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Abstract 21 

The rapid detection of pathogenic strains in food products is essential for the prevention of 22 

disease outbreaks. It has already been demonstrated that whole metagenome shotgun 23 

sequencing can be used to detect pathogens in food but, until recently, strain-level detection 24 

of pathogens has relied on whole metagenome assembly, which is a computationally 25 

demanding process. Here, we demonstrate that three short read alignment-based methods, 26 

MetaMLST, PanPhlAn, and StrainPhlAn, can accurately, and rapidly, identify pathogenic 27 

strains in spinach metagenomes which were intentionally spiked with Shiga toxin-producing 28 

Escherichia coli in a previous study. Subsequently, we employ the methods, in combination 29 

with other metagenomics approaches, to assess the safety of nunu, a traditional Ghanaian 30 

fermented milk product which is produced by the spontaneous fermentation of raw cow milk. 31 

We show that nunu samples are frequently contaminated with bacteria associated with the 32 

bovine gut, and worryingly, we detect putatively pathogenic E. coli and Klebsiella 33 

pneumoniae strains in a subset of nunu samples. Ultimately, our work establishes that short 34 

read alignment-based bioinformatics approaches are suitable food safety tools, and we 35 

describe a real-life example of their utilisation. 36 

 37 

Importance 38 

Foodborne pathogens are responsible for millions of illnesses, annually. Here, we 39 

demonstrate that short read alignment-based bioinformatics tools can accurately, and rapidly, 40 

detect pathogenic strains in food products from shotgun metagenomics data. The methods 41 

used here are considerably faster than both traditional culturing methods and alternative 42 

bioinformatics approaches that rely on metagenome assembly, and thus they can potentially 43 

be used for more high-throughput food safety testing. Overall, our results suggest that whole 44 

metagenome sequencing can be used as a practical food safety tool to prevent diseases or link 45 

outbreaks to specific food products. 46 

 47 

Introduction 48 

In recent years, high-throughput sequencing (HTS) has become an important tool in food 49 

microbiology (1). HTS enables in-depth characterisation of food-related microbial isolates, 50 



via whole genome sequencing (WGS), and it facilitates culture-independent analysis of 51 

mixed microbial communities in foods, via metagenomic sequencing. 52 

WGS has provided invaluable insights into the genetics of starter cultures (2, 3), and it is 53 

routinely used in epidemiology to identify outbreak-associated foodborne pathogens isolated 54 

from clinical samples, by comparing the single nucleotide polymorphism (SNP) profiles of 55 

outbreak strain genomes versus non-outbreak strain genomes (4-6). Metagenomic sequencing 56 

enables the elucidation of the roles of microorganisms during food production (7-9), and it 57 

can be used to track microorganisms of interest through the food production chain, as 58 

illustrated by Yang et al. (10), who used whole metagenome shotgun sequencing to track 59 

pathogenic species in the beef production chain. Indeed, metagenomic sequencing can be 60 

used to detect pathogens in foods to  monitor outbreaks of foodborne illnesses (11), but few 61 

studies have done so, because of the limited taxonomic resolution achievable using these 62 

methods. Typically, 16S rRNA gene sequencing provides genus-level taxonomic resolution 63 

(12), and although sub-genus-level classification is achievable using species-classifiers (13) 64 

or oligotyping (14, 15), these methods cannot accurately discriminate between strains. 65 

Similarly, metagenome sequence classification tools usually provide species-level resolution 66 

(16). However, strain-level resolution is necessary for the accurate identification of pathogens 67 

in food products (17). Leonard et al. successfully achieved strain-level resolution of Shiga 68 

toxin producing Escherichia coli strains in spinach samples using metagenome shotgun 69 

sequencing (18). However, the bioinformatics methods used in that study were based on 70 

metagenome assembly, which is a computationally demanding process (19, 20), and thus 71 

alternative strain-level identification methods are needed. 72 

Since 2016, several short read alignment based software applications, including MetaMLST 73 

(20), StrainPhlAn (21), and PanPhlAn (19), have been released that can achieve strain-level 74 

characterisation of microorganisms from metagenome shotgun sequencing data. All three 75 

applications are considerably faster than metagenome assembly based methods. To date, 76 

these programs have not been employed to detect pathogens in food products, but there is 77 

strong evidence to suggest that they have considerable potential for this purpose: MetaMLST 78 

accurately predicted that the strain responsible for the 2011 German E. coli outbreak 79 

belonged to E. coli ST678 (20), and similarly, PanPhlAn accurately predicted that the strain 80 

was a Shiga toxin producer (19), based on the analysis of the gut metagenomes of infected 81 

patients (22). StrainPhlAn has so far not been used for epidemiological purposes, but a recent 82 



study demonstrated that it can be used to predict the phylogenetic relatedness of bacterial 83 

strains from different samples (21). 84 

MetaMLST aligns sequencing reads against a housekeeping gene database to identify 85 

sequence types present in metagenomic samples based on multilocus sequence typing 86 

(MLST). The MetaMLST database contains all currently known sequence types, but it can be 87 

updated as required to include newly identified sequence types. MetaMLST does not require 88 

any prior knowledge of the microbial composition of sample and it can simultaneously detect 89 

different species’ sequence types. PanPhlAn aligns sequencing reads against a species 90 

pangenome database, constructed from reference genomes, to functionally characterise 91 

strains present in metagenomic samples. PanPhlAn allows the user to generate customisable 92 

pangenome databases for any species. StrainPhlAn extracts species specific marker genes 93 

from sequencing reads and it aligns the markers against reference genomes to identify the 94 

strains present in metagenomic samples. StrainPhlAn requires output from MetaPhlAn2, and 95 

both programs use the same database. 96 

In this study, we describe the characterisation of nunu, a traditional Ghanaian fermented milk 97 

product (FMP), at the genus, species, and strain-levels, using a combination of 16S rRNA 98 

gene sequencing and whole metagenome shotgun sequencing. Nunu is produced by the 99 

spontaneous fermentation of raw cow milk in calabashes or plastic or metal containers under 100 

ambient conditions, and it is usually consumed after 24-36 hours (23). At present, little is 101 

known about nunu’s microbiology, relative to other FMPs, like kefir or yoghurt (24). 102 

Previously, a number of potentially pathogenic bacteria, including Enterobacter, Escherichia 103 

and Klebsiella, were detected in nunu by culture based methods (25). Here, we carry out the 104 

first culture-independent analysis of a number of nunu samples. In addition to detecting the 105 

presence of a variety of lactic acid bacteria (LAB) typical of fermented dairy products, 106 

MetaMLST, PanPhlAn and StrainPhlAn all indicated the presence of pathogenic E. coli and 107 

Klebsiella pneumoniae in a subset of the samples. We also demonstrate that these tools can 108 

accurately predict the presence of pathogenic strains in foods by testing them on food 109 

metagenomes which were spiked with Shiga toxin producing E. coli. Ultimately, our work 110 

establishes that short read alignment based methods can be used for the detection of 111 

pathogens in foods. 112 

 113 

Results 114 



16S rRNA gene sequencing of nunu samples 115 

Nunu samples were collected from producers with hygiene practice training (n=5) and 116 

producers without hygiene practice training (n=5), respectively. 16S rRNA gene sequencing 117 

analysis revealed that there were no significant differences in the alpha-diversity of nunu 118 

samples from trained or untrained producers (Figure S1a), although there was a clear 119 

separation in the beta-diversity of the two groups (Figure S1b). 120 

The 16S rRNA data was also analysed to determine bacterial composition (Figure 1a). At the 121 

family level, all of the samples were dominated by Lactobacillales, and at the genus-level, 122 

most samples were dominated by Streptococcus, although the sample 1t2am was dominated 123 

by Lactococcus. Enterococcus was detected in 4/10 samples (1 trained and 3 untrained) at 124 

≥3% relative abundance, and it was highest in the sample 2u6am, where it was present at 125 

19% relative abundance. In addition, Staphylococcus was detected in all 10 samples, although 126 

its abundance was ≤1% in each case. The detection of staphylococci was consistent with a 127 

corresponding culture-dependent analysis of the samples (supplemental material).  128 

Importantly, Enterobacteriales were also prevalent. Enterobacter was detected in 9/10 129 

samples (4 samples from trained producers and 5 from untrained producers) at ≥1% relative 130 

abundance, and it was highest in the sample 2u8am, where it was present at 23% relative 131 

abundance. Escherichia-Shigella was detected in 8/10 samples (4 trained and 4 untrained) at 132 

≥1% relative abundance, and it was highest in the sample 1t7am, where it was present at 17% 133 

relative abundance; this finding was again consistent with culture-dependent analysis of the 134 

samples (supplemental material). 135 

The Kruskal-Wallis test indicated that there were significant differences in the relative 136 

abundances of Macrococcus (p=0.01), which was higher in samples from trained producers, 137 

and Streptococcus (p=0.02), which was higher in samples from untrained producers (Figure 138 

1b). No other genera were significantly different. 139 

 140 

Species-level compositional analysis of nunu samples as revealed by shotgun sequencing 141 

MetaPhlAn2-based analysis of shotgun metagenomic data provided results that were 142 

generally consistent with those derived from amplicon sequencing. 11 species accounted for 143 

>90% of the microbial composition of every sample (Figure 2). At the species-level, most 144 

samples were dominated by Streptococcus infantarius, although sample 1t2am was 145 



dominated by Lactococcus lactis. Enterococcus faecium was detected in 4/10 samples (2 146 

trained and 2 untrained) at ≥1% relative abundance, and it was highest in the sample 1t2am, 147 

where it was present at 22% relative abundance. High abundances of Enterobacteriales were 148 

again apparent. Enterobacter cloacae were detected in the sample 1t8am, where it was 149 

present at 1% relative abundance. Escherichia coli was detected in 2/10 samples (2 trained) at 150 

≥7% relative abundance, and it was highest in 1t7am, where it was present at 13% relative 151 

abundance. Klebsiella pneumoniae was detected in 7/10 samples (4 trained and 3 untrained) 152 

at ≥3% relative abundance, and it was highest in 1t8am, where it was present at 71% relative 153 

abundance. In contrast, Klebsiella was not detected by amplicon sequencing, and this 154 

discrepancy might be due to similarities in the 16S rRNA genes from these genera(42). 155 

The Kruskal-Wallis test indicated that there were significant differences in the relative 156 

abundances of Macrococcus caseolyticus (p=0.01), which was higher in samples from trained 157 

producers, and Streptococcus infantarius (p=0.01), which was higher in samples from 158 

untrained producers (Figure S2). No other species were significantly different. 159 

 160 

Investigation of the functional potential of the nunu microbiota 161 

SUPER-FOCUS was used to provide an overview of the functional potential of the nunu 162 

metagenome. As expected, a significant proportion of the metagenome was assigned to 163 

housekeeping functions like carbohydrate metabolism, nucleic acid metabolism, and protein 164 

metabolism (Figure 3). However, SUPER-FOCUS also detected high levels of functions 165 

associated with horizontal gene transfer and virulence in nunu. The level 1 subsystem 166 

“Phages, Prophages, Transposable elements” was present at ≥1% average relative abundance 167 

in both groups, although it was significantly higher in nunu samples from trained producers 168 

(p=0.047). Similarly, the level 1 subsystem “Virulence” was present at ≥3.5% average 169 

relative abundance in both groups.  170 

HUMAnN2 was used to provide more comprehensive insights into the functional potential of 171 

the nunu metagenome. Unsurprisingly, the 25 most abundant genetic pathways were 172 

associated with carbohydrate metabolism, nucleic acid metabolism, and protein metabolism 173 

(Figure 4a). MDS analysis of all the normalised HUMAnN2 pathway abundances suggested 174 

that there were differences in the overall functional potential of the groups (Figure S3), and 175 

we detected significant differences in the relative abundances of some individual pathways 176 

(Table S1). Notably, we observed that histidine degradation pathways were higher in trained 177 



samples (p=0.047) (Figure 4c). Furthermore, histidine decarboxylase genes were only 178 

detected in trained samples. Several other undesirable genetic pathways were detected in both 179 

groups. For example, putrescine biosynthesis pathways and polymyxin resistance genes co-180 

occurred in 7/10 samples (Figure 4c), and these pathways were all attributed to E. cloacae, E. 181 

coli, K. pneumoniae, or a combination of these three species. We detected several other 182 

antibiotic resistance genes, including beta-lactamase genes and methicillin resistance genes, 183 

in both groups (Figure S4). In addition, we found HGT-associated genes, including plasmid 184 

maintenance genes and transposition genes, in both groups. 185 

 186 

Application of strain-level analysis to characterise enteric bacteria in nunu 187 

Leonard et al. previously used metagenomic sequencing to detect E. coli in spinach which 188 

was intentionally spiked with E. coli O157:H7 strain Sakai (11). We downloaded the 189 

metagenomic reads from that study (16 samples) and we subjected them to StrainPhlAn, 190 

MetaMLST and PanPhlAn analysis, to confirm that these tools can accurately detect 191 

pathogens in food samples: MetaMLST was used for multi-locus sequence typing, 192 

StrainPhlAn was used for phylogenetic identification, and PanPhlAn was used for functional 193 

characterisation. MetaMLST accurately detected E. coli ST11 in 7/16 spinach samples (Table 194 

1). StrainPhlAn detected E. coli strains in 5/16 samples and it showed that the E. coli strain in 195 

each of these samples was closely related to E. coli O157:H7 strain Sakai (Figure 5). 196 

PanPhlan detected Shiga toxin genes in 15/16 samples (Table 1) and it indicated that the E. 197 

coli strain in each of these samples was most closely related to E. coli O157:H7 strain Sakai. 198 

Thus, overall, PanPhlAn was the most sensitive method in this instance, since it was able to 199 

detect STEC in almost all of the samples, whereas the other tools detected STEC in less than 200 

half of the samples. In a follow-on study, Leonard et al. spiked spinach with 12 different 201 

Shiga toxin producing E. coli strains, and they detected single strains in 17 samples (18). We 202 

downloaded the metagenomic reads from the 17 samples and ran PanPhlAn, and were able to 203 

identify Shiga toxin genes in all 17 samples (Table S2). 204 

Having established the relative merits of these tools, we subsequently employed all three 205 

strategies to identify the strains of E. coli and K. pneumoniae present in the nunu samples. 206 

With regard to E. coli, MetaMLST detected a novel E. coli sequence type in 1t7am (Table 2).  207 

StrainPhlAn detected 24 E. coli marker genes in the samples and a phylogenetic tree (Figure 208 

6a), which was generated by aligning these markers against 118 E. coli reference genomes 209 



(listed in Table S3), revealed that the E. coli strain in one sample, 1t7am, was closely related 210 

to E. coli O139:H28 E24377A. PanPhlAn detected E. coli strains in two samples: 1t7am and 211 

1t8am. MDS analysis indicated that the strains from the two samples were functionally 212 

distinct from one another. Notably, a ShET2 enterotoxin encoding gene was identified in the 213 

E. coli strain from 1t7am. The same gene was found in E. coli O139:H28 E24377A. With 214 

regard to K. pneumoniae, MetaMLST detected the known sequence type K. pneumoniae 215 

ST39 in the sample 2u3am. Apparently novel K. pneumoniae sequence types were identified 216 

in six other samples (Table 1). StrainPhlAn detected 38 K. pneumoniae marker genes in the 217 

samples and a phylogenetic tree (Figure 6b), which was constructed by aligning these 218 

markers against 40 K. pneumoniae reference genomes (listed in Table S4), revealed that the 219 

K. pneumoniae strains in two samples, 1t8am and 2u3am, were closely related to K. 220 

pneumoniae KpQ3. In contrast, the K. pneumoniae strain in1t7am was most closely related to 221 

K. pneumoniae UCICRE 7. MDS analysis of the PanPhlAn output showed that five of the 222 

detected K. pneumoniae strains were functionally similar to one another (Figure 6c). 223 

However, two of the detected K. pneumoniae strains, in samples 1t6am and 1t7am, appeared 224 

to be functionally distinct from the others. In addition, PanPhlan indicated that sample 1t6am 225 

might have contained multiple strains, since an unusually high number of 5746 K. pneumonia 226 

gene families were detected. A TEM beta-lactamase gene was found in 1t2am using 227 

PanPhlAn and, furthermore, an OXA-48 carbapenemase gene was detected in 2u8am and the 228 

same gene was found in K. pneumoniae KpQ3. 229 

Finally, we compared the time taken to process 10 nunu metagenome samples using the 230 

short-read alignment tools versus the metagenome assembler IDBA-UD (Figure S5). In each 231 

case, we observed that all of the short-read alignment tools were faster than IDBA-UD. It is 232 

important to note that additional bioinformatics analyses (contig binning, SNP analysis, etc.) 233 

are required to achieve strain-level identification from assembled metagenomes, and this 234 

emphasises the superior speed of the short-read alignment tools.  235 

 236 

Discussion 237 

Foodborne pathogens are responsible for millions of cases of disease annually, in the United 238 

States alone (43). High-throughput sequencing can potentially be used to detect pathogenic 239 

strains in food products to prevent the occurrence of disease outbreaks. A recent proof of 240 

concept study demonstrated that whole metagenome shotgun sequencing accurately detected 241 



Shiga toxin producing E. coli (STEC) strains in spiked spinach samples (18). However, that 242 

study used whole metagenome assembly-based approaches to achieve strain-level taxonomic 243 

resolution of the STEC in the samples. Whole metagenome assembly is a computationally 244 

intensive, time-consuming process, as illustrated by Nurk et al., who recently reported that 245 

metagenome assembly can take between 1.5 hours to 6 hours, with a memory footprint 246 

ranging from 7.3 GB to 234.5 GB, to process a single human gut metagenomic sample, 247 

depending on the chosen assembler (44). Thus, the application of more rapid, less intensive 248 

bioinformatic tools for strain detection is desirable. In this study, we demonstrate that the 249 

short read alignment-based programs MetaMLST, StrainPhlAn, and PanPhlAn can accurately 250 

identify pathogens in food products. 251 

We validated the accuracy of each approach by processing spinach metagenome data from 252 

samples that were spiked with the STEC O157:H7 Sakai in a previous study (11).  We 253 

observed that PanPhlAn was the most sensitive approach. Indeed, PanPhlAn was able to 254 

identify STEC in every sample where it was present at >2% relative abundance, whereas the 255 

other approaches worked best when STEC was present at high relative abundances. However, 256 

none of the tools detected E. coli O157:H7 Sakai in every sample tested. The observation of 257 

false negatives highlights that the tools are not entirely accurate. It is likely that increased 258 

sequencing depth and/or longer sequencing read lengths would reduce the false negative rate. 259 

We recommend that these tools be used to supplement data from metagenome sequence 260 

classifiers like MetaPhlAn2, which did detect E. coli in each sample. Therefore, we 261 

subsequently used the strain-level analysis tools in combination with other metagenomic 262 

approaches to assess the safety of nunu, a traditional Ghanaian fermented milk product. 263 

Nunu is produced through the spontaneous fermentation of raw cow milk in calabashes or 264 

other containers for 24-36 hours at ambient temperature (23). The crude nature of the nunu 265 

production process has raised food safety concerns (25). Indeed, several potentially 266 

pathogenic microorganisms were previously detected in nunu samples by microbial culturing 267 

(25). This resulted in some nunu producers receiving hygiene practice training to improve 268 

food safety. However, our work suggests that there is little difference in the prevalence of 269 

pathogens in nunu samples from trained and untrained producers. One reason for this may be 270 

that it is difficult for the nunu producers to adhere to the training recommendations which are 271 

not appropriate to the rural production conditions. During training, the producers were 272 

advised to pasteurise the milk before cooling and adding a starter culture. After incubating for 273 

4-6 hours in a covered container, they were advised to stir the mixture and refrigerate the 274 



product. Lack of access to specific heat control and electricity, as well as the variance from 275 

the traditional method, which does not use a starter culture, are both reasons why the training 276 

is not adhered to. 277 

16S rRNA gene sequencing revealed that the samples were dominated by Lactobacillales. 278 

However, we also detected high abundances of Enterobacteriales, including Enterobacter and 279 

Escherichia, in both groups. Subsequently, whole metagenome shotgun sequencing showed 280 

that most samples were dominated by Streptococcus infantarius, a species which was 281 

previously identified in other African dairy products (45, 46). Concernedly, S. infantarius has 282 

been linked to several human diseases, including bacteraemia (47), endocarditis (48) and 283 

colon cancer (49).  Aside from S. infantarius, two other potentially pathogenic species, 284 

Escherichia coli and Klebsiella pneumoniae, were identified in a subset of samples.  285 

Overall, our findings indicate that nunu samples from trained producers and untrained 286 

producers were contaminated with faecal material. Cattle faeces can be a major source of 287 

bacterial contaminants in raw cow milk (29), and thus, our results are not entirely surprising, 288 

but the remarkable abundance of such microorganisms in nunu is worrying. It had been 289 

hoped that nunu could be used to supplement traditional cereal-based weaning foods to 290 

improve infant nutrition. However, qualitative research among mothers and health workers 291 

highlighted safety concerns, which, as we have shown here, are valid. In particular, the 292 

presence of E. coli and K. pneumoniae in nunu is a concern, and, thus, we employed strain-293 

level metagenomics for the further characterisation of these bacteria. 294 

In terms of E. coli, strain-level analysis indicated that the E. coli strain in one sample was an 295 

enterotoxin producer and it was closely related to E. coli O139:H28 E24377A, a strain which 296 

was linked to an outbreak of waterborne diarrhoea in India (50). In terms of K. pneumoniae, 297 

strain-level analysis indicated that the K. pneumoniae strains in two samples were antibiotic 298 

resistant and they were closely related to K. pneumoniae KpQ3, a strain which was linked to 299 

nosocomial outbreaks among burn unit patients. Thus, strain-level analysis suggests that there 300 

are likely pathogens in some of the samples. Interestingly, PanPhlAn also suggested that 301 

there were functionally distinct strains of both species in nunu samples from different 302 

producers. Perhaps, this indicates multiple incidences or sources of contamination. 303 

Undoubtedly, our work highlights an urgent need to further improve hygiene practices during 304 

nunu production, and the pasteurisation of the starting milk and the use of starter-based 305 

fermentation systems is an obvious solution. 306 



In conclusion, our work suggests that short read alignment-based strain detection tools can be 307 

used to detect pathogens in other foods, apart from nunu or spinach, and they might also be 308 

useful for tracing the sources of foodborne disease outbreaks back to particular foods. Such 309 

tools are a significant improvement over 16S rRNA gene sequencing, which is often limited 310 

to genus-level identification, or metagenome read classification tools, which are limited to 311 

species-level identification (16). In addition, they are faster, and less computationally 312 

intensive, than metagenome assembly-based strain detection methods, making them more 313 

relevant to real-life scenarios which necessitate the rapid testing of many food samples. With 314 

DNA sequencing costs continuing to decrease, the approach outlined here is an affordable 315 

option for food safety testing. 316 

 317 
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 327 

Materials and Methods 328 

Sampling 329 

Five nunu samples were collected from producers with hygiene practice training, and another 330 

five samples were collected from producers without hygiene practice training. The identity of 331 

the samples from trained and untrained individuals was blinded until after sequencing 332 

analysis was completed. The samples from the trained group were labelled 1t2am, 1t6am, 333 

1t7am, 1t8am, and 2t2am. The samples from the untrained group labelled 1u6am, 2u2am, 334 

2u3am, 2u6am, and 2u8am. All samples were collected in the morning and placed on ice for 335 

transport to the lab. Sample aliquots (4ml) were then mixed with glycerol to a final 336 

concentration of 20% and stored at -20C prior to DNA extraction. DNA was extracted from 337 



the samples at the Animal Research Institute, Accra, Ghana and then sent to Scotland to 338 

comply with International laws on the import of animal samples (Import Licence form 339 

AB117). 340 

 341 

Microbiological analysis 342 

Basic microbiology culture analysis was carried out in Ghana. The plate-count technique was 343 

used to estimate the total viable bacterial count of the nunu samples on Milk Plate Count 344 

Agar (LAB M, UK). Bacterial counts were compared for plates growing aerobically or 345 

anaerobically at 30C for 36-72 h. Anaerobic plates were incubated in airtight canisters 346 

containing C02Gen sachets (Oxoid, UK), which created an anaerobic atmosphere. Following 347 

incubation, colonies were counted using an SC6+ electronic colony counter (Stuart Scientific, 348 

UK). The presence of specific pathogens in the nunu samples was determined by streaking 349 

nunu directly onto selective agar plates to visually assess bacterial growth. The following 350 

selective agars were used: Blood agar (Merck, Germany) for Staphylococcus; MacConkey 351 

agar (Merck, Germany) for Enterobacteria; de Man Rogosa Sharpe agar (MRS) (Oxoid, UK) 352 

for Lactobacillus species; and Salmonella Shigella agar (Oxoid, UK). Any mixed growth 353 

plates were re-purified by streaking onto selected secondary agars. Lactose fermenting 354 

colonies identified on MacConkey agar were sub-cultured onto Eosin Methylene Blue Agar 355 

(EMBA) (Scharlau Chemie, Spain) to isolate/identify E. coli. Additionally, Staphylococcus 356 

colonies from Blood Agar were sub-cultured onto Mannitol Salt Agar (MSA) (Oxoid, UK) to 357 

isolate/identify Staphylococcus aureus. The following biochemical tests were used to confirm 358 

bacterial identification: the Motility Indole Urea (MIU) test; the catalase test; the Triple 359 

Sugar Iron (TSI) test; and the Indole Methyl Red Vorges-Proskeur Citrate (IMViC) tests. 360 

Cellular morphology was determined by Gram staining as well as microscopic examination. 361 

 362 

DNA extraction and next generation sequencing 363 

Briefly, 1 ml of each thawed sample was diluted in 9 ml of sterile PBS, mixed thoroughly 364 

using vortex and centrifuged for 10 min (8,000-10,000 g). The bacterial cell pellets were 365 

resuspended in 432 µl sterile dH2O and 48µl 0.5 M EDTA, mixed thoroughly by a 366 

combination of vortex and with a sterile pipette tip and the suspension frozen. The frozen 367 

samples were thawed on the bench and refrozen and finally thawed (giving a total of two 368 



freeze/thaw cycles) before extracting the DNA using the Promega Wizard genomic DNA 369 

extraction kit (Promega, Madison, WI, USA) according to the manufacturer’s protocol. The 370 

freeze/thaw cycles were carried out to maximise bacterial cell lysis. Following extraction, the 371 

DNA pellets were air dried for about 60 minutes and stored sealed under airtight conditions 372 

and transported from the Animal Research Institute, Accra, Ghana to the Rowett Institute, at 373 

University of Aberdeen, for further analysis.  374 

DNA extracts were quantified using the Qubit High Sensitivity DNA assay (BioSciences, 375 

Dublin, Ireland). 16S rRNA gene sequencing libraries were prepared from extracted DNA 376 

using the 16S Metagenomic Sequencing Library Preparation protocol from Illumina, with 377 

minor modifications (26). Samples were sequenced on the Illumina MiSeq in the Teagasc 378 

sequencing facility, with a 2 x 250 cycle V2 kit, in accordance with standard Illumina 379 

sequencing protocols. Whole-metagenome shotgun libraries were prepared in accordance 380 

with the Nextera XT DNA Library Preparation Guide from Illumina (26). Samples were 381 

sequenced on the Illumina MiSeq in the Teagasc sequencing facility, with a 2 x 300 cycle V3 382 

kit, in accordance with standard Illumina sequencing protocols. 383 

 384 

Bioinformatics 385 

Raw 16S rRNA gene sequencing reads were quality filtered using PRINSEQ (27). Denoising, 386 

OTU clustering, and chimera removal were done using USearch (v7-64bit) (28), as described 387 

by Doyle et al. (29). OTUs were aligned using PyNAST (30). Alpha-diversity and beta-388 

diversity were calculated using Qiime (1.8.0) (31). Taxonomy was assigned using a BLAST 389 

search (32) against SILVA SSU 119 database (33). 390 

Raw whole-metagenome shotgun sequencing reads were filtered, on the basis of quality and 391 

quantity, and trimmed to 200 bp, with a combination of Picard Tools 392 

(https://github.com/broadinstitute/picard) and SAMtools (34). MetaPhlAn2 was used to 393 

characterise the microbial composition of samples at the species-level (35). MetaMLST (20), 394 

PanPhlAn (19), and StrainPhlAn (21) were used to characterise the microbial composition of 395 

the samples at the strain-level. GraPhlAn (36) was used to construct phylogenetic trees from 396 

the StrainPhlAn output. SUPER-FOCUS (37) and HUMAnN2 (38) were used to determine 397 

the microbial metabolic potential of samples. IDBA-UD (39) was used for metagenome 398 

assembly. 399 

 400 



Accession numbers 401 

Sequence data have been deposited in the European Nucleotide Archive (ENA) under the 402 

project accession number PRJEB20873. 403 

 404 

Statistical analysis 405 

Statistical analysis was done in R-3.2.2 (40). The Kruskal-Wallis test was done using the 406 

compareGroups package, and the resulting p-values were for multiple comparisons. PCoA 407 

analysis of 16S rRNA gene sequencing data was done using the phyloseq package (41). 408 

Multidimensional scaling (MDS) was done using the vegan package. Data visualisation was 409 

done using the ggplot2 package. 410 

 411 
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Table 1. The results of MetaMLST and PanPhlAn analysis of spinach metagenomes 569 

spiked with E. coli O157:H7 Sakai 570 

Sequence 

accession number Reads 

E. coli 

abundance 

(%) stx2A stx2B 

Sequence 

type (ST) 

Confidence 

(%) 

SRR2177250 9,365,812 5.28412 1 1 Unknown NA 

SRR2177251 17,562,542 4.31712 1 1 11 99.97 

SRR2177280 11,707,292 21.16364 1 1 100001 99.97 

SRR2177281 10,580,532 2.84187 1 1 Unknown NA 

SRR2177282 6,155,636 60.51406 1 1 11 100 

SRR2177283 13,120,244 10.11327 1 1 11 100 

SRR2177284 7,500,056 2.05064 NA NA Unknown NA 

SRR2177285 14,482,370 66.69813 1 1 11 100 

SRR2177286 14,035,970 69.17834 1 1 11 100 

SRR2177287 12,242,348 5.62746 1 1 Unknown NA 

SRR2177288 8,303,788 10.75005 1 1 11 100 

SRR2177357 14,621,672 8.02047 1 1 11 100 

SRR2177358 10,684,052 3.18652 1 1 Unknown NA 

SRR2177359 4,964,436 1.17146 1 1 Unknown NA 

SRR2177360 12,729,834 1.81229 1 0 Unknown NA 

SRR2177361 11,946,092 0.70921 0 1 Unknown NA 

  571 



Table 2. The results of MetaMLST analysis of the nunu metagenomic samples 572 

Species 

Sequence 

type (ST) 

Confidence 

(%) Sample 

Klebsiella pneumoniae 100001 98.7 1t2am 

Klebsiella pneumoniae 100002 100 1t6am 

Esherichia coli 100001 100 1t7am 

Klebsiella pneumoniae 100003 99.9 1t7am 

Klebsiella pneumoniae 100004 100 1t8am 

Klebsiella pneumoniae 39 100 2u3am 

Klebsiella pneumoniae 100005 99.91 2u6am 

Klebsiella pneumoniae 100006 99.91 2u8am 

 573 

  574 



Figure legends 575 

Figure 1. 16S rRNA gene sequencing based analysis of nunu samples. (A) Heat map 576 

showing the 25 most abundant bacterial genera across the nunu samples. (B) Bar plot shoing 577 

genera which were differentially abundant in either group. 578 

Figure 2. The species-level microbial composition of nunu samples, as determined by 579 

MetaPhlAn2.  580 

Figure 3. The average abundances of the SUPER-FOCUS Level 1 functions that were 581 

detected in nunu samples.  582 

Figure 4. HUMAnN2 analysis. (A) Heat map showing the 25 most abundant MetaCyc 583 

pathways detected across the ten nunu metagenomic samples. (B) Bar plot showing 584 

differences in histidine metabolic potential between nunu samples from trained producers and 585 

nunu samples from untrained producers. (C) Bar plots showing the relative contributions of 586 

E. cloacae, E. coli and K. pneumoniae to the MetaCyc pathways PWY-6305 (putrescine 587 

biosynthesis) and PWY0-1338 (polymyxin resistance). 588 

Figure 5. StrainPhlAn analysis of the spinach metagenome. 589 

Figure 6. Strain-level analysis. Phylogenetic trees showing the relationships between (A) E. 590 

coli strains and (B) K. pneumoniae strains detected in the nunu metagenomic samples and 591 

their respective reference genomes, as predicted by StrainPhlAn. (C) MDS showing the 592 

functional similarities between strains detected in the nunu metagenomic samples, as 593 

predicted by PanPhlAn; reference genomes are shown in faded grey. 594 
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