ratios inflow lateral
groundwater flow
GWpas =passive storage component

Water ages

Water age soil store (Agesn)

Water age groundwater (Agegw)

dAgesy (SM+SM, >-<
dAgesy (SM-+SMpas) dt+ pas) _ AgepPoy — Agesy Qg — 1%0;

—AgegET — Agesy Seepage + Agegw CapFlux

dAgegw (GW+GWpas)
dt

_AgeGWng - AgeGW QZ/',out + AgeGWJlP Qlf'ﬁin

= AgesySeepage — Agegw CapFlux

Age,, = age of the precipitation
(for rain equal to 1)
Ager=age of evaporation

"For each cell the function computes a travel time which is the time in time steps it takes for material to cross the cell. This is
calculated by dividing the distance from the centre of the cell to the centre of the next downstream cell on the local drainage direction
by the velocity which is given in distance per time step. Then for each cell, the material in the cell is transported downstream over the
local drainage direction while taking the sum of the travel times of the cells through which the material is routed. The transported
material is then deposited in the cell for which the travel time reaches 1. (see http://pcraster.geo.uu.nl/pcraster/4.1.0/doc/manual/

op_accutraveltime.html)
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