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ABSTRACT 

 

Linear elastic solution of the stress field near an interface corner of bi-material joints is of 

the form Hr
-1

, where r is the radial distance from the corner, H is the stress intensity factor 

and 1 is the order of the singularity. Finite element analysis is used to determine the 

magnitude of H for a butt joint subject to remote shear; the obtained solution complements 

existing solution for remote tension and uniform change in temperature.    The theoretical 

solution of the singular shear stress is shown to be in good agreement with the 

corresponding finite element solution.  The effect of combined remote tension, remote 

shear and uniform change in temperature on the failure loads and failure mechanisms is 

experimentally determined for brass/araldite/brass butt joint. It is shown that the failure 

envelope in tensile stress – shear stress space is elliptical and the failure loads decrease with 

increasing cure temperature due to thermal residual stress associated with the curing 

process. The application of the results to the assessment of onset of failure in composite 

patch repair is discussed. 
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1.  INTRODUCTION 

The integrity and reliability assessment of bonded joints has received considerable attention 

for decades due to increasing use of layered solids in wide range of engineering design and 

patch repair applications.  Patch repair is an efficient and cost effective way of extending 

the service life of damaged engineering structures as it allows a localised in-situ repair of 

the damaged structure instead of a complete replacement.  Patch repair of damaged 

composite structures involves the removal of sufficient material from the damaged area and 

replacing the removed material by adhesive bonding of new undamaged repair material to 

the structure that is being repaired, see for example [1, 2].   Pipes with external corrosion 

can also be repaired by adhesive bonding of composite overwrap on the external surface of 

the pipe [3].  Although adhesive bonding of patch repair material provides an efficient load 

transfer and less stress concentration, the compatibility of the coefficient of thermal 

expansion between the repair material and the structure being repaired is an essential 

consideration for the integrity of the patch.    The reliability of many bonded patch repair 

joints depends on the quality of the processing (i.e. the bonding process) and on the stresses 

developed when the joints are subject to external loads.  Consequently there has been a lot 

of research on the prediction of stress distribution in bonded joints and layered solids, and 

on the use of the stresses in predicting the onset of failure and in design optimisation.    

 

Earlier studies on the stress distribution in bonded joints are based on classical beam theory 

[4 - 6] and do not predict the presence of stress singularity which in most cases is the 

source of failure in bonded joints and fibre-reinforced composites.  It is now well known 

that a stress singularity exists at the interface corners of an elastic, brittle adhesive 

sandwiched between two elastic adherends.  Although the stress singularity vanishes when 

there is significant non-linear deformation, a strain singularity still exists. A detailed 
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characterisation of the singularity is essential for accurate prediction of failure initiation in 

bonded joints and in assessing the life extension of patch repairs.   

 

A typical bonded joint is of the sandwich type where a thin layer of adhesive, weld material 

or solder is sandwiched between two adherends.  Some examples of commonly used 

bonded joint geometries are shown in Figure 1. In particular, examples of bonded scarf 

patch repair joints and composite wrap joint are shown in Figures 1e and 1f respectively. 

For composite wrap joint (Fig. 1f), the new undamaged material is externally bonded via 

epoxy resin to and wrapped over the structure being repaired.  For these joint geometries 

stress singularities exist at the intersection of the interface with a free surface or at the 

intersection of two or more interfaces.   Following Williams [7] pioneering work on stress 

singularity near the tip of a crack in a monolithic material, the stress distribution near the 

interface corner of bi-material joints made from linear elastic materials has been shown to 

scale as Hr
1

, see for example [8-13]. Here r is the radial distance from the interface 

corner,  is the order of the stress singularity which depends on the local geometry at the 

interface corner and on the materials combination, and H is the interface corner stress 

intensity factor (sometimes referred to as the generalised stress intensity factor). This 

asymptotic solution is valid when the radial distance r is small in comparison to other 

characteristic lengths of the geometry. Solutions for  exist in the literature for a wide 

range of interface corner geometries and material combinations; see for example [8-14]; 

and  values in the 0 <  < 1 correspond to singular stress field.  For  composite patch 

repairs which involve the bonding of anisotropic materials,  may be complex [15].

 

The intensity factor H is related to the applied load, joint geometry and materials elastic 

properties. Solutions for H determined from full finite element analysis of specific joint 
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geometry and loading exist in the literature for different materials combinations and bonded 

joint geometries.  For example, a butt joint subjected to remote tension and uniform change 

in temperature [16, 17] and a lap joint subject to shear load [18].  

 

The use of both H and  to adequately quantify the asymptotic stresses near the interface 

corner of bi-material joints is now well established. The focus of many researchers has 

shifted more recently to the optimal selection of materials for example through the use of 

functionally graded adhesives [19] and optimal selection of joint geometry [20] to minimise 

the stress singularity, and also to accurate prediction of onset of fracture in each of these 

cases [13]. 

 

A number of methods have been suggested for predicting the initiation of fracture in bi-

materials joints without initial gross defects including patch repairs.  These include a shear-

lag based approach, where failure is assumed to occur at a critical shear strain in the 

adhesive [5, 19]; the maximum principal stress criterion [6]; the average normal stress 

criterion, where failure is assumed to occur when the average stress equals a material 

dependent critical stress [21, 22]; the strain energy density criterion [23], coupled strength 

and energy methods [24] and the stress intensity factor approach, e.g. [11, 12, 16].  

 

In the stress intensity factor approach, initiation of fracture is assumed to occur at the 

interface corner of bonded joints when the intensity factor, H, of the singular elastic stress 

field at the corner attains a critical value, Hc, provided the dominance zone of the singular 

stress field is greater than the size of any non-linear deformation or fracture process zone at 

the corner.  This approach, which is similar to the conventional small scale yielding linear 

elastic fracture mechanics concepts, has been shown to accurately predict the onset of 
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fracture in a range of bonded joints, for example bonded joints subjected to remote tension 

and a combined remote tension and temperature change [11, 12, 16].  However, many 

bonded joint structures and components, including patch repaired structures, are in practice 

subject to mixed-mode loading, and the suitability of the criterion for predicting fracture 

initiation in bonded joints with no pre-existing cracks/defects and subject to combined 

remote tension and shear is not yet clear.  Damaged structures that have been repaired by 

external adhesive bonding of composite wrap (see Fig. 1f) may in service be subject to a 

combination of remote tension, shear load and uniform change in temperature.   In this 

paper, we examine the initiation of failure from the interface corners of adhesively bonded 

butt joints with no pre-existing cracks and subjected to combined remote tension and in-

plane shear.  The failure loads are experimentally measured and the corresponding stress 

intensity factor is determined.   

 

2.  STATEMENT OF THE PROBLEM  

Consider a damaged engineering structure made from an isotropic material which is to be 

patch repaired by adhesive bonding of composite overwrap (see Fig. 1f). For a composite 

wrap made of woven fibre fabric reinforced polymer or for randomly distributed short fibre 

reinforced polymer, the composite wrap can be assumed to be isotropic or quasi-isotropic. 

In order to assess the initiation of failure from the interface corner of such composite patch 

repair, we consider in this paper a butt joint consisting of two isotropic, linear elastic 

materials as shown in Figure 2.  A thin layer of adhesive material (material 2) with 

thickness h is sandwiched between two adherends (material 1). Here the adhesive is the 

material used to bond the patch repair material to the structure that is being repaired. The 

materials have a Young’s modulus E, Poisson’s ratio  and coefficient of thermal 

expansion .  The elastic and thermal properties associated with the adherend material are 
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identified with subscript 1 while those associated with the adhesive material are identified 

with subscript 2.  The width of the joint is w and the total length is 2L.  The thickness h of 

the adhesive is much smaller than any other dimensions of the geometry, i.e. h << w, 

h << L, and L >> w.  The joint is subject to remote stress  , shear stress  , and a 

uniform change in temperature T, as shown in Fig. 2.   

 

The asymptotic singular stress field at one of the four interface corners of the joint is given 

by [10, 17, 25]  

ijijij fHr    1       (2) 

where     ,rj i,   are plane polar co-ordinates centred at the interface corner of interest 

(see Fig. 2);  is the order of the stress singularity; ijf  are non-dimensional functions of 

 ; ij are components of a uniform stress field associated with temperature change, and H 

is the interface corner stress intensity factor.   The solution of ijf  and ij for butt and scarf 

joints are given in [25].  The intensity factor H is defined such that (r,  = 0) = Hr
1

 and 

it is related to the joint geometry and the remotely applied loads (assuming linear 

superposition) by  
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where  is the stress associated with the temperature change which, for plane strain 

deformation, is related to the elastic and thermal properties according to [22] 
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In eqns. (3) and (4) above,  is the coefficient of linear thermal expansion, and Q is a non-

dimensional constant function of the materials elastic properties. Qian and Akisanya [25] 
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have determined Q and QT for sandwiched butt joint while the values of Q are given by 

Reedy [26], Wang and Rose [27] and Van Tooren [18] for lap joints consisting of a thin 

layer of adhesive sandwiched between rigid adherends.  In the current paper, the solution of 

Q is determined for a range of material combination using the finite element method.  The 

linear superposition of the stress intensity factor solution given in (3) which is a consequent 

of the linear elastic analysis has been shown to agree reasonably well with experimental 

results of a butt and scarf adhesive joints subject to combined remote tension and uniform 

change in temperature [16, 25].  Failure occurs when the stress intensity factor H attains a 

critical value Hc; Hc which is determined by experiment is a function of the material 

combination, joint geometry and joint processing parameters, e.g. surface preparation. 

 

3.  EXPERIMENTS 

3.1 Materials and specimen preparation 

Butt joint specimens were made from brass (composition 60 wt% copper, 40 wt% zinc) and 

a two-pack araldite as the epoxy adhesive.   Uniaxial tensile test using dog-bone specimens 

was carried out on the brass at a strain rate of 10
-3

 s
-1

 and on the two-part araldite cured at 

room temperature for 24 hours at a uniaxial strain rate of 4106  s
-1

.  The Young’s 

modulus, yield stress and tensile strength were found to be 88 GPa, 200 MPa and 386 MPa 

respectively for the brass, and 2.1 GPa, 10 MPa and 14 MPa respectively for the araldite.  

The Poisson's ratio was taken to be  = 0.33 for the brass and 0.35 for the araldite while 

the coefficient of linear thermal expansion was 5108.5  /K for the araldite [16] and 

51019  /K for the brass [28]. 

 

Each of the brass adherends for the butt joint was 50 mm long, 5 mm thick and 30 mm 

wide, with a 12.5 mm diameter hole at the distal end for attachment to the loading fixtures. 
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The bonding surface of the brass was polished using silicon carbide emery paper (P400 

grit) and degreased with acetone. The two-pack araldite was mixed thoroughly in ratio 1:1 

and applied to the bonding surfaces. The two halves of the specimens were carefully 

clamped together in order to eliminate air bubbles and a nominal layer thickness of 

h 1 mm was maintained by applying a slight end pressure.  In order to examine the effect 

of thermal residual stress, the adhesive joints were cured in air for 24 hours at different 

temperatures: room temperature (   20 
o
C), 40 

o
C, 80 

o
C and 120 

o
C. Subsequently, the 

layer thickness was measured using travelling microscope at five different points along the 

width of the joint; only specimens where all the five measurements of the layer thickness 

were within the range of 0.85 mm and 1.3 mm were tested.    

 

3.2 Test procedure 

The bonded joint specimens were loaded using the Arcan load fixture arrangement shown 

in Fig. 3 [29, 30]. Different mode-mixity was applied to the joint by varying the angle  

between the direction of loading and the normal to the interface of the butt joint;  was 

varied between 0
o
 and 90

o
. Three nominally identical butt joint specimens were tested at 

each load angle ; all the tests were carried out at room temperature.  Note that  = 0
o
 

corresponds to remote tension loading with no remote shear, while  = 90
o
 corresponds to 

remote shear loading with no remote tension. The test was carried out at room temperature 

using standard screw-driven test machine in displacement control and at a cross-head speed 

of 1 mm/min.  The applied load and the displacement were continuously monitored using a 

computerised data logger.  
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3.2 Load versus displacement response and failure mechanisms 

Typical load versus displacement response for the joint is shown in Figure 4 for the cold 

cured specimens and in Figure 5 for specimens cured at 40 
o
C.  The response for small 

loading angle ( < 30
o
) is linear up to the initiation of failure, while for greater loading 

angle the response is initially linear and then nonlinear as the failure load is approached. 

The loading angle for the transition from linear response to non-linear response decreases 

with increasing cure temperature of the adhesive, see Figures 4 and 5.  The load at failure 

increases with increasing magnitude of the loading angle  There is relatively small 

scatter in the response and in the failure load for each set of three nominally identical 

specimens tested at each loading angle; this is an indication of the reproducibility of the test 

results.   

 

The failure load for the hot cured specimens is lower than for the corresponding cold cured 

specimens.  The thermal residual stress associated with the curing process reduces the 

external mechanical load required for failure initiation in the joints [14].   The failure 

tensile stress – shear stress space is shown in Figure 6.  The average failure stress when the 

joint was loaded under pure remote shear is almost three to four times greater than the 

average failure stress when loaded in uniaxial tension for all the curing conditions 

considered.  Irrespective of the cure temperature of the adhesive, the maximum tensile 

stress at failure occurred at a loading angle  between 30
o
 and  45

o
.   This suggests 

therefore that the scarf patch repair subject to remote tension the scarf angle for the patch 

repair should be between 30
o
 and 45

o
 to maximise the load carrying capacity of the repaired 

structure. 
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The failure of the joints initiated from interface corners A or D and crack growth occurred 

either along the interface or within the adhesive (i.e. cohesive failure) depending on the 

loading angle and the cure temperature as shown in Figure 7.  Adhesive cohesive failure 

occurred when the remote load is predominantly tensile while crack growth occurred along 

the interface when the remote load is predominantly shear stress (Fig. 7).  The observed 

failure mechanism is consistent with previous work on crack path selection in adhesive 

joints; increasing magnitude of remote shear results in interfacial crack growth [31]. 

 

4.   FINITE ELEMENT ANALYSIS OF THE JOINT 

In order to determine the critical stress intensity factor at failure, the intensity factor 

associated with each mode of loading has to be evaluated. The stress intensity factor H for a 

given magnitude of remote tension  , shear stress  and temperature change T is 

given in eqn. (3).  The stress intensity factors associated with remote tension   and 

temperature change T have been determined for a wide range of material combination in a 

separate study [16, 25].  For the elastic properties of the brass and araldite given earlier and 

the butt joint geometry under consideration:  = 0.698, Q = 0.445 and Q = 0.395 [16, 

25].  From (3) and (4), for a material combination where    1122 11   , a negative 

Q when there is a uniform increase in temperature implies a negative intensity factor H 

and a compressive thermal residual stress at the interface corner.  This consequently 

enhances the additional externally applied load required for failure.  

 

The non-dimensional constant Q associated with the remotely applied shear stress  is 

determined in the current study for the butt joint shown in Figure 2a by performing an 

elastic finite element analysis of the joint using the general purpose finite element code 
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ABAQUS.  The layer thickness was taken as h = 1 unit, and the other dimensions were: 

w = 10h and L = 21h. Eight-node quadrilateral plane strain elements with a refined mesh at 

the interface corners were used.  The materials were considered to be linear elastic with 

identical Poisson’s ratio  = 0.33, and the relative modulus of the adherend to that of the 

adhesive, E1/E2, was varied between 1 and 200. 

 

The magnitude of the stress intensity factor H and hence of the non-dimensional constant 

Q were determined from the finite element solution of the stresses and displacements near 

interface corner A using Betti reciprocal theorem based contour integral method [9, 25].  

This method has been shown to be more accurate than the method of matching the finite 

element stress solution with the asymptotic solution, as the contour integral approach 

allows the determination of the intensity factor from stress and displacement solutions 

away from the singular point [25].    

 

The values of Q are shown in Figure 8 as a function of E1/E2. We note that the value of Q 

decreases with increasing value of E1/E2 > 1.5.    For the brass/araldite/brass butt joint 

under consideration where E1/E2 = 42, we obtained Q = 0.807 for the non-dimensional 

constant defined in eqn. (3).  It is important to note that the stress intensity factor H 

associated with remote shear traction 
  is negative at the interface corners A and D, and 

positive at interface corners B and C, for the butt joint geometry and loading shown in 

Figure 2. Whether Q is negative or positive at a given interface corner, say A (see Fig 2) 

depends on the orientation of the coordinate axes; the sign of Q provides an indication of 

the direction of the singular shear stress at the interface corner.  If the orientation of the 

coordinate axes at corner A as shown in Figure 2 was reversed, the sign of Q would be 
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reversed too.   The solution for Q presented in Figure 8, together with the corresponding 

solution for Q and Q presented in [25] will allow the interface corner stress intensity 

factor H to be determined for a butt joint subjected to a combination of remote tension,  

remote shear and a uniform change in temperature. 

 

Reedy [26] and Wang and Rose [27] determined the magnitude of Q for a lap joint 

consisting of an elastic adhesive layer sandwiched between rigid adherends and subject to 

shear load, by matching the finite element displacement [26] or stress [27] solution near an 

interface corner to the corresponding asymptotic solution.  Wang and Rose [27] calibration 

of the stress intensity factor H is similar to that given in (3).  However, the solution of H 

provided by Reedy [26] must be multiplied by (0.5)
1

 to ensure the same definition for H 

as that given in eqn. (3).  Using the Poisson’s ratio  = 0.35 for the araldite considered in 

the current investigation, both Reedy [26] and Wang and Rose [27] simulations gave Q = 

0.969 at the interface corner of a lap joint consisting of elastic adhesive sandwiched 

between rigid adherends and subject to remote shear load.  In the current study of a butt 

joint, an adherend with a Young’s modulus E1 = 200E2 where E2 is the Young’s modulus of 

the adhesive is considered to be a rigid adherend.  For a butt joint with E1 = 200E2, we 

obtain Q = 0.945.    It is surprising to note that for adherends which are relatively rigid in 

comparison to the adhesive, the magnitude of the intensity factor at the interface corner for 

a butt joint subject to remote shear is only about 3% less than that for a lap joint subject to 

shear load.  

 

With the non-dimensional constant Q due to remote shear determined for the butt joint and 

materials combination, the intensity factor H can be calculated using eqn. (3) and the 

asymptotic stresses determined from eqn. (2).  Figure 9 shows the comparison of the finite 
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element and asymptotic solutions of the shear stress r distribution along different angular 

direction for a butt joint with E1 = 200E2 and subject to remote shear   without any 

applied remote tension or temperature change.  The asymptotic solution is based on eqns. 

(2) and (3).  There is very good agreement between the finite element and the asymptotic 

solutions very near the interface corner up to a radial distance r = 0.03h from the interface 

corner; the two solution starts to diverge as expected as the distance from the interface 

corner increases.  The onset of the deviation of the finite element solution from the 

asymptotic solution determines the region of validity of the asymptotic solution.   

 

The non-dimensional constant Q associated with remote shear load determined in this 

paper when combined with the previously determined constants Q and Q for remote 

tension and uniform temperature change in eqn. (3) will enable an assessment of the 

combination of shear load, tensile load and temperature change required for the initiation of 

failure at the interface corner of a bonded patch repair joint. We note that the load – 

displacement response may in practice be slightly non-linear at high loading angle, see 

Figures 4 and 5, while the application of the stress intensity factor based approach in eqn. 

(3) is based on linear elastic deformation.   However, it has been shown that the critical 

stress intensity factor is a valid fracture parameter even when there is non-linear 

deformation at the interface corner provided the plastic zone size is less than the extent of 

the elastic singular stress field [12].  For a butt joint between two materials that have 

identical Poisson’s ratio, 1 = , the critical stress intensity factor Hc is a valid fracture 

parameter when   hH Yc 
 )1/(1

/13


  where Y and h are the yield stress and thickness of 

the adhesive material [12].     
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5.  CONCLUSIONS 

The failure envelope of a brass/araldite/brass butt joint subjected to a combination of 

remote tension, remote shear and uniform change in temperature has been experimentally 

determined.  The failure envelope is found to be a function of the cure temperature of the 

adhesive; the failure loads decrease with increasing cure temperature due to the presence of 

thermal residual stress. 

 

The stresses near the interface corner of bonded joints are fully characterised by the 

interface corner stress intensity factor H and the order of the elastic singularity, 1.  

Solution of the stress intensity factor at the interface corner of the butt joint due to remote 

shear has been obtained to complement existing solution for remote tension and uniform 

change in temperature. The accuracy and validity of the interface corner stress intensity 

facture due to remote shear is ascertained by the good comparison that was obtained 

between theoretical and elastic finite element solutions near the interface corner.    The 

solution presented in this paper will enable better prediction of failure of butt joints and 

patch repaired joints, in particular those involving the use of isotropic or quasi-isotropic 

composites for patch repairs, and subject to a combined remote tension, remote shear and 

uniform change in temperature. 
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FIGURE CAPTIONS 

 

Figure 1:     Some examples of bi-material bonded joints with the shaded region 

indicating the adhesive. (a) Scarf joint, (b) single lap joint, (c) double lap 

joint, (d) butt joint with square edge, (e) scarf patch repair joint, and (f) 

composite overwrap patch repair joint. 

  

Figure 2:  (a) A schematic of a butt joint subjected to remote tension and shear loads, 

and (b) a magnified view of the interface corner A showing the local polar 

coordinates.  

 

Figure 3:   A schematic diagram of the Arcan loading configuration 

 

Figure 4:  Effect of loading angle  on the load versus displacement response of 

brass/araldite/brass butt joints cured for 24 hours at room temperature 

(20 
o
C). 



Figure 5:  Effect of loading angle  on the load versus displacement response of 

brass/araldite/brass butt joints cured for 24 hours at a temperature of 40 
o
C. 


Figure 6:  Failure envelope of the brass/araldite/brass joint for different cure 

temperature. 



Figure 7:  Effect of loading angle  and cure temperature on the failure mechanism 

map of the brass/araldite/brass joint.  


Figure 8:  Effect of relative modulus the adherend E1 to the modulus of the adhesive E2 

on the non-dimensional constant Q.    



Figure 9:    Elastic finite element and asymptotic solution for r along various radial 

directions for a butt joint consisting of an adherend with Young’s modulus 

E1 = 200E2 where E2 is the modulus of the adhesive. The shear stress r is 

normalised by the remote shear stress ∞ 
while the radial distance r is 

normalised by the layer thickness h.  The solid lines are the finite element 

solution and the dashed-dashed lines are the asymptotic solution.   



Accepted for publication in Journal of Adhesion Science and Technology, June 2017 

 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a)      (b) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      (c)           (d)  

 

 
 

 

 

 

 

 

 

(e)             (f) 

 

Figure 1:   Some examples of bi-material bonded joints with the shaded region indicating 

the adhesive. (a) Scarf joint, (b) single lap joint, (c) double lap joint, (d) butt joint with 

square edge, (e) scarf patch repair joint, and (f) composite overwrap patch repair joint. 
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Figure 2: (a) A schematic of a butt joint subjected to remote tension and shear loads, and 

(b) a magnified view of the interface corner A showing the local polar coordinates. 
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Figure 3:  A schematic diagram of the Arcan loading configuration 


F 

F 



Accepted for publication in Journal of Adhesion Science and Technology, June 2017 

 22 

 

 

 

 

 

a= 0°  

0 

0.2 

0.4 

0.6 

0 0.2 0.4 0.6 

Displacement (mm) 

L
o

a
d

 (
k

N
) 

h = 1.08 mm 

h =1.12 mm 

h= 1.1 mm 

(b)  = 45°  

0 

0.4 

0.8 

1.2 

1.6 

0.0 0.4 0.8 1.2 

Displacement (mm) 

L
o

a
d

 (
k
N

) 

h = 1.03 mm 

h = 1.19 mm 

h =1.32 mm 

 
 

 

 

 

 

 

 

 

 

 

         Figure 4a & 4b; 

Caption overleaf 
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Figure 4: Effect of loading angle  on the load versus displacement response of 

brass/araldite/brass butt joints cured for 24 hours at room temperature (20 
o
C). 
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Figure 5a & 5b; 

Caption overleaf 
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Figure 5: Effect of loading angle  on the load versus displacement response of 

brass/araldite/brass butt joints cured for 24 hours at a temperature of 40 
o
C. 
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Figure 6: Failure envelope of the brass/araldite/brass joint for different cure temperature. 
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Figure 7: Effect of loading angle  and cure temperature on the failure mechanism map of 

the brass/araldite/brass joint.  

 

 

 

 
Figure 8: Effect of relative modulus the adherend E1 to the modulus of the adhesive E2 on 

the non-dimensional constant Q.    
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Figure 9:   Elastic finite element and asymptotic solution for r along various radial 

directions for a butt joint consisting of an adherend with Young’s modulus E1 = 200E2 

where E2 is the modulus of the adhesive. The shear stress r is normalised by the remote 

shear stress ∞ 
while the radial distance r is normalised by the layer thickness h.  The solid 

lines are the finite element solution and the dashed-dashed lines are the asymptotic 

solution.   
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