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Abstract

Most fungal pathogens of humans display robust protective oxidative stress responses

that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxy-

gen species (ROS) is an essential component of these responses. We showed previously

that ectopic expression of the heme-containing catalase enzyme in Candida albicans

enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and

phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the

presence of stress, and therefore in this study we tested whether it enhances fitness in

the absence of stress. We addressed this using a set of congenic barcoded C. albicans

strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high

basal catalase levels, rather than CAT1 induction following stress imposition, reduce

ROS accumulation and cell death, thereby promoting resistance to acute peroxide or

combinatorial stress. This conclusion is reinforced by our analyses of phenotypically

diverse clinical isolates and the impact of stochastic variation in catalase expression

upon stress resistance in genetically homogeneous C. albicans populations. Accordingly,

cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inacti-

vation does not attenuate C. albicans virulence in mouse or invertebrate models of sys-

temic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic

barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase

expression confers a fitness advantage during peroxide stress, it confers a fitness defect

in the absence of stress. This fitness defect is suppressed by iron supplementation.

Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3,

FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide

stress resistance, they place pressure on iron homeostasis through an elevated cellular
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demand for iron, thereby reducing the fitness of C. albicans in iron-limiting tissues within

the host.

Author summary

The pathogenic yeast Candida albicans faces multiple challenges within its human host.

These include the need to protect itself against the toxic oxidants used by the host to kill

invading microbes, and the need to scavenge iron, an essential micronutrient that is limit-

ing in certain tissues. The iron-containing enzyme, catalase, detoxifies hydrogen peroxide,

thereby playing a major role in protecting C. albicans against reactive oxygen species and

neutrophil killing. Indeed, we show that high basal catalase expression increases the resis-

tance of this yeast to oxidative and combinatorial (oxidative plus cationic) stresses. Yet,

rather than enhancing the virulence of C. albicans as had been predicted, high basal cata-

lase expression decreases fungal colonisation in certain iron-limiting tissues. Furthermore,

we demonstrate that catalase inactivation does not significantly perturb the virulence of C.

albicans in models of systemic infection. We also show that ectopic catalase expression

increases the demand for iron in C. albicans, thereby reducing the fitness of this pathogen

in the absence of stress under iron-limiting conditions. Therefore, high basal catalase

expression is a double-edged sword: it enhances the fitness of C. albicans in the presence

of stress, but reduces fitness in the absence of stress. This explains why catalase overex-

pression reduces rather than enhances virulence.

Introduction

Of the circa three million fungal species that are thought to inhabit our planet [1], only a rela-

tively small number have been reported to cause infections in humans. (About 400 species are

described in the Atlas of Clinical Fungi [2].) Nevertheless, there is an increasing awareness that

these fungal pathogens impose a major burden on human health worldwide [3]. These clini-

cally important fungi generally share common features that promote colonization of their

human host, such as the thermotolerance that permits growth at body temperatures. These

common features include relatively robust stress responses, which mitigate against the stresses

imposed by host immune defences [e.g. 4–6]. They also include the ability to scavenge essential

micronutrients, such as iron, from their host [7–10].

Iron is an essential micronutrient that is required for the functionality of key ferroproteins

and haem proteins. However, excess iron is toxic because ferrous ions promote the Fenton

reaction which produces highly toxic hydroxyl radicals [11], and therefore host and pathogen

alike must tightly regulate their acquisition, storage and release of iron. Consequently, the lev-

els of free ion are vanishingly low in some host niches [12]. Furthermore, following infection

the host activates the process of nutritional immunity in an effort to limit iron availability for

the invading microbe [10,12]. Fungal pathogens respond to this iron limitation by down-regu-

lating genes encoding iron-containing proteins and upregulating efficient iron scavenging

mechanisms [13–17]. In Candida albicans this response includes the induction of genes encod-

ing ferric reductases (e.g. CFL5, FRP1), high affinity iron permeases (e.g. FTR1) and proteins

involved in iron assimilation (e.g. FET3) [15]. This response allows the fungus to counter the

changes in iron homeostasis within the host that are triggered by systemic candidiasis [10].
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Fungal pathogens activate oxidative stress responses when they come in contact with the

host [18–22], and these responses promote resistance to phagocytic attack and fungal virulence

[5,23–26]. In an attempt to clear invading fungal pathogens, host neutrophils and macro-

phages phagocytose the fungal cells and subject them to a battery of reactive oxygen species

(ROS) that damage proteins, DNA and lipids, and can induce programmed cell death [27].

The impact of ROS is augmented when combined with a cationic stress, and this synergistic

impact of combinatorial oxidative and cationic stresses is thought to contribute to the potency

of human neutrophils [28,29]. C. albicans cells respond to oxidative stress by inducing func-

tions that detoxify the ROS, repair the oxidative damage, synthesize antioxidants and restore

redox homeostasis. This includes the induction of genes encoding catalase (CAT1), superoxide

dismutases (SOD), glutathione peroxidases (GPX) and components of the glutathione/glutare-

doxin (GSH1, TTR1) and thioredoxin (TSA1,TRX1,TRR1) systems [6,30–32]. In particular,

CAT1 mRNA levels are strongly induced by oxidative stress [30,33]. However, C. albicans cells

are unable to activate a normal transcriptional response to oxidative stress when subjected to

combinatorial oxidative plus cationic stress or acute peroxide stress, and this contributes to the

lethality of these types of stress [28,29].

Catalase (Cat1) plays a major role in protecting C. albicans against peroxide stress [28,29].

This iron-requiring enzyme, which has been well-characterised structurally [34], belongs to a

superfamily of heme peroxidases and catalases that are conserved across bacteria, plants, fungi

and animals [35]. Catalase catalyses the conversion of hydrogen peroxide (H2O2) to water. C.

albicans cells rapidly detoxify extracellular H2O2 following exposure to an acute peroxide

stress, and this detoxification is mainly dependent on catalase (CAT1) [28].

We showed previously that ectopic expression of catalase using the ACT1 promoter

(ACT1p-CAT1) protected C. albicans from acute oxidative and combinatorial stresses [28].

More recently, Jesus Pla’s group has confirmed that catalase overexpression protects C. albi-
cans against peroxide stress [36]. They also demonstrated that high catalase levels provide pro-

tection against antifungal drugs. These observations raise an interesting conundrum: if

catalase overexpression confers effects that might be expected to promote host colonisation,

why has C. albicans not evolved to express high basal levels of catalase? We address this in this

study. We show that while high basal catalase levels enhance the fitness of C. albicans in the

presence of oxidative and combinatorial stresses, these high catalase levels reduce fitness in the

absence of stress. We also reveal the molecular basis for this fitness defect. Our observations

suggest a partial explanation for the lack of emergence of catalase overexpression during the

evolution of this major fungal pathogen. We also show that, in contrast to the prevailing view

[23], the virulence of C. albicans is not compromised by catalase inactivation.

Results

High basal catalase levels protect against oxidative and combinatorial

stresses

We demonstrated previously that ectopic expression of catalase from an ACT1 promoter-CAT1
fusion (ACT1p-CAT1) reproducibly protected C. albicans against acute peroxide stress (5 mM

H2O2) and combinatorial stress (5 mM H2O2 plus 1 M NaCl) [28]. Subsequently we noted that

the stress resistance of ACT1p-CAT1 cells declined over time (S1 Fig). Therefore, we constructed

new C. albicans strains in which catalase expression is regulated by the doxycycline conditional

tetON promoter [37–39]. Control strains were made by transforming congenic wild-type

(CAT1) and catalase null strains (cat1Δ) with empty tetON vectors. Test strains were made by

integrating a tetON-CAT1 plasmid into the genome of the cat1Δ null mutant. We refer to these

strains, which all have the same genetic background (Materials and Methods; S1 Table), as
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wild-type (CAT1), null (cat1Δ) and tetON-CAT1 strains, respectively. Three isolates were gener-

ated for each strain type. For each strain type, the isolates displayed similar stress phenotypes

(below).

First we tested Cat1 expression levels in wild-type (CAT1), null (cat1Δ) and tetON-CAT1
cells. Catalase levels were induced in response to oxidative stress in wild-type (CAT1) cells, and

were undetectable in cat1Δ cells (Fig 1). Catalase levels in these strains were not affected by

doxycycline addition. In contrast, catalase levels were strongly induced by doxycycline in

tetON-CAT1 cells (red bars, Fig 1). Significantly, wild-type cells express significant basal levels

of catalase in the absence of stress (Fig 1), as we reported previously [33]. Catalase levels in

doxycycline-treated tetON-CAT1 cells were higher than these basal levels (Fig 1).

We then compared the stress resistance of wild-type, null and tetON-CAT1 cells (Fig 2A &

S1 Fig). As expected [23,28,40], wild-type (CAT1) cells displayed modest resistance to an oxi-

dative stress (H2O2) and a combinatorial stress (H2O2 plus NaCl), whereas the null mutant

(cat1Δ) was sensitive to both types of stress. These phenotypes were not affected by the pres-

ence or absence of doxycycline (Fig 2A). In the absence of doxycycline, the tetON-CAT1 strains

were sensitive to both oxidative and combinatorial stress, reflecting their null cat1Δ back-

ground. When these strains were pre-grown with doxycycline, they displayed enhanced oxida-

tive and combinatorial stress resistance (Fig 2A). This reinforces our earlier conclusion [28]

that elevated basal CAT1 expression levels protect C. albicans cells against a sudden and acute

oxidative or combinatorial stress.

Interestingly, the tetON-CAT1 strains were sensitive to both oxidative and combinatorial

stress when pre-grown in the absence of doxycycline and the inducer was only provided when

the stress was imposed (Fig 2A). We then measured the impact of individual and combinato-

rial oxidative (H2O2) and cationic (NaCl) stresses upon cell death by cytometric analysis of

propidium iodide (PI) stained doxycycline-grown cell populations (Fig 2B). Relative to the

control wild-type strain, cat1Δ null cells were more sensitive, and tetON-CAT1 cells were more

resistant to these oxidative and combinatorial stresses. Compared to the control wild type

cells, doxycycline-treated tetON-CAT1 cells displayed 9-fold less cell death following exposure

to the oxidative stress, and 2.5-fold less death after the combinatorial stress (Fig 2B).

This correlated with a reduction in internal ROS accumulation following stress imposition

by tetON-CAT1 cells relative to the wild-type and cat1Δ cells (Fig 2C). The accumulation of

intracellular ROS was 2.6-fold lower in doxycycline-treated tetON-CAT1 cells after the perox-

ide stress, and 1.5-fold lower following the combinatorial stress, compared to the wild type

control (Fig 2C). Taken together, our data indicate that cells with low catalase levels at the

point of stress imposition are more sensitive to peroxide than cells with high catalase levels.

This suggests if catalase levels are low at the point of stress imposition, the dynamics of catalase

induction are too slow to permit the normally rapid clearance of peroxide [28] and to prevent

ROS-mediated cell death [27]. The data indicate that C. albicans cells require high basal levels

of catalase at the time of stress imposition if they are to survive an acute oxidative or combinato-

rial stress.

Oxidative stress resistance and catalase levels in clinical isolates

C. albicans clinical isolates display a high degree of natural variation [41,42]. We exploited this

to select strains that display relatively low levels of oxidative stress resistance. A diverse range

of C. albicans clinical isolates (65 in total) from different epidemiological clades and from dif-

ferent patient colonisation sites were subjected to a robotic screen in which they were plated

on YPD containing different peroxide concentrations (Fig 3A). All of the isolates tested dis-

played a degree of resistance to this stress, showing some growth at 3.2 mM H2O2. However,
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some isolates were more resistant to peroxide, displaying robust growth at 6.4 mM H2O2,

whereas sensitive strains were unable to grow at this H2O2 concentration. We selected a subset

of four sensitive isolates and three resistant isolates (which included SC5314, the clinical isolate

from which most laboratory strains are derived), and compared the basal CAT1 expression lev-

els in these isolates to a standard laboratory strain (CAI4 containing CIp10 (URA3)). Basal

CAT1 mRNA levels were lower in the oxidative stress sensitive isolates tested (Fig 3B), and fur-

thermore, the basal levels of the enzyme were also lower in these isolates (Fig 3C). These data

are consistent with the idea that elevated basal catalase levels promote oxidative stress resis-

tance in C. albicans.

Population heterogeneity promotes C. albicans survival following

oxidative stress

Next we examined how a subset of cells within an apparently homogeneous population of C.

albicans cells can survive an acute oxidative stress [28,36,43]. Based on the above observations,

we reasoned that this might be partly explained by stochastic variation in basal catalase levels

between individual cells in such a population. To test for potential population heterogeneity in

basal catalase levels we generated a strain in which both CAT1 alleles were tagged with GFP

(CAT1-GFP/ CAT1-GFP) to express a Cat1-GFP fusion protein. Western blotting revealed a

Cat1-GFP protein of the expected mass in these cells (approximately 80 kDa: Fig 4A), and the

GFP fluorescence was located in punctate spots (Fig 4B), consistent with the peroxisomal loca-

lisation of catalase in C. albicans [44]. We then compared the oxidative stress resistance of the

CAT1-GFP strain with congenic control wild-type (CAT1/CAT1), heterozygous (CAT1/ cat1Δ)

Fig 1. Manipulation of catalase levels in C. albicans. Catalase activities were measured in protein extracts

from mid-exponential C. albicans cultures containing 0 or 20 μM doxycycline (- or + Dox, respectively): cat1Δ,

Ca2089; wild-type, WT, Ca2084; red, tetON-CAT1 isolates, Ca2040, Ca2043, Ca2046 (S1 Table).

Immediately before harvesting, wild-type and cat1Δ cultures were exposed to 0 or 5 mM H2O2 for one hour.

Means and standard deviations from three independent replicate experiments are shown, and the data were

analysed using one-way ANOVA with Tukey’s post-hoc test: *, p� 0.05; **, p� 0.01; ***, p� 0.001;

****, p� 0.0001.

https://doi.org/10.1371/journal.ppat.1006405.g001

Catalase expression affects iron demand and fitness

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006405 May 22, 2017 5 / 25

https://doi.org/10.1371/journal.ppat.1006405.g001
https://doi.org/10.1371/journal.ppat.1006405


and null (cat1Δ/cat1Δ) strains. The CAT1-GFP strain was as resistant to oxidative stress as the

wild-type control (Fig 4C), indicating that the CAT1-GFP alleles are functional.

We then examined the basal levels of GFP fluorescence in unstressed populations of expo-

nentially growing C. albicans CAT1-GFP cells by flow cytometry. As predicted, these geneti-

cally homogeneous cell populations displayed heterogeneity with respect to their Cat1-GFP

expression levels (Fig 4D & S2 Fig). Using flow cytometry, we selected cells of similar size,

sorted cells that display relatively low levels of Cat1-GFP from those expressing high levels (Fig

4D & S2 Fig), and then plated them onto media containing a range of H2O2 concentrations.

Cells expressing relatively high levels of Cat1-GFP were more resistant to peroxide stress (Fig

4E). When an analogous experiment was performed with cells expressing a control gene

(ACT1-GFP), stochastic differences in ACT1-GFP expression did not affect oxidative stress

resistance (S3 Fig). These observations reinforce our conclusion that high basal levels of cata-

lase promote oxidative stress resistance. Furthermore, this confirms that C. albicans cell

Fig 2. Elevated basal levels of catalase protect against oxidative and combinatorial stresses. (A) Dilutions of mid-exponential C.

albicans cultures were spotted onto YPD plates containing different stresses and photographed after 24 h growth at 30˚C: control; 1 M

NaCl; 7.5 mM H2O2; or 5 mM H2O2 plus 1 M NaCl. Strains were either grown in the absence of doxycycline (left panels; see cartoons

above the panels), pre-grown without doxycycline and then plated onto media containing 20 μM doxycycline (central panels), or pre-grown

with 20 μM doxycycline and then plated onto media lacking doxycycline (right panels): wild-type CAT1 isolates 23, 21, 26 (Ca2084,

Ca2085, Ca2087); cat1Δ isolates 28, 38, 54 (Ca2089, Ca2092, Ca2030); tetON-CAT1 isolates 1, 4, 10 (Ca2038, Ca2041, Ca2044; S1

Table). These data reflect the outputs of three independent experiments. (B) Mid-exponential wild type (CAT1, Ca2084), cat1Δ (Ca2089)

and tetON-CAT1 cells (Ca2038) grown in YPD containing 20 μM doxycycline were treated with 5 mM H2O2 and/or 1 mM NaCl for 1 h.

Cells were stained with propidium iodide (PI) and the percentage of PI positive (dead) cells quantified by flow cytometry. Means and

standard deviations from three replicates are presented: *, p� 0.05; **, p� 0.01; ***, p� 0.001. (C) Wild type (CAT1, Ca2084), cat1Δ
(Ca2089) and tetON-CAT1 cells (Ca2038) grown in YPD plus 20 μM doxycycline were treated with 5 mM H2O2 and/or 1 mM NaCl for 1 h,

and their accumulation of intracellular ROS quantified by flow cytometry. Means and standard deviations from three replicates are

presented: *, p� 0.05.

https://doi.org/10.1371/journal.ppat.1006405.g002
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populations display stochastic variation in their basal CAT1 expression levels, and that this

contributes to the survival of a subset of C. albicans cells following an acute oxidative stress.

Impact of catalase levels on host colonisation during systemic infection

We tested whether high basal catalase levels affect the ability of C. albicans to colonise different

tissues during systemic infection. At first we reasoned that the elevated oxidative stress resis-

tance conferred by high basal catalase levels (above) might enhance host colonisation. To test

this we compared directly the three isolates for wild-type (CAT1), null (cat1Δ) and tetON-
CAT1 strains (nine in total) using a barcode sequencing (barseq) strategy. The C. albicans
strains were pre-grown separately in the presence or absence of doxycycline. Approximately

equal amounts of the nine doxycycline-treated strains were mixed and used to induce dissemi-

nated candidiasis in doxycycline-treated mice. In parallel, the nine untreated control C. albi-
cans strains were mixed and used to infect untreated mice. Mice from each group were culled

after four days, and the fungal cells harvested from their kidneys, livers, spleens and brains.

Barseq was then performed on genomic DNA from these fungal populations to determine the

relative proportion of each C. albicans strain in each tissue. We observed significant differences

between the wild-type (CAT1) and tetON-CAT1 strains in their ability to colonise certain tis-

sues (Fig 5). Doxycycline-treated tetON-CAT1 cells were less able to colonise the kidney and

Fig 3. Basal catalase expression and oxidative stress resistance in C. albicans clinical isolates. (A) A

subset is shown of the sixty-five clinical isolates that were robotically screened (duplicate spots for two dilutions)

on YPD plates containing 0, 3.2 or 6.4 mM H2O2. A relatively H2O2 sensitive (C, red) and resistant strains (E, blue)

are highlighted. (B) Four relatively sensitive strains (A-D, red), and three relatively resistant strains plus a control

laboratory strain (E-H, blue) were selected, and their basal CAT1 mRNA levels during growth on YPD in the

absence of stress measured by qRT-PCR relative to the internal ACT1 mRNA control: A, 81/064; B, AM2003/

0025; C, AM2005/0377; D, SCSBB417709; E, J990102; F, IHEM16614; G, SC5314; H, CAI4+CIp10 (S1 Table).

(C) Basal catalase levels in the same strains were assayed under the same growth conditions as (B). Means and

standard deviation from three replicates are presented, and the difference between the sets of sensitive and

resistance strains compared statistically: ****, p� 0.0001.

https://doi.org/10.1371/journal.ppat.1006405.g003
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brain than the control untreated tetON-CAT1 cells, but this was not the case in the liver and

spleen. This effect was observed for tetON-CAT1-1 cells, but not for the other two tetON-CAT1
isolates (4 and 10: S1 Table). This correlated with a reduction in catalase levels in these isolates

(S4A Fig) and a corresponding loss of phenotype (S4B Fig). Therefore, like ACT1p-CAT1 cells

(above; S1 Fig), isolates 4 and 10 appeared to have lost their phenotype over time. Taken

together, our data indicate that, contrary to our initial prediction, high basal catalase expres-

sion levels appear to compromise, rather than enhance, the ability of C. albicans to colonise

certain tissues.

To our surprise, we did not observe any significant differences between the wild-type

(CAT1) and null (cat1Δ) strains in their ability to colonise the host (Fig 5). All of the wild-type

and null isolates displayed similar levels of colonisation. This indicated that cells lacking cata-

lase can infect the host—a conclusion that contrasts with the prevailing view that C. albicans
cat1Δ null cells display attenuated virulence [23,40]. We reasoned that cat1Δ cells might be

Fig 4. Stochastic differences in catalase expression within a population of C. albicans cells affect

resistance to peroxide stress. (A) Western blot of GFP in C. albicans cells grown in YPD at 30˚C: GFP, cells

expressing GFP from pACT1-GFP (Ca230); CAT1, control cells with no GFP (Ca674); CAT1-GFP, cells

expressing Cat1-GFP (Ca2213) (S1 Table). (B) DIC and fluorescence microscopy of log-phase CAT1-GFP cells

(Ca2213) exposed to 0 or 5 mM H2O2 for 1 h: scale bar = 5 μm. (C) The resistance of C. albicans strains to

peroxide was assessed by plating onto YPD plates containing 0, 5 or 10 mM H2O2: CAT1/CAT1, Ca674; CAT1/

cat1Δ, Ca1862; cat1Δ/cat1Δ, Ca1864; CAT1-GFP, Ca2213. For each stress condition, the images for all strains

were taken from the same plate. (D) Sorting of C. albicans cells of similar size expressing relatively low or high

levels of Cat1-GFP within the same population growing on YPD (no stress) by FACS: Cat1-GFP cells, Ca2213; No

GFP control, Ca674. (E) The survival of FACS sorted cells with low or high Cat1-GFP levels on YPD plates

containing different concentrations of H2O2 (CFU) expressed as a percentage of the survival for the no stress

control. Means and standard deviations from three replicates are presented: *, p� 0.05; **, p� 0.01;

***, p� 0.001; ****, p� 0.0001.

https://doi.org/10.1371/journal.ppat.1006405.g004
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able to colonise host tissues if they are co-infected with CAT1 and tetON-CAT1 cells. For exam-

ple, cat1Δ null cells might be rescued via a “cheater” or “bystander” effect [45,46], whereby cat-

alase expressing cells protect the null mutant against local peroxide stress.

We tested this by comparing the virulence of our wild-type (CAT1) and null (cat1Δ) strains

separately in the three-day murine model of systemic candidiasis [47]. We observed no signifi-

cant difference between the wild-type or mutant strains with respect to their fungal burdens in

the kidneys, and the strains induced similar levels of weight loss in mice, yielding similar out-

come scores that displayed no significant difference (Fig 6A). This observation reinforced the

idea that inactivating CAT1 does not attenuate the virulence of C. albicans.
Wysong and co-workers observed a virulence defect for cat1Δ cells using a long-term

mouse model of systemic candidiasis [23]. Therefore, it seemed possible that our short-term

Fig 5. Impact of catalase levels on host colonisation during systemic infection. The nine C. albicans

strains were grown separately in medium containing 0 or 20 μM doxycycline, mixed in approximately equal

proportions, and then this pool of nine barcoded strains used to initiate systemic infection in mice via the tail

vein (n = 6 mice per group): wild-type (CAT1) strains 23, 21, 26 (Ca2084, Ca2085, Ca2087); cat1Δ strains 28,

38, 54 (Ca2089, Ca2092, Ca2030); tetON-CAT1 strains 1, 4, 10, (Ca2038, Ca2041, Ca2044; S1 Table). Mice

that received the pool of nine C. albicans strains pre-grown with doxycycline were treated with doxycycline,

whereas mice that were infected with the pool of C. albicans strains pre-grown without doxycycline did not

(Materials and Methods). After four days, mice were killed by cervical dislocation and the kidneys, brains,

livers and spleens harvested. The fungal cells infecting these organs were grown on YPD plates, genomic

DNA isolated from each fungal population, and the abundance of each barcode in each fungal population was

quantified by barseq. The Relative Abundance of each barcode in each tissue from each mouse was

calculated relative to the total number of barcode reads for that specific sample, and then normalised against

the proportion for that barcode in the pool of nine C. albicans strains used to infect that mouse. Each symbol

represents data for a single mouse. The pairwise comparisons indicated were analysed using the Students t-

test: *, p� 0.05; **, p� 0.01. Data are presented for three of the nine barcoded C. albicans strains: CAT1

strain 23, grey and black; cat1Δ strain 28, pink and red; tetON-CAT1 strain 1, pale blue and blue; no

doxycycline, grey, pink, pale blue; 20 μM doxycycline, black, red, blue. These wild type and cat1Δ strains

were representative of the other isolates. However, tetON-CAT1-1 behaved differently from the other

tetON-CAT1 isolates, which were shown subsequently to have lost their phenotype (below).

https://doi.org/10.1371/journal.ppat.1006405.g005
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and their long-term model of systemic infection might yield differing outcomes for C. albicans
cat1Δ cells. To test this we re-examined the virulence of our wild-type (CAT1) and null (cat1Δ)

strains in mice over 14 days. (We were unable to access the strains used by Wysong and co-

workers [23]. Hence we could not perform a direct comparison with their mutant.) No major

difference in the virulence of wild-type and cat1Δ cells was observed using a long term infec-

tion model (p = 0.074: Fig 6B). We also compared our wild-type (CAT1), null (cat1Δ) and

tetON-CAT1 strains in Galleria mellonella, observing no significant difference in their viru-

lence in this invertebrate model of systemic candidiasis (p = 0.68: Fig 6C).

The cat1Δ mutant generated by Wysong and co-workers had the URA3marker inserted at

the cat1 locus (cat1::URA3) [23]. In contrast, in our cat1Δ mutant URA3was reintroduced at

the RPS1 locus using the CIp10 plasmid backbone [48]. After the study of Wysong and co-

workers was published [23], URA3 position effects were found to influence C. albicans viru-

lence, and reinsertion of URA3 at RPS1 using CIp10 was shown to overcome these effects [49].

We conclude that CAT1 inactivation does not significantly attenuate the virulence of C.

albicans.

Catalase promotes resistance to neutrophil killing

It has been reported that catalase null mutants do not display significantly higher sensitivities to

neutrophil killing [5]. Once again, these experiments were performed with a cat1Δ null mutant

in which URA3was integrated at the CAT1 locus (cta1Δ::loxP-URA3-loxP: [5]). Therefore, in

light of our findings (above), we retested neutrophil killing using our new cat1Δ strain in which

URA3 is integrated at the RPS1 locus. We tested the strains separately to exclude potential

cheater effects [45,46]. We observed that, following exposure to human neutrophils, our new

cat1Δ strain displayed significantly reduced survival compared to the congenic wild-type con-

trol (Fig 7). This strengthens the observation of Miramon and co-workers, who reported a

slight difference between cat1Δ and CAT1 cells that was not statistically significant [5]. Further-

more, we also observed a statistically significant difference in neutrophil killing between

tetON-CAT1 cells that were pre-grown in the presence or absence of doxycycline (Fig 7). These

Fig 6. Inactivation of catalase does not attenuate C. albicans virulence. (A) The virulence of C. albicans wild-type (CAT1, Ca2084) and cat1Δ
(Ca2089) strains was first tested in a short term model of systemic infection. Mice were infected with similar doses of either CAT1 or cat1Δ cells via

their tail vein, and their weights monitored over time. Animals were sacrificed after four days, their weight change determined and their kidney

fungal burdens assayed. (B) The same strains were compared in a longer term mouse model of systemic infection. Mouse survival data are

presented in a Kaplan-Meier plot: the differences are not statistically significant (p = 0.074). (C) C. albicans wild-type (CAT1, Ca2084), cat1Δ
(Ca2089) and tetON-CAT1 strains (Ca2038) were compared in the Galleria mellonella model of systemic infection. As a negative control, larvae

were injected with phosphate buffered saline. Survival data are presented in a Kaplan-Meier plot. The differences between the C. albicans strains

are not statistically significant (p = 0.68).

https://doi.org/10.1371/journal.ppat.1006405.g006
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data indicate that catalase promotes the resistance of C. albicans against neutrophil attack. We

note that elevated basal levels of catalase did not enhance the resistance of C. albicans to neutro-

phil killing in our hands (Fig 7: compare wild type and doxycycline-treated tetON-CAT1 cells).

Elevated catalase levels affect the ability of C. albicans to compete in

vitro

C. albicans cat1Δ cells are clearly sensitive to oxidative stress (Fig 2). However, in mixed popu-

lations they could conceivably be rescued by catalase expressing cells. Therefore, we tested

whether cat1Δ cells act as cheaters by examining their fitness in mixed cultures alongside wild-

type (CAT1) and tetON-CAT1 cells. The three barcoded for the null mutant, wild-type and

tetON-CAT1 strains were pre-grown separately in the presence of doxycycline, mixed in

approximately equal proportions, and then used to inoculate YPD cultures containing doxycy-

cline. A parallel mixture of untreated barcoded strains was also prepared, and this untreated

mixture used to inoculate YPD cultures without doxycycline. The relative fitness of each strain

was then compared in the presence or absence of oxidative stress (5 mM H2O2), by comparing

the relative abundance of each barcode over time in each culture by barseq. With one notable

exception (discussed below), the three isolates for each strain type displayed similar behaviours

(Fig 8).

In the absence of doxycycline and stress, the relative abundance of the wild-type (CAT1),

null (cat1Δ) and tetON-CAT1 strains did not change significantly over the twelve hour period

examined (Fig 8A). In contrast, in the absence of doxycycline but in the presence of stress, the

abundance of cat1Δ and tetON-CAT1 cells rapidly declined in the population and these strains

were rapidly outcompeted by the wild-type CAT1 strains (Fig 8B). The comparable behaviour

Fig 7. Impact of catalase on resistance to neutrophil killing. C. albicans wild-type (CAT1, black, Ca2084),

cat1Δ (red, Ca Ca2089) and tetON-CAT1 cells (Ca2038) pre-grown with 0 or 20 with μM doxycycline (pale

blue and blue, respectively) were exposed to human neutrophils for 2 h, and then fungal survival assayed.

Each data point represents the mean for three replicates from one healthy donor. The data were analysed

using one-way ANOVA with Tukey’s post-hoc test: *, p� 0.05; **, p� 0.01.

https://doi.org/10.1371/journal.ppat.1006405.g007
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for the cat1Δ the tetON-CAT1 cells under these conditions was entirely consistent with the

negligible catalase levels in tetON-CAT1 cells without doxycycline induction (Fig 1). These

data strongly reinforce the view that catalase is vital for peroxide stress resistance in C. albicans
[5,23,33,36,40]. Our data also show that cat1Δ cells do not act as cheaters: they are not rescued

by catalase expressing cells under peroxide stress conditions (Fig 8B).

In the presence of doxycycline in the presence of stress, the tetON-CAT1 cells rapidly out-

competed the null (cat1Δ) cells (Fig 8D). This again highlighted the peroxide sensitivity of

cat1Δ cells. Significantly, the tetON-CAT1 cells also out-competed wild-type (CAT1) cells (Fig

8D), confirming directly that ectopic catalase expression enhances oxidative stress resistance

(Fig 2) [28,36]. Therefore, elevated basal catalase levels increase the fitness of C. albicans cells

in the presence of peroxide stress.

Interestingly, in the presence of doxycycline but in the absence of peroxide stress, there was

a decrease in the abundance of tetON-CAT1-01 cells in the population over the twelve hour

Fig 8. Impact of catalase levels upon C. albicans fitness in the presence or absence of peroxide stress. The

nine barcoded C. albicans wild-type, cat1Δ and tetON-CAT1 strains (S1 Table) were pre-grown separately in YPD

containing 0 or 20 μM doxycycline. The cells grown in the presence of doxycycline were then mixed in roughly equal

proportions and used to inoculate fresh YPD cultures containing doxycycline (plus Dox). In parallel, the cells grown

in the absence of doxycycline were mixed and used to inoculate fresh YPD cultures lacking doxycycline (no Dox).

Parallel cultures contained 0 or 5 mM H2O2 (no stress and plus stress, respectively). Cells were harvested at

various time points over a 12 h period, and barseq was performed on genomic DNA extracted from each sample.

The relative abundance of each barcode in each sample was then calculated relative to its starting abundance.

Data are shown for one barcoded strain of each type (means and standard deviation from three replicate

measurements): wild-type (CAT1), black, Ca2084; cat1Δ, red, Ca2089; tetON-CAT1, blue, Ca2038. (A)

Competition between wild-type, cat1Δ and tetON-CAT1 strains in the absence of doxycycline and the absence of

peroxide stress. (B) Competition in the absence of doxycycline and the presence of stress. (C) Competition in the

presence of doxycycline and the absence of stress. (D) Competition in the presence of both doxycycline and stress.

https://doi.org/10.1371/journal.ppat.1006405.g008
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time-course, relative to the wild-type (CAT1) and null (cat1Δ) cells (Fig 8C). This suggested

that ectopic CAT1 expression might render C. albicans cells less fit in the absence of stress.

Ectopic catalase expression confers a fitness defect in the absence of

stress that is suppressed by iron supplementation

Doxycycline-treated C. albicans tetON-CAT1 cells appeared to display a fitness defect in the

absence of stress (Fig 8C). We tested this further by examining biomass formation on YPD

(final OD600) (Fig 9A). All of the strains displayed similar growth in the absence of doxycy-

cline, and the wild-type (CAT1) controls remained unaffected by doxycycline. However, the

growth of tetON-CAT1 cells decreased in the presence of doxycycline, reinforcing the view

that elevated catalase levels reduce fitness in the absence of stress.

Fig 9. In the absence of stress, elevated catalase levels impose a fitness defect on C. albicans that is

suppressed by iron supplementation. (A) The growth of C. albicans tetON-CAT1 isolates (1, 4, 10) was

monitored (OD600) in YPD containing 0 or 20 μM doxycycline (Ca2040, Ca2043, Ca2046; S1 Table). The

impact of tetON-CAT1 induction upon fitness was assayed by subtracting the OD after growth in the absence

of doxycycline (OD-Dox) from the OD in the presence of doxycycline (OD+Dox). Data represent the means and

standard deviations from three independent experiments. (B) The impact of iron on the fitness of C. albicans

tetON-CAT1 strain 1 (Ca2040) was measured in YPD cultures containing 0 or 20 μM doxycycline plus

different concentrations of FeCl3. Data represent the means and standard deviations from three independent

experiments. (C) The effect of tetON-CAT1 expression on genes involved in iron assimilation and

homeostasis was assessed by qRT-PCR of specific transcripts (relative to the ACT1 mRNA internal control)

during growth of C. albicans tetON-CAT1 isolate 1 (Ca2040) in YPD containing 0 or 20 μM doxycycline. The

data, which represent the means and standard deviations from three replicate measurements, are normalised

relative to the corresponding transcript level in wild type cells grown with doxycycline.

https://doi.org/10.1371/journal.ppat.1006405.g009
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Catalase is a ferroprotein [34] expressed at relatively high basal levels in C. albicans (approx-

imately 1.5 x 105 molecules per cell [33]). In bacteria, catalase overexpression has been

reported to affect the requirement for iron [50]. Therefore, we reasoned that the fitness defect

conferred by high basal catalase levels in C. albicans might be mediated by an elevated cellular

demand for iron. Hence, we tested whether iron supplementation can suppress this fitness

defect. Growth of tetON-CAT1 cells was measured in YPD containing doxycycline supple-

mented with different concentrations of ferric ions (Fig 9B). These data indicate that the fitness

defect caused by ectopic catalase expression can be completely suppressed by iron supplemen-

tation. This suppression was due to the improved growth of doxycycline-treated tetON-CAT1
cells in the presence of iron (S5A Fig). We also showed that iron supplementation suppresses

the reduced fitness of doxycycline-treated tetON-CAT1 cells in direct competition experiments

with wild type (CAT1) cells (S5B Fig).

These observations suggested that high basal catalase expression increases the cellular

demand for iron in C. albicans. To test this further we examined the impact of ectopic catalase

expression upon key genes involved in iron assimilation and homeostasis: CFL5 (encoding a

ferric reductase that is induced in low iron), FET3 (encoding a copper oxidase that is required

for growth in low iron), FRP1 (encoding a ferric reductase that is induced by iron chelation)

and FTR1 (encoding a high-affinity iron permease that is required for growth in low iron). All

of these genes are targets of the iron-responsive transcriptional activator Sef1 [15]. CFL5,

FET3, FRP1 and FTR1 transcript levels were measured relative to the ACT1 mRNA internal

control in tetON-CAT1 cells grown in the presence and absence of doxycycline. Their levels

were then normalised against those in doxycycline-treated wild type (CAT1) cells to exclude

any potential effects of this treatment on these transcripts [51]. All four iron-responsive tran-

scripts were strongly induced following tetON-CAT1 induction (Fig 9C). Taken together, the

data indicate that high basal catalase levels increase the requirement for iron in C. albicans.

Discussion

This study has important implications for the impact of the key peroxide detoxifying enzyme,

catalase, upon the stress resistance and virulence of the major fungal pathogen, C. albicans.
Firstly, our analyses of new cat1Δ null mutants, in which potential URA3 position effects have

been circumvented [49], have reinforced the view that catalase is essential for normal levels of

oxidative and combinatorial stress resistance in C. albicans (Figs 2 & 8). They also show that

catalase contributes to the resistance of this pathogenic fungus against neutrophil killing (Fig

7). However, our most surprising finding was that, in contrast to the generally held view

[23,40], catalase is not essential for the virulence of C. albicans, at least in models of dissemi-

nated candidiasis. This unexpected finding is supported by virulence assays in both short term

and long term murine models of systemic infection, and in an accepted invertebrate model of

systemic infection (Fig 6). This view is further reinforced by our in vivo competition experi-

ments, in which the cat1Δ null mutant competed effectively against wild-type and catalase

overexpressing strains for colonisation of the kidney, liver, spleen and brain (Fig 5). We sug-

gest that the attenuated virulence of the cat1Δmutants reported previously [23,40] might be

explained by URA3 position effects in these strains [49].

Why might catalase be important for oxidative stress resistance and yet apparently not

required for systemic infection? The sensitivity of cat1Δ cells to neutrophil killing (Fig 7) does

indicate that protection against peroxide is required in certain contexts in vivo. Therefore, this

lack of cat1Δ virulence defect probably reflects the multifactorial nature of virulence pheno-

types, as well as the nature of the systemic infection models often used to examine virulence.

In these models sufficient fungal doses are applied to overcome immediate clearance by
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circulating phagocytes [47]. Furthermore, few of the fungal cells colonising the kidney appear

to be exposed to oxidative stress [31].

Secondly, our data indicate that high basal levels of catalase promote the resistance of C.

albicans to peroxide and combinatorial stress (Fig 2). These data reaffirm previous reports that

elevated catalase expression promotes peroxide resistance [28,36]. Significantly, our data indi-

cate that this phenotype is dependent on high basal levels of catalase at the point of stress

imposition, rather than CAT1 induction in response to stress. Three independent observations

support this view. (A) tetON-CAT1 cells are only protected against peroxide or combinatorial

stress if these cells are pre-treated with doxycycline, not if doxycycline is only provided at the

same time as the stress (Fig 2). (B) Clinical isolates that are relatively resistant to oxidative

stress tend to express catalase at relatively high levels (Fig 3). (C) Unstressed C. albicans cell

populations display heterogeneity in Cat1-GFP levels, and those cells that express more

Cat1-GFP are less susceptible to killing by oxidative stress (Fig 4). Hydrogen peroxide is nor-

mally rapidly detoxified by wild-type C. albicans cells (within 60 minutes) in a catalase-depen-

dent fashion [28]. Elevated basal levels of catalase presumably enhance cellular protection by

accelerating the clearance of this reactive oxygen species. The heterogeneity in catalase expres-

sion within C. albicans populations, which might arise via stochastic differences between cells

[52–54], appears to account, in large part, for the ability of a subset of C. albicans cells to sur-

vive an acute oxidative stress. This would appear to represent the first example in C. albicans of

the kind of “bet-hedging” strategies that have been observed in bacterial and S. cerevisiae popu-

lations [55,56]. Furthermore, these observations are entirely consistent with the well-estab-

lished observation that an adaptive response to a small dose of a particular stress can

transiently endow yeasts with resistance to a subsequent acute dose of the same stress by

inducing the expression of key stress protective functions. This observation has been reported

for heat shock, osmotic and oxidative stress in S. cerevisiae for example [57,58], and has been

extended to other yeasts including C. albicans [43,59,60].

Thirdly, our data provide key insights into the impact of catalase levels on the virulence of

C. albicans. In our hands, direct competition assays suggested that elevated catalase levels

might affect C. albicans colonisation of the kidney and brain (Fig 5). This is consistent with a

parallel study which reported that catalase overexpression attenuates the virulence of C. albi-
cans [36]. Roman and co-workers described this as “a most unexpected result” given that cata-

lase overexpression enhances oxidative stress resistance. They speculate that this might have

arisen via some alteration in fitness, which they were unable to detect in vitro, but which might

interfere with activation of the Hog1 and Mpk1 MAP kinases [36]. In this study we show

clearly in direct competition assays that elevated basal catalase levels attenuate the fitness of C.

albicans in the absence of stress (Fig 8). We conclude that catalase overexpression confers a

selective disadvantage in C. albicans in the absence of stress.

Fourthly, we have identified a major cause of this fitness defect. High basal catalase levels

increase the cellular requirement for iron in C. albicans. We present two key observations that

support this. (i) The fitness defect is suppressed by iron supplementation (Fig 9B and S4 Fig).

This effect, which has also been observed in bacteria [50], is probably mediated by the deple-

tion of intracellular iron through high level expression of an abundant heme-requiring

enzyme. (ii) Ectopic catalase expression induces the expression of iron-responsive genes that

play key roles in iron scavenging and homeostasis: e.g. CFL5, FET3, FRP1 and FTR1 (Fig 9C).

Therefore, the demand for iron and catalase expression are intimately linked in C. albicans.
Both modulate the accumulation of intracellular ROS. Iron stimulates CAT1 expression in C.

albicans [16,61]. This increase in catalase affects iron demand and homeostasis (Fig 9B & 9C)

and also enhances the detoxification of hydrogen peroxide, thereby decreasing the production

of highly toxic hydroxyl radicals via the iron-dependent Fenton reaction [11]. Parallels exist in
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S. cerevisiae, where heterogeneity in superoxide dismutase (SOD1) gene expression affects the

fitness of individual cells in the presence of copper [62].

The impact of catalase levels on the requirement for iron is likely to have a profound effect

on C. albicans pathogenicity because iron homeostasis is tightly regulated during infection

[10,15] and efficient iron assimilation is essential for colonisation of iron limiting niches in the

mammalian host [7]. It would appear significant, therefore, that we observed reduced coloni-

sation for catalase overexpressing cells in the kidney and brain, but not in the iron-rich liver

and spleen (Fig 5).

In conclusion, elevated basal catalase levels appear to be a double-edged sword whereby

they protect C. albicans against oxidative and combinatorial stresses imposed by the host while

increasing the pathogen’s demand for an essential, but limiting micronutrient in the host. This

double-edged sword would appear to account for the apparently counterintuitive observation

that catalase overexpression in C. albicans decreases host colonisation in some tissues [36]. It

also helps to explain why C. albicans has not evolved to express the high levels of catalase that

would protect it from phagocytic killing [28,36].

Materials and methods

Strains, growth conditions and treatments

The strains used in this study are listed in S1 Table. C. albicans was routinely grown at 30˚C,

200 rpm in YPD (2% dextrose, 2% mycological peptone, 1% yeast extract) containing 20 μg/ml

doxycycline (Dox) when required. On the day of an experiment, overnight cultures were

diluted into fresh YPD to an OD600 of 0.2, and incubated at 30˚C at 200 rpm until they reached

an OD600 of 0.8, whereupon they were subjected to the appropriate treatment and analysed.

Plates were incubated for 48 h at 30˚C.

Osmotic stress was applied with 1 M NaCl and oxidative stress was applied with H2O2 at

the specified concentration. Combinatorial stress was imposed using 1 M NaCl plus 5 mM

H2O2 as described previously [28,63].

Robotic plating was performed using a Singer RoToR robot (Singer Instruments, Watchet,

UK). Fitness was assayed by monitoring growth in microtitre plates at OD600 every 20 min for

48 h, and data from independent triplicate experiments were analysed.

Strain construction

The CAT1 locus was deleted from the C. albicans strain CEC2908 using the Clox system as pre-

viously described [64] (S2 Table), thereby generating the homozygous cat1Δ null mutant

Ca2037 (S1 Table). Using published procedures [38], the C. albicans CAT1 ORF was then

cloned into barcoded CIp10-PTET-GTw plasmids and these plasmids were integrated at the

RPS1 locus in C. albicans Ca2037 (S1 Table) to generate the strains Ca2038, Ca2040, Ca2041,

Ca2043, Ca2044, and Ca2046 (S1 Table). Empty barcoded CIp10-PTET-GTw plasmids were

transformed into C. albicans CEC2908 to create strains Ca2084, Ca2085 and Ca2087 (S1

Table). Empty barcoded CIp10-PTET-GTw plasmids were also transformed into C. albicans
Ca2037 to generate strains Ca2089, Ca2092 and Ca2130 (S1 Table). This created an isogenic

set of nine barcoded wild-type (CAT1), null (cat1Δ) and tetON-CAT1 strains. Their 25 bp bar-

codes are described in S3 Table.

The CAT1-GFP/CAT1-GFP strain Ca2213 (S1 Table) was constructed by PCR amplifying

CAT1-GFP-URA3 and CAT1-GFP-HIS1 cassettes (S2 Table) [65] and integrating these sequen-

tially at the 3’-end of the CAT1 alleles in C. albicans RM1000 (S3 Table).
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Barcode sequencing

To quantify the relative concentration of each barcoded strain in mixed populations of

tetON strains, genomic DNA was prepared from the populations by phenol: chloroform

extraction method [66]. A 60 bp region carrying the barcodes (S3 Table) was amplified with

common primers (S2 Table) using the KAPA HiFi HotStart ReadyMix PCR Kit (KAPA Bio-

systems, London, UK) and ethanol precipitated. These purified amplicons, which contained

the Illumina overhang, were then indexed with Illumina Nextera XT v2 indices (Illumina,

Inc., San Diego, CA, USA). Briefly, the dual indexed Illumina libraries were prepared with

5 μl of DNA, 5 μl each of i5 and i7 index primer, 25 μl KAPA HiFi HotStart ReadyMix, and

10 μl of PCR grade water and PCR amplified (95˚C for 3 min; 8 cycles of 95˚C for 30 sec,

55˚C for 30 sec and 72˚C for 30 sec; 72˚C for 5 min; and a final hold at 4˚C) on a Life Tech-

nologies Veriti thermal cycler (Thermo Fisher Scientific, Waltham, MA, USA). The libraries

were purified and size selected using a double size selection with SPRIselect (Beckman Coul-

ter, Brea, CA, USA) with a SPRIselect to sample ratio of 0.85x followed by 1.0x. Libraries

were quantified using the Thermo Fisher Scientific Quant-iT dsDNA High Sensitivity Assay

and the fluorescence measured on a BMG Labtech FLUOstar Omega microplate reader

(BMG Labtech GmbH, Ortenberg, DE). The quality and size (bp) of the libraries were ana-

lysed on an Agilent 2200 TapeStation with High Sensitivity D1000 ScreenTapes (Agilent

Technologies, Santa Clara, CA, USA). The libraries were pooled in equimolar amounts and

sequenced on an Illumina MiSeq Sequencing System using MiSeq v3 chemistry with 76 bp

paired-end reads. Base calling and fastq output files were generated with RTA v1.18.54 soft-

ware on the MiSeq instrument.

To analyse the barseq data, a wrapper script was coded over the open source BBDuk

tool (BBMap suite version 35.43 [67]). The wrapper visits each sample directory and runs

the 3rd-party bbduk.sh script over each of the compressed read 1 and read 2 FASTQ files,

generating corresponding FASTQ output files for the “matched” and “not-matched” reads

for each barcode. The wrapper then computes the total number of reads for each barcode

and its abundance relative to the total number of barcode reads. The barseq data are pre-

sented as the relative abundance of a barcode normalised to its starting concentration in the

population. Means and standard deviations from three replicate measurements are

presented.

Transcript levels

RNA was extracted from C. albicans cells using the Zymo Research YesStar RNA Kit (Cam-

bridge Bioscience, Cambridge, UK). cDNA was prepared using SuperScript II reverse tran-

scriptase from Invitrogen (Fisher Scientific, Loughborough, UK), and qRT-PCR was

performed with a Roche Light Cycler 480 II using the primers described in S2 Table. Tran-

script levels were measured in triplicate, expressed relative to the internal ACT1 mRNA control

[28], and then normalised against the levels in doxycycline-treated wild type (CAT1) cells to

exclude potential effects of doxycycline on these transcripts.

Catalase assays

C. albicans cells grown in YPD containing 0 or 20 μg/μl Dox were subjected to no stress

or one hour of 5 mM H2O2, protein extracts prepared, and catalase activities measured

using the BioAssay Systems EnzyChrom catalase assay kit (Universal Biologicals Ltd., Cam-

bridge, UK), according to the manufacturer’s instructions [28]. Assays were performed in

triplicate.
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Cat1-GFP expression

CAT1-GFP and ACT1-GFP expression in C. albicans cell populations was examined and cell

subsets isolated using the BD Influx cell sorter. Heterogeneity in C. albicans cell size was first

analysed (Forward Scatter (FSC), Side Scatter (SSC)) and cells of similar size selected (S2 & S3

Figs). Cells were then sorted on the basis of their GFP expression level (S2B Fig). Cells

(n = 200) that expressed GFP at relatively low levels and 200 cells expressing GFP at high levels

were plated onto YPD containing various concentrations of H2O2. These two populations

sorted were separated to 99% purity. Control experiments were performed to confirm cell via-

bility by propidium iodide staining (2 μg/ml). Data were analysed using BD FACS software

and Flowjo software version 10.0.8.

CAT1-GFP cells were visualized using a DeltaVision Core microscope (Applied Precision,

Issaquah, WA). Western blotting was performed as described previously [68].

Cell viability and ROS accumulation

Cell viability was assayed by measuring colony forming units (CFU) on YPD plates and by pro-

pidium iodide (PI) staining and flow cytometry on a BD LSR II, as described previously [28,63].

Intracellular ROS accumulation was measured by staining the cells with 20 μM dihydroethi-

dium for one hour in darkness, at 30˚C and 200 rpm, and then analysed using a BD LSR II

flow cytometer. Data were analysed using Flowjo software version 10.0.8.

Neutrophil killing assays

Blood from healthy donors was obtained according to the protocol approved by the University

of Aberdeen College Ethics Review Board (Application number—CERB/2012/11/676). Poly-

morphonuclear (PMN) cells, or neutrophils, were isolated from this blood using Histopaque-

1119 and Histopaque-1077 (Sigma Aldrich) as described previously [28]. C. albicans cells pre-

grown with 20 μg/ml Dox were incubated with PMNs (1:10 ratio of yeasts to neutrophils) for 2

h in RPMI 1640 containing 10% heat inactivated foetal bovine serum. After incubation the

PMNs were treated with 0.25% sodium docecyl sulphate and DNase I and yeast survival deter-

mined by assaying CFU. Data from eight healthy donors are presented with their means and

standard deviation.

Virulence assays

The virulence of C. albicans wild type and cat1Δ cells were measured in a short term murine

model of systemic candidiasis [47]. Strains were pre-grown in YPD and injected intravenously

(4 x 104 CFU/g body weight) into the lateral tail vein of 6–10 week old female BALB/c mice

(Envigo, UK). Mice were randomly assigned to cages (n = 6 per group) and inocula were ran-

domly assigned to cages. Infections were allowed to proceed for 4 days whereupon the mice

were humanely culled by cervical dislocation and fungal burdens (CFU/g) determined in the

kidneys. Fungal burden and weight loss were used as measures of virulence [47].

The virulence of C. albicans wild type and cat1Δ strains were also tested in a longer term

mouse infection model. Again, C. albicans cells were injected into the tail veins of 6–10 week

old female BALB/c mice (3 x 104 CFU/g body weight). Once again, the mice were randomly

assigned to cages (n = 8 per group) and inocula were assigned randomly to cages. The mice

were monitored and weighed daily, and were humanely culled when they had lost 20% of their

body weight and death recorded as having occurred on the following day. Experiments were

continued for a maximum of 14 days, when all surviving mice were culled and analysed. The

data are presented as Kaplan-Meier survival curves (log rank tests).
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To directly compare the colonisation of C. albicans tetON strains in the mouse model of sys-

temic candidiasis, the strains were pre-grown in YPD containing 0 or 20 μg/ml doxycycline

and injected into the tail vein of 6–10 week old female BALB/c mice (4 x104 CFU/g body

weight: n = 6 mice per group). Mice were gavaged with 100 μl of 0 or 40 mg/ml doxycycline.

Infections were allowed to proceed for up to 4 days. Mice were culled, their kidneys, spleen,

liver and brain removed and homogenized in 500 μl saline, and the entire sample from each

organ plated onto YPD. The fungal colonies from each individual organ were then pooled, and

genomic DNA prepared for barseq (above).

The virulence of C. albicans strains was also evaluated using the invertebrate Galleria mello-
nella infection model [69]. For each C. albicans strain, 105 cells were injected into 20 Galleria
larvae (6th instar: BioSystems Technology, Exeter, UK). Sterile PBS was injected into control

larvae. Survival was monitored for 5 days at 37˚C, represented using Kaplan-Meier curves, and

analysed using log rank tests.

Ethics statement

All animal experiments were conducted in compliance with United Kingdom Home Office

licenses for research on animals, and were approved by the University of Aberdeen Ethical

Review Committee (project license number PPL 70/8583). Animal experiments were mini-

mised, and all animal experimentation was performed using approaches that minimised ani-

mal suffering and maximised our concordance with EU Directive 2010/63/EU.

Power analyses based on data generated in previous experiments were applied to estimate

the minimum number of animals per group required to achieve statistically robust differences

(P<0.05). The power analyses to determine group size for the short term systemic infection

model were based on the variation in fungal burdens between animals, whereas those for the

long term model were based upon mean survival times. Animals were monitored at least twice

daily for signs of distress, which was minimised by expert handling. Euthanasia was performed

humanely by cervical dislocation when animals showed signs of progressive illness (e.g. ruffled

coat, hunched posture, unwillingness to move and 20% loss of initial body weight). During

these studies there were no unexpected deaths. Analgesia and anaesthesia were not required in

this study.

Statistical analysis

Statistical analyses were performed in GraphPad Prism 5 and IBM SPSS Statistics (v24.0.0).

Two tailed Mann-Whitney U analysis was used to test the statistical difference between two

sets of data with a non-parametric distribution. Associations between growth parameters, such

as doubling time, lag phase or propidium iodide staining, were determined by one-way and

two-way ANOVA and Dunnett post-hoc t-tests. Unstressed samples were used as controls and

the values of other samples were compared against these controls. The following p-values were

considered: � p< 0.05; �� p<0.01; ��� p< 0.001; ���� p< 0.0001.

Supporting information

S1 Fig. Stress resistance of C. albicans tetON-CAT1 and ACT1-CAT1 strains. C. albicans cul-

tures were pre-grown in YPD with 20 μM doxycycline, dilutions spotted onto YPD plates con-

taining H2O2 and/or NaCl stresses at the specified concentrations, and photographed after 24

h growth at 30˚C: CAT1/CAT1, Ca674; CAT1/cat1Δ, Ca1862; cat1Δ/cat1Δ, Ca1864; ACT1p-
CAT1, Ca2031; cat1Δ tetON-CAT1, Ca2038; CAT1 tetON-empty, Ca2084; cat1Δ tetON-empty,

Ca2089 (S1 Table).

(PDF)
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S2 Fig. Gating strategy for the analysis of C. albicans Cat1-GFP expressing cells. Exponen-

tial populations of C. albicans CAT1-GFP cells (Ca2213: S1 Table) growing in YPD at 30˚C

were subjected to fluorescence activated cell sorting. (A) First, singlets were selected and dou-

blets excluded by analysing the FSC signals height versus area. (B) Next, cells of similar size

were selected by analysing the FSC versus SSC. (C) This cell population was analysed for their

GFP fluorescence intensity (530–540 nm) by plotting GFP against a dump channel (610-

620nm). CAT1-GFP cells were compared with control cells with no GFP (Ca674). CAT1-GFP
cells with relatively low levels of Cat1-GFP (pink), and cells with relatively high Cat1-GFP lev-

els (cyan) were sorted using the single cell modus of a BD Influx sorter. (D) FACS sorting of C.

albicans cells expressing relatively low or high levels of Cat1-GFP in the absence of stress

(same figure as Fig 4D). (E) These FACS sorted cells (n = 200 per group) were plated onto

YPD containing different concentrations of H2O2, and percentage survival (CFUs) calculated

relative to the no stress control (same figure as Fig 4E). Means and standard deviations from

three replicates are presented: �, p� 0.05; ��, p� 0.01; ���, p� 0.001; ����, p� 0.0001.

(PDF)

S3 Fig. Analysis of C. albicans ACT1-GFP expressing cells. Exponential C. albicans
ACT1-GFP cells (Ca230: S1 Table) were grown in the same way as for S2 Fig, and then sub-

jected to fluorescence activated cell sorting, as before. (A) Singlets were selected and doublets

excluded by analysing the FSC signals height versus area. (B) Cells of similar size were then

selected by analysing the FSC versus SSC. (C) These cells were analysed for their GFP fluores-

cence intensity as described in S2 Fig. ACT1-GFP cells with relatively low (pink) and high GFP

levels (cyan) were sorted using the single cell modus of a BD Influx sorter. (D) FACS sorting of

C. albicans cells expressing relatively low or high ACT1-GFP levels in the absence of stress. (E)

These FACS sorted cells (n = 200 per group) were plated onto YPD containing different con-

centrations of H2O2, and percentage survival (CFUs) calculated relative to the no stress con-

trol.

(PDF)

S4 Fig. Loss of phenotype in some tetON-CAT1 isolates. TetON-CAT1 isolates 1, 4 and 10

(Ca2038, Ca2041, Ca2044: S1 Table) behaved differently in vivo: isolate 1 displayed decreased

colonisation in certain tissues (Fig 5), whereas isolates 4 and 10 did not (see text). Therefore,

we tested whether isolates 4 and 10 had lost their phenotype over time. To achieve this we

compared the “old” isolates 1, 4 and 10 (Ca2038, Ca2041, Ca2044) with “new” isolates

(Ca2040, Ca2043, Ca2046). (Throughout this study, all experiments were performed on strains

that had been freshly plated from frozen -80˚C stocks. “Old” isolates were taken routinely

from the same -80˚C tubes over a twelve month period. These stocks were not thawed: small

volumes were chipped from their frozen surface and plated. Nevertheless, the temperature of

these tubes must have increased transiently from -80˚C at regular intervals over this period. In

contrast, “new” isolates were from identical -80˚C stocks that were not touched over this

period.) (A) As described in Fig 1, catalase activities were measured in C. albicans cells grown

in YPD containing 0 or 20 μM doxycycline (- or + Dox, respectively): cat1Δ, Ca2089; wild-

type, WT, Ca2084; blue, old tetON-CAT1 isolates, Ca2038, Ca2041, Ca2044; red, new tetON-
CAT1 isolates, Ca2040, Ca2043, Ca2046 (S1 Table). Wild-type and cat1Δ cultures were exposed

to 0 or 5 mM H2O2 for one hour before analysis. Means and standard deviations from three

independent replicate experiments are shown, and the data were analysed using one-way

ANOVA with Tukey’s post-hoc test: �, p� 0.05; ��, p� 0.01; ���, p� 0.001; ����, p� 0.0001.

(B) The fitness of these old and new tetON-CAT1 strains was compared in vitro by examining

their growth (biomass formation; final OD600) on YPD containing or lacking doxycycline (no

stress). All of the isolates displayed similar growth in the absence of doxycycline, and the wild-
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type (CAT1) controls remained unaffected by doxycycline. The presence of doxycycline led to

decreased growth for all of the new C. albicans tetON-CAT1 strains and for the old tetON-
CAT1-1 strain (Fig S4B). No significant effect of doxycycline on growth and fitness was

observed for the old C. albicans tetON-CAT1 isolates 4 and 10. This correlated with a reduction

in catalase levels in these isolates over time (Fig S4A). These data indicate that the old isolates 4

and 10 had indeed lost their in vitro fitness defect over time, thereby explaining their lack of

phenotype in vivo.

(PDF)

S5 Fig. Iron suppresses the fitness defect of doxycycline-treated tetON-CAT1 C. albicans
cells. (A) Iron supplementation restores the growth of doxycycline-treated tetON-CAT1 C.

albicans cells to normal, while reducing the growth of wild type and cat1Δ null cells. The

growth of new C. albicans isolates was monitored (OD600) in YPD containing 0 or 20 μM

doxycycline plus different concentrations of FeCl3: black circles, wild type CAT1-21 (Ca2084)

cells plus doxycycline; red circles, null cat1Δ-28 (Ca2089) cells plus doxycycline; pale open

circles, tetON-CAT1-1 (Ca2040) cells with no doxycycline; blue circles, tetON-CAT1-1
(Ca2040) cells with plus doxycycline (S1 Table). (B) Iron supplementation restores the ability

of doxycycline-treated tetON-CAT1 cells to compete with wild type C. albicans cells in mixed

cultures. Wild type (Ca2084) and tetON-CAT1-1 (Ca2040) cells were mixed in roughly equal

proportions and grown for 12 h in YPD containing 20 μM doxycycline plus 0 or 500 μM

FeCl3. The proportion of each cell type at the end of these competition experiments (% colo-

nies) was determined by replica plating single colonies onto YPD plates lacking or containing

combinatorial stress (1 M NaCl plus 5 mM H2O2): wild type cells are sensitive whilst tetON-
CAT1 cells resistant to this stress. Means and standard deviations from three replicates are

presented: �, p� 0.05; ��, p� 0.01.

(PDF)

S1 Table. Strains used in this study.

(PDF)

S2 Table. Primers used in this study.

(PDF)

S3 Table. Barcodes used in this study.

(PDF)
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