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ABSTRACT 

Flavan-3-ols and methylxanthines have potential beneficial effects on human health 

including reducing cardiovascular risk. We performed a randomized controlled cross-over 

intervention trial to assess the acute effects of consumption of flavan-3-ol-enriched dark 

chocolate, compared with standard dark chocolate and white chocolate, on the human 

metabolome. We assessed the metabolome in urine and blood plasma samples collected 

before and at 2 h and 6 h after consumption of chocolates in 42 healthy volunteers using a 

non-targeted metabolomics approach. Plasma samples were assessed and showed 

differentiation between time points with no further separation among the three chocolate 

treatments. Multivariate statistics applied to urine samples could readily separate the 

postprandial time points and distinguish between the treatments. Most of the markers 

responsible for the multivariate discrimination between the chocolates were of dietary origin. 

Interestingly, small but significant level changes were also observed for a subset of 

endogenous metabolites. 1H NMR revealed that flavan-3-ol-enriched dark chocolate and 

standard dark chocolate reduced urinary levels of creatinine, lactate, some amino acids and 

related degradation products and increased the levels of pyruvate and 4-

hydroxyphenylacetate, a phenolic compound of bacterial origin. This study demonstrates 

that an acute chocolate intervention can significantly affect human metabolism. 

Keywords: NMR, MS, metabolomics, chocolate, metabolism, health, flavonoids, 

methylxanthines 

INTRODUCTION 

Dark chocolate contains at least two groups of bioactive substances, flavan-3-ols and 

methylxanthines. Well known flavan-3-ols include catechin, epicatechin gallate, 

epigallocatechin, epigallocatechin gallate, proanthocyanidins, theaflavins, thearubigins and 

they are regarded as functional food ingredients1. The most well-known methylxanthines are 

theobromine, caffeine and theophylline. Dark chocolate is enriched in theobromine, with 

lesser amounts of caffeine and practically no theophylline2.  
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Flavan-3-ols have various organoleptic properties such as astringency, bitterness, sourness, 

and sweetness. They also have several beneficial health effects by acting as antioxidant, 

anticarcinogen, antimicrobial, anti-viral, and neuro-protective agents. They are also known to 

affect several measures of cardiovascular health, including blood pressure, vascular 

function3, platelet function4,5, plasma lipids and lipid peroxidation in humans. 

The bioactive effects of methylxanthines are mainly mediated by the so-called adenosine 

receptor blockers6. They may improve lung function2. Methylxanthines increase the 

thermogenic capacity of adipose tissue7.  There is also a synergistic interaction between 

caffeine and catechins in increasing thermogenesis on brown adipose tissue8. 

Very few studies have identified the fate of cocoa components in humans or rodents9,10 and 

such information may help to identify the bioactive compounds. Recently non-targeted 

approaches in plasma and urine were employed to assess the changes in the host and 

microbial metabolome after cocoa consumption in human subjects11,12.  Martin et al.12 used 

Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) approaches to examine 

human fasted plasma and urine samples to assess the chronic effects of regular 

consumption of dark chocolate. This study focused on endogenous metabolites involved in 

energy homeostasis and stress responses but lacked a control group. Llorach et al.11 on the 

other hand, used a non-targeted Liquid Chromatography (LC)/MS method to identify 

metabolites up to 24 h after ingestion of a cocoa drink in 10 subjects but the focus was on 

the metabolites found in the cocoa product, the excretion of the polyphenols ingested and 

their products. 

Previously, we performed a randomized controlled human trial (clinicaltrials.gov; 

NCT01099150) to evaluate the effect of flavan-3-ol-enriched dark chocolate, standard dark 

chocolate and white chocolate on platelet function in healthy subjects13.  Both flavan-3-ol-

enriched dark chocolate and white chocolate, improved several measures of postprandial 
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platelet function in a gender-specific way although the specific bioactive compounds could 

not be determined.  

In the current analysis, we employed samples from the same study to assess the effects of 

acute consumption of flavan-3-ol-enriched dark chocolate, in comparison with standard dark 

chocolate and white chocolate, on both plasma and urinary proton NMR (1H NMR) profiles 

and urinary MS profiles in 42 healthy humans having fasted ≥ 10 h overnight. Postprandial 

assessment of the human metabolome by such complementary techniques provides further 

insights into both the metabolism of flavan-3-ols and methylxanthines in the human body and 

the effects these plant bioactives have on endogenous metabolism. 

 

MATERIAL AND METHODS 

Subjects and study design 

Recruitment of subjects (n = 42) and details of the crossover study design were reported 

previously13.The study was carried out in accordance with the ethical principles of the 

Declaration of Helsinki and Good Clinical Practice. The study was approved by the Ethics 

Committee of the Rowett Institute of Nutrition and Health, University of Aberdeen (reference 

number 09-002) following review by the North of Scotland Research Ethics Committee. This 

trial was registered at clinicaltrials.gov as NCT01099150. Volunteers were informed about 

the purpose and the risks of the study, and written informed consent was obtained from all 

subjects before participation. 

The details are summarised in the Supporting Information Material and Methods, Figure S1 

and Tables S1 and 2.  

Urine and blood sampling and creatinine assay  
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Sampling and storage of biofluid samples was previously described13, as was measurement 

of creatinine in urine. Relevant details are supplied in the Supporting Information. 

Extraction and analysis of flavonoid content of the chocolate bars 

First, lipids were removed from chocolate samples as described by Cooper et al.14. This 

included the extraction of defatted and dried chocolate powder using 70% aqueous 

methanol containing 0.1 mg/mL galangin (282200, Sigma-Aldrich) as internal standard. 

Samples were heated to 70 °C for 20 min. Supernatants were filtered and filtrates from each 

sample were analyzed by normal-phase HPLC as described previously. Samples were 

analyzed in duplicate and the resulting flavonoid contents of the chocolate bars are shown in 

(Table S3). 

NMR procedure 

Urine samples were thawed at room temperature and prepared for 1H NMR spectroscopy by 

mixing 500 µL urine with 50 µL phosphate buffer (1.2 mmol/L K2HPO4 and 0.3 mmol/L 

KH2PO4, pH 7.4) made up in 100% D2O and containing 0.005% sodium azide and 3.3 

mmol/L TSP (3-trimethylsilyl propionate) as chemical shift reference. The sample was 

shaken and 500 µL transferred into a 5 mm NMR tube for spectral acquisition. 1H NMR 

spectra were recorded at 600 MHz on a Bruker Avance spectrometer (Bruker BioSpin 

GmbH, Rheinstetten, Germany) running TOPSPIN 2.0 software and fitted with a cryoprobe 

and a 60 slot autosampler. The acquisition order was randomized with respect to collection 

date and sample codes. Each 1H NMR spectrum was acquired with 128 scans, 900 pulses 

(14 µs), spectral width 8012.8 Hz, acquisition time 2.04 s and relaxation delay 2.0 s. The 

noesygppr1d pre-saturation sequence was used to suppress the residual water signal with 

low power selective irradiation at the water frequency during the relaxation delay and mixing 

time (0.01s). Spectra were transformed with zero filling and 0.3 Hz line broadening, manually 

phased, baseline corrected and referenced by setting the TSP methyl signal to 0 ppm. 
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Metabolites were identified using information found in the literature 15-17, on the web (Human 

Metabolome Database, http://www.hmdb.ca/), using Chenomx software, and by use of the 

2D-NMR methods COSY, HSQC, and HMBC. 

Plasma (200 µL) was mixed with 400 µL saline solution (0.9% w/v NaCl in 90%/10% 

H2O/D2O) and 500 µL were transferred to an NMR tube. Proton NMR spectra were 

measured at 300 K using the same NMR equipment. Spectra were acquired using the 

Bruker cpmgpr1d water suppression pulse sequence, with 32 k data points, spectral width 

20.8 ppm, acquisition time 1.36 s, relaxation delay 2 s, 90º pulses (11 µs), spin-echo delay 

0.4 ms, loop number 300 (giving a total echo time = 240 ms) and 128 transients per 

spectrum. Free induction decays were zero filled and exponential line broadening of 1 Hz 

was applied prior to Fourier transformation. Proton NMR spectra were referenced to the 

anomeric α-glucose signal (δ 5.234 ppm). 

NMR data analysis 

NMR Spectra were prepared for statistical analysis using the Bruker AMIX software v3.9. 

The spectra were divided along the horizontal axis into variable width “buckets” (or bins) 

using the AMIX graphical editor to draw buckets that include, where possible, recognizably 

complete individual peaks or multiplets. The intensities within each bucket were summed, 

divided by the bucket width and the bucket intensities were normalized to the same total 

intensity for each sample to give the final bucket table. Regions with only background noise, 

the urea peak and the water resonance were not included in the buckets. This gave matrices 

of 368 samples x 380 buckets for the urine NMR spectra and 363 samples by 101 buckets 

for the plasma spectra. 

HPLC-TOF MS analysis  

A subset of 240 urine samples (0 and 6-h post chocolate) was defrosted and vortex mixed 

before sampling.  A portion of urine (1 mL) was centrifuged for 5 min at 9600 g and 150 µL 
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of the supernatant was transferred to a glass vial to which MilliQ water (450 µL) was added. 

The sample was vortex mixed. A portion of each individual sample (35 µL) was taken and 

pooled to make a quality control sample (PQC) representative of all samples in the sample 

set. Sample analysis used an Agilent 1100 HPLC coupled to a Bruker Daltonics MicroTOF. 

Sample (5 µL) was injected onto a Phenomenex Gemini C18 column (150 x 2.1 mm, 3.0 µm 

at 25 ºC) with a flow rate of 250 µL/min. A gradient of 100% A (MilliQ water + 0.1% formic 

acid) and 0% B (acetonitrile + 0.1% formic acid) was applied increasing B to 15% over 5 min 

and then to 95% over 15 min and held at 95% for 4 min. The PQC was injected for the first 

three runs and after each set of six injections for each batch (samples were randomized into 

batches of 50 samples). The TOF scan was over 90-1000 amu in positive ESI mode. Mass 

calibration was performed for each sample using reference masses of sodium formate ion 

clusters to give a mass accuracy of 5 ppm.  The Bruker raw data files were converted to 

NetCDF and the metabolite feature data presented in the manuscript were generated 

entirely using the Bioconductor (http://www.bioconductor.org/software) packages XCMS (v 

1.22.1) 18 running with default parameters under R (v 2.11.0).  XCMS finds and integrates 

peaks within small time and mass windows and produces a table of integrated intensities for 

a set of features (identified by combined mass retention time labels) that are common to all 

samples. Features are reported if they occur in more than half the samples in at least one of 

the groups (e.g. control, treatment) so that intensities of features from say flavan-3-ol 

metabolites may be close to zero in baseline samples. Each feature has an associated 

median accurate mass which may be used for putative identification of species present via 

database search (e.g. MZedDB, http://maltese.dbs.aber.ac.uk:8888/hrmet/index.html 19 or 

from relevant literature11. A total of 2900 features were extracted for subsequent data 

analysis.  

Data Analysis 
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Multivariate statistical analysis (Principal Component Analysis, PCA) was carried out using 

the PLS Toolbox v5.5 (Eigenvector Research Inc.,Wenatchee, WA) running within Matlab, 

v7.6 (The MathWorks Inc., Natick, MA). Autoscaling was applied to the columns of the 

bucket table. The same procedure was applied to the integrated intensities in the XCMS 

table with the mass retention time features taking the place of NMR buckets as variates. 

Univariate analyses were carried out on individual variates (NMR or LC/MS) in GraphPad 

Prism v5.01 (GraphPad Software, San Diego, CA) using the Kruskal-Wallis test with Dunn’s 

post-test. The same software was used to plot the results of these analyses. A 

comprehensive set of univariate analyses was also carried out on all buckets for the urine 

NMR data using an in-house Matlab routine. The comparison of metabolic responses to the 

three different chocolate types was performed on bucketed NMR spectra that were area 

normalised followed by two stages of probabilistic scaling 21. First, the three baseline (time t 

= 0) spectra for an individual were scaled to their mean. Second, spectra collected at times t 

= 2 h and t = 6 h were scaled to their corresponding adjusted baseline. Post-ingestion 

difference spectra were calculated by subtraction of their corresponding adjusted baselines. 

For both post-ingestion time points the differences in the spectral response of each bucket 

were ranked by their Mack-Skillings statistic 22, 23. The top 162 & 223 buckets were found to 

be significantly different at 2 h and 6 h respectively, based on a FDR of q = 0.05 [22], using 

p-values based on 107 within-block permutations 22, 23. The significance of the differences in 

response at each bucket was also estimated from within-block permutations (Table S5). 

 

 

RESULTS 

We recruited 42 healthy subjects, each receiving three acute treatments (flavan-3-ol-

enriched dark chocolate (EDC), standard dark chocolate low in flavan-3-ols (DC), or white 
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chocolate (WC) containing no flavan-3-ols) in random order. The three intervention days 

were separated by two washout periods of at least two weeks. This crossover design 

provided optimal statistical power as each subject acted as their own control.  

Dietary markers mainly contribute to the discrimination of the metabolite profiles  

Plasma NMR spectra were assessed by PLSDA and showed differentiation between 0h and 

later time points but no discrimination between the three chocolate treatments (Figure S2). 

Differentiation was caused by elevation of lactate at 2h and aspartate, acetoacetate, acetone 

and β-hydroxybutyrate levels at 6 h after ingestion24. 

A series of Principal Component Analysis (PCA) models were created from urine 1H NMR 

and LC/MS data to assess whether there was separation between dietary treatments at 0 h, 

2 and 6 h post-ingestion and between the different time points for each treatment (Figure 1).  

LC/MS data from the 2h samples was not recorded hence only the 0h and 6h groups were 

analysed. Three 4 group PCA models were constructed: controls at 0 h, EDC-2h, DC-2h and 

WC-2h; controls at 0 h, EDC-6h, DC-6h and WC-6h both for NMR data and controls at 0 h, 

EDC-6h, DC-6h and WC-6h for LC/MS data. All three models showed partial overlap of dark 

chocolate groups (EDC and DC) but clear discrimination between dark chocolate groups, 

WC and the baseline group (0h) (Figure 1 a-c). Three treatment-based PCA models (EDC, 

DC and WC) applied to 3 groups (0, 2 and 6h postprandially) also showed a clear separation 

between 0 h and post-ingestion scores but the scores at 2 and 6 h post-ingestion groups 

overlapped (Figure 1d-f and Figure S3 a-c). 

The discrimination of samples from the EDC group and to some extent the DC group versus 

the baseline group (0h) and WC group (seen on PC4 in Figure 1a and PC2 in Figure 2b) 

was largely due to an increase in the intensity of buckets containing signals from epicatechin 

derivatives, theobromine and its methylxanthine derivatives (Figure S3 d-e) in the EDC and 

DC groups.  
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Figure 1. 

Assignment of the dietary markers and their levels across the three chocolate treatments 

Epicatechin derivatives and methylxanthines were detected in urine samples by both 1H 

NMR and LC/TOF-MS. Comparison of HSQC and COSY spectra of 6h EDC and WC urines 

(same volunteer) revealed many new peaks in the EDC spectra that were not present in the 

WC. The signals were assigned as theobromine or epicatechin metabolites using information 

from the HMDB, literature, or via spiking (theobromine itself). Several buckets between 3.5 

and 4.0 ppm containing signals arising from 3- and 7-methylxanthines and theobromine (3,7-

dimethylxanthine) as well as the singlets from the corresponding xanthine purine rings at 

8.03, 7.86 and 7.91 ppm were all strong markers in the urines from volunteers having 

ingested either DC or EDC (Figure 2 and Table 1).  
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Thanks to its higher sensitivity, numerous additional dietary metabolites were detected by 

LC/MS as reported previously11. Derivatives of theobromine (Figure 3) were identified in the 

urines after DC and EDC consumption, namely 3- and 7-methyluric acids, 3,7-dimethyluric 

acid, 6-amino-5[N-methylformylamino]-1-methyluracil (AMMU), as well as intact theobromine 

(Table 2). Several metabolites indicative of EDC and DC consumption were identified 

including hydroxynicotinate, caffeine and vannilloylglycine. Several metabolites of catechins 

were also detected, i.e. epicatechin monosulfate, 4-hydroxy-5-(3,4-dihydroxyphenyl)-

valerate, the glucuronide and sulfate metabolites of 5-(3',4'-dihydroxyphenyl)-γ-valerolactone 

and 3'-methoxy-4'-hydroxyphenylvalerolactone and its glucuronide. Those metabolites were 

all observed 6 h post-ingestion and their levels significantly increased compared with levels 

at 0 h. There was a decrease in hippurate levels from 0 h to 6 h postprandial after 

consumption of all types of chocolate (Figure 3). A set of features that were significantly 

enhanced in white chocolate was noticed although the identification of the compounds 

remains to be established (Table S4).  
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Figure 2. 
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Figure 3. 
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Concentration of flavanol-3-ols and methylxanthines in chocolate. 

The combined caffeine and theobromine concentrations were quite similar in both dark 

chocolates.  The flavanol-3-ol enriched chocolate had a combined content of 1.12% whilst 

the standard dark chocolate contained 1.23%. (Table S1). The enriched dark chocolate 

contained 1.5% total flavonoids compared to 0.64% in the standard dark chocolate (Table 

S3). Neither methylxanthines nor flavonoids were detected in the white chocolate. 

Changes in endogenous metabolite levels across the three chocolate treatments 

The urinary 1H NMR spectra recorded were segmented into 380 buckets and univariate 

analyses were carried out on the bucket intensities. Of these buckets, 223 had a p-value 

lower than 0.05 when the three chocolate treatments were compared at 6 h (see Table S5). 

The markers with the lowest p values were assigned to catechin and xanthine derivatives. 

Interestingly, a subset of endogenous metabolites was affected by the chocolate intake, 

mainly by the two dark chocolates (Table 3). Urinary levels of several amino acids (Ala, Val, 

Gly) and organic acids (2- and 3-hydroxyisobutyrate, 3-hydroxyisovalerate) were significantly 

decreased 6 h after intake of both dark chocolates compared with white chocolate and all 

followed the same trend: mean level in flavan-3-ol-enriched dark chocolate < dark chocolate 

< white chocolate. Additionally, a few energy compounds also followed the same trend, 

namely creatinine, N1-methylnicotinamide (NMA) and lactate. Interestingly pyruvate followed 

an inverse trend where levels were increased by flavan-3-ol-enriched dark chocolate and 

dark chocolate compared with white chocolate. Levels of tyrosine and its microbial product 

(para-hydroxyphenylacetate) were also elevated after consumption of both dark chocolates 

(Table 3). Trends for selected markers can be found in Figure 4.  
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Figure 4. 

Changes in metabolite levels associated with gender and age 

Differences in levels of the main xanthine metabolites (3- and 7-methylxanthine and 

theobromine) and the buckets at 6.11, 6.13 and 6.15 ppm reflecting catechin derivatives 

were investigated further by subdividing the treatment groups according to gender, BMI and 

age, at 2- and 6-h post chocolate. Only theobromine excretion levels showed a significant 

difference with respect to gender, with higher levels being excreted by females compared 

with males. The gender differences were being observed for both dark chocolates at the 6 h 

and for standard dark chocolate at the 2 h time point. There was also an effect of the age on 

the levels of the same metabolite with a higher excretion for volunteers aged 29 or younger 

compared with volunteers older than 54 (Figure 5). 
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Figure 5. 

DISCUSSION 

In this study we assessed acute effects of consumption of flavan-3-ol-enriched dark 

chocolate in comparison with a standard dark and a white chocolate on plasma and urinary 

1H NMR profiles and urinary MS profiles in healthy humans. Both urinary and plasma profiles 

showed wide-scale metabolite composition changes post-chocolate intake. Multivariate and 

univariate analyses coupled to metabolite identification revealed that the major differences 

between treatments were found in urine and changes were related to both intake markers as 

well as markers of endogenous metabolism. 

There was no differentiation between the three treatment groups in the plasma 1H NMR 

profiles contrary to the many changes detected in the urinary profiles. No theobromine or 

catechin derived metabolites were found because plasma concentrations of these were 

under the detection limit for NMR. 

Changes detected in the urinary profiles principally affected a number of NMR buckets 

between 3.00 and 4.00 ppm, and in the regions of 6.10 and 8.00 ppm after both dark 

chocolate treatments. Those signals were attributed to metabolized compounds of dietary 

origin (catechin 25 and methylxanthine 26 derivatives). Interestingly Martin et al12 detected an 

increase in levels of two unknown singlets at 7.85 and 7.91 ppm after one week of chronic 

intake of dark chocolate which were most likely peaks arising from 7-methylxanthine and 
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theobromine (see Table 1). The levels of an unknown at 3.39 ppm detected in the present 

study were also increased in their study. Caffeine itself was not detected in the urinary 

spectra because the levels were too low to be detected. For comparison the abundance of 

theobromine in the dark chocolates was six times that of caffeine (supplementary Table 3) 

yet only theobromine and two main products (3 and 7-methyl xanthines) were detected by 1H 

NMR. 6-amino-5[N-methylformylamino]-1-methyluracil (AMMU) is the main degradation 

product after caffeine intake 27. In our study, 3-methylxanthine, 7-methylxanthine and AMMU 

are the main urinary products of theobromine 26 (Figure 3g). Caffeine degradation may have 

marginally contributed to the AMMU levels detected by LC/MS. The LC/MS on 6 h urines 

demonstrated changes in metabolites of polyphenols and alkaloids metabolites and also 

showed the occurrence of microbial metabolites. Our results are in agreement with other 

studies 11, ,25. 

However, there was no increase in hippurate levels in our study although this metabolite of 

microbial origin has been recognized as the main excretion product from polyphenols such 

as catechins and from green and black tea consumption 28, 29. 

There was an increase of para-hydroxyphenylacetate (HPA) 6 h after ingestion of both dark 

chocolates.  Hydroxyphenylacetate is related to food intake and breakdown processes by 

gut microbiota 30. It originates from dietary phenolic compounds, including the catechins 

contained in dark chocolate. The increase of HPA was accompanied with an increase of 

tyrosine, an abundant component of cacao seeds11. 

We did not observe changes in levels of citric acid cycle compounds such as succinate or 

citrate but, as in a study on consumption of black tea polyphenols 31, we saw an increase of 

pyruvate in urine. Additionally, we saw a reduction in lactate at 6 h post-intake of flavan-3-ol-

enriched dark chocolate. The lactate levels increased at 6h for WC compared to 0h and to 

EDC or DC at 6h. Whilst we cannot elucidate the mechanisms of such changes based on 

metabolomics results alone, it is possible that, glycolysis and/or gluconeogenesis might be 
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enhanced by the catechin-rich chocolate thus increasing levels of excreted pyruvate 32, 33. 

Concomitantly, a large intake of catechins might have affected anaerobic respiration, leading 

to a reduced production of lactate. Furthermore, the urinary levels of four glucogenic amino 

acids, arginine, valine, alanine and glycine, were reduced after consumption of flavan-3-ol-

enriched dark chocolate, suggesting a possible redirection of the energy metabolism towards 

gluconeogenesis 33 following catechin intake (Table 3).  

The urinary levels of both creatinine and N1-methylnicotinamide (NMA) were reduced 

following intake of both dark chocolates but creatinine was increased by WC at 6h. The 

levels of creatinine and NMA in WC were higher than EDC or DC at 6h as shown in Figure 4. 

Creatinine is a clearance product from phosphocreatine (PCr) which itself is a phosphate 

donor for sudden adenosine triphosphate (ATP) demand and NMA arises from dietary niacin 

and from tryptophan metabolism 34. Wang et al 35 proposed a link between creatinine urinary 

levels, oxidative stress and modulation of oxidative stress by antioxidants which could be 

attributed to catechins in both dark chocolates. A decrease in creatinine may be associated 

with a better regulation of the PCr pool and ATP usage. Note that a decrease in creatinine 

has already been observed by Martin et al12. This similarity indicates that both acute and 

chronic intake of dark chocolate may affect the energy metabolism in a similar way.  

A decrease in NMA would indicate an upregulation towards the production of NAD+ and 

energy expenditure 36. Also NMA is an activator of prostacyclin (PGI2) production which may 

regulate thrombotic as well as inflammatory processes in the endothelial vascular system via 

anti-platelet effects 37, 38.  In our case, decreases in creatinine and NMA urinary levels may 

indicate effects on metabolic regulation bringing potential health benefits through the action 

of chocolate bioactive ingredients.   

Martin et al 12 showed that dark chocolate had an effect on the energy metabolism and on 

metabolites from gut microbiota. Products from the gut microbiota are commonly found in 

biological fluids including urine, plasma or faecal waters 39. These include methylamine, 
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dimethylamine (DMA), trimethylamine (TMA), and trimethylamine-N-oxide (TMAO) and 

related metabolites (dimethylglycine) which may originate from dietary choline.   

We observed a urinary decrease of DMA in urine 6 h after ingestion of both dark chocolates. 

Dimethylamine is a product of TMA and TMAO.  It is difficult to assess if a reduction of DMA 

is beneficial to health.  Wang et al  40 reported that supplementation of mice with choline, 

TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked 

to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis.  

Therefore, it appears that lower endogenous levels of methylamines may be beneficial to 

health. 

The short chain hydroxy acids, 3-hydroxyisovalerate, 2-hydroxyisobutyrate and 3-

hydroxyisobutyrate, were reduced following intake of both dark chocolates but increased 

from 0h to 6h after WC.  These acids are normally found at low levels in urine of healthy 

individuals 41 and at high levels in urine and blood of patients suffering from branched-chain 

organic acidurias 42 or other acidosis 43. Both 3-hydroxyisovalerate and 3-hydroxyisobutyrate 

are intermediates in the catabolism of branched amino acids such as leucine and valine and 

2-hydroxyisobutyrate has been reported as being a gut metabolite increased in the urine of 

healthy humans eating a diet high in proteins 41.  Newgard et al 44 compared the blood 

profiles of obese and lean humans and showed a link between a branched-chain amino 

acid-related metabolite signature and increased catabolism of branched amino acids and 

correlation with insulin resistance. In our case, the reduced branched amino acids 

catabolism may be part of the change in energy metabolism observed after eating dark 

chocolate. Regulating the catabolism of these amino acids may be a positive benefit on 

glucose metabolism. 

Caffeine and theobromine are the most abundant methylxanthines in chocolate and their 

physiological effects are well recognised 2. They are extensively metabolized (urinary 

Page 19 of 31

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20 
 

recovery of < 2%) and are known to be metabolized by cytochrome P450 (CYP450) 

enzymes during phase II excretion 27, 45. 

In this study, females excreted on average almost twice as much theobromine as males 6 h 

after intake of both dark chocolates and there was also a significant dependence of 

theobromine excretion on age with flavan-3-ol-enriched dark chocolate treatment. Some 

previous studies reported no gender effect on elimination following an intake of caffeine, 

theobromine or theophylline 27, 46, 47 while others reported the inverse 45. Additionally, Agarwal 

48 showed that in vitro arginine8-vasopressin (AVP) levels in blood from male and female 

donors differed and that theophylline and a related xanthine could interfere with the platelet 

aggregation capacity of AVP in human platelet-rich plasma. This result points to a multiple 

factor effect (including gender) and/or expression of CYP450 enzymes (CYP1A2 in particular 

47) on compounds and metabolized products which in turn could affect the host metabolism. 

Conclusion 

These effects may have arisen from consumption of both the flavanol-3-ols and the 

methylxanthines. In many cases there was similar response to both dark chocolates and the 

increased flavonoid content did not show any dose response even though the enriched dark 

chocolate contained some 2.4 times the flavonoid content of the standard dark chocolate. 

In summary, this NMR and MS-based metabolomic study has shown that dietary markers 

are traceable in the urine of healthy individuals after an acute intake of flavan-3-ol-enriched 

dark and standard dark chocolate. Bioactive compounds and metabolized products were 

also found to have an effect on the endogenous metabolism and the gut microbial activity 

affecting in particular several pathways relating to energy metabolism and the nicotinate 

pool.  
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 Table 1. Exogenous urinary NMR markers for Enriched dark (EDC) and dark chocolate 
(DC) 6 hours after intake 

Fold: EDC compared to white chocolate (WC) the control group     
underlined chemical shift: used for data analysis 

Bucket 
group 

δH ppm δC ppm 
Metabolite 

identification 
p value t-test 
EDC vs WC 

Fold 
EDC/
WC 

1 
2.59 

. 
catechin derivatives 

(C ring) 4E-08 1.4 

2 
2.79 

30.1 
epicatechin 

derivatives (C ring) 2.E-19 1.5 

3 

2.94, 2.95, 2.98, 
3.00, 3.01 

30.3 epicatechin/polymer 
derivatives (C ring) 

2.E-18 2.0 

4 3.39 31.9 ? 2.E-21 2.0 

5 3.49 31.9 theobromine 3.E-11 3.0 

6 3.53 32.2 3-methylxanthine 8.E-09 1.7 

7 3.92 36.2 7-methylxanthine 7.E-14 2.4 

8 3.94 36.2 theobromine 2.E-10 2.0 

9 
4.00 

. 
 catechin derivatives 

(C ring) 4.E-10 0.8 

10 
5.08, 5.11, 5.14  80.8, 81.2 polymer catechin 

derivatives (C ring) 

buckets not 
drawn 

  

11 

6.11, 6.13, 6.15, 
6.44, 6.64 

98.1, 98.8, 
103.4, 105.0 

all catechin 
derivatives (A ring 

mainly) 
9.E-22 11.8 

12 
6.94 -7.31 

. 

all catechin 
derivatives (B ring 

mainly) 
2.E-12 1.7 

13 7.86 147.0 7-methylxanthine 5.E-12 3.5 

14 7.91 146.8 theobromine 6.E-22 3.7 

15 8.03 144.8 3-methylxanthine 2.E-13 2.2     
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Table 2. Urinary MS markers for Enriched dark (EDC) and dark chocolate (DC) 6 hours after intake 

Fold: EDC compared to white chocolate (WC) the control group     
* ion seen in the raw data but not detected by the deconvolution approach 
 

Marker 
group 

Marker ions 
Metabolite 

identification 

Retention 
time 
(min) 

Theoretical 
mass 

[M+H]+ 

p 
value 
t-test 
EDC 

vs WC 

Fold 
EDC/
WC 

1 140.035 [M+H]+ hydroxynicotinic 4.3 140.034 2.E-07 4 

  199.084 [M+H]+     199.083 3.E-12 5 

2 
171.087 [M+H-

H2O]+ 
AMMU 5.7; 8.2   2.E-09 4 

3 185.091 ? 7.2   6.E-11 3 

4 260.064 ? 8.4   5.E-13 24 

  321.085 [M+H]+       2.E-12 8 

5 343.071 [M+Na]+ ? 8.8   8.E-13 750 

  547.15 [3M+H]+       7.E-05 29 

  365.101 [2M+H]+      365.095 7.E-03 2 

6 183.052 [M+H]+   7 and 3-methyl-uric 9.2 183.052 4.E-04 2 

  167.057 [M+H]+     167.056 5.E-11 5 

7 333.108 [2M+H]+ 
7 and 3-

methylxanthine 
9.5 333.105 1.E-09 9 

8 197.057 [M+H]+ dimethyluric 9.9 197.0669 2.E-09 3 

  181.072 [M+H]+     181.072 2.E-17 10 

9 399.099 [2M+K]+ theobromine 10.7 399.093 2.E-14 8 

  420.091       1.E-05 42 

  425.110       3.E-05 8 

10 
209.082 [M+H-

H2O]+  

4-hydroxy-5-(3,4-
dihydroxyphenyl)-

valeric  acid 
11.8 209.081 . * . * 

  226.073  [M+H]+     226.071 3.E-08 5 

11 
151.042 [M+H-

glycine]+ 
vanniloylglycine 12.1 151.040 1.E-08 3 

  568.108       2.E-08 59 

12 547.176 ? 12.4   1.E-06 16 

13 195.089 [M+H]+ caffeine 12.5 195.088 4.E-05 2 

  385.116     385.113 1.E-06 61 

  407.115 [M+Na]+       9.E-10 60 

14 
209.124 [M+H-

GlcA]+ 

5-(3',4'-
dihydroxyphenyl)-

valerolactone 
glucuronide 

13.3 209.081 1.E-06 9 

  399.135 [M+H]+     399.129 1.E-04 8 

  
223.096 [M+H-

GlcA]+ 
    223.096 3.E-05 8 

14 421.122 [M+Na]+ 
3'-methoxy-4'-

hydrxyphenylvalerolact
one glucuronide 

13.4   2.E-06 19 

  369.113 [M+H]+       2.E-06 19 

15 391.106 [M+Na]+ O-Feruloylquinate ? 13.6 391.100 5.E-06 13   
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16 289.040 [M+H]+ 
5-(3',4'-

dihydroxyphenyl-
valerolactone-sulfate 

17.7 289.038 2.E-05 23 

17 371.044 epicatechin-O-sulfate 22.2 371.043 3.E-09 2400 
  

 
 
Table 3. Changed in levels of endogenous urinary NMR markers for Enriched dark (EDC) 
and dark chocolate (DC) 6 hours after intake 

Trends: EDC and DC compared to white chocolate (WC) the control group   

underlined chemical shift: used for data analysis       

* could correspond to chemical groups from amino acids such as ornithine or citrulline 

Marker 
group 

δ (ppm) 
Metabolite 

identification 
Trends Class 

p 
value 
t-test 
EDC 
vs 
WC 

Fold 
EDC/WC 

1 
3.05, 
4.07 

creatinine 
down 

energy metabolism 
2E-08 0.8 

2 
1.68, 
1.95 

arginine 
down 

amino acid 
8E-05 0.9 

3 
1.00, 
1.05 

valine 
down 

amino acid 
4E-06 0.9 

4 1.49 alanine down amino acid 4E-05 0.8 

5 
3.57 glycine 

down 
amino acid 

5.E-

03 0.8 

6 1.78 unknown at 1.78 ppm down . * 2E-07 0.8 

7 1.88 unknown at 1.88 ppm down . * 9E-05 0.9 

8 

4.48, 
9.28 

N-methylnicotinamide 
down 

pyridine, metabolite 
of niacin (vitB3) 

2.E-

04 
0.8 

9 
2.07 

N-acetylated 
compounds  down 

(phase II and other 
pathways) 

8E-06 0.9 

10 
2.73 dimethylamine 

down 

amine (bacterial 
origin) 

3.E-

02 
0.9 

11 

1.28 3-hydroxyisovalerate 

down 

short chain hydroxy 
acid, leucine 
catabolism 

2.E-

04 
0.8 

12 
1.36 2-hydroxyisobutyrate 

down 

short chain hydroxy 
acid 

2.E-

04 
0.9 

13 
1.08 3-hydroxyisobutyrate 

down 

short chain hydroxy 
acid, valine 
catabolism 

1.E-

03 
0.9 

14 
1.34 lactate 

down 
short chain fatty acid  

2.E-

04 
0.8 

15 
2.37 pyruvate  

up 

glycolysis, 
gluconeogenesis  

2E-06 1.2 

16 
6.86 

4-hydroxyphenyl 
acetate up 

phenolic compound 
(bacterial origin) 

7.E-

03 
1.2 

17 

6.90, 
7.19 

tyrosine 
up 

amino acid 
1.E-

03 
1.3 

18 
4.4 unknown at 4.40 ppm 

up 
. 

2.E-

02 
1.2 
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Figure Legends 

Figure 1. PCA score plots from urine samples at baseline (0 h) and at the specified time for 

each of the three chocolate treatments (a) NMR 0 h & 2 h, (b) NMR 0 h & 6 h, (c) LC/MS 0 h 

& 6 h. PCA score plots from urinary NMR spectra of 0-hour, 2-hours and 6-hours samples 

for flavan-3-ol-enriched dark chocolate (EDC) (d), dark chocolate (DC) (e) and white 

chocolate (WC) (f) 

Figure 2. Partial 600MHz 1H NMR spectra of urines from one subject: (A) baseline and (B)-

(D) after treatment indicated at 6 h  

Figure 3. MS intensity for markers of enriched dark chocolate (EDC) and dark chocolate 

(DC) intake and hippurate 6 hours after intake. White (WC) chocolate is the control group. All 

have p value < 0.0001 (Kruskal-Wallis test on 4 groups). 0-hour n=126; EDC, 6-hours n=38, 

DC, 6-hours n=42 and WC, 6-hours n=39. Selected m/z ions were m/z 183.052, 167.057, 

181.072, 371.044, 420.091, 180.066 (a to f respectively). (g) Map of the theobromine 

pathway. Cytochrome P450 (CYP2E1, CYP1A2) and N-acetyltransferase 2 (NAT2), are 

involved in the activation or detoxification of various xenobiotic compounds including alkaloid 

like theobromine (adapted from Arnaud 27) 

Figure 4. NMR intensity/ concentration of a selection of endogenous urine metabolites for 

the three chocolate treatments. (all groups) n= 39-42. Plots are for the times specified from 

data in NMR buckets (a) creatinine at 3.05 ppm, (b) creatinine at 4.07 ppm, (c) creatinine 

(KONELAB assay), (d) N1-methylnicotinamide (NMA) at 4.48 ppm, (e) tyrosine at 6.90 ppm 

and (f) pyruvate at 2.37 ppm. * p < 0.05 Mann-Whitney test 

Figure 5. NMR intensity of theobromine at 7.91 ppm in urines at 0 h (baseline) or 6 h 

(treatments) showing (a) overall variation with treatment, (b) grouping by treatment and 

gender, (c) grouping by treatment and age (younger < 29 y, older > 54 y). (all groups) n= 14-

42 n=14-42 per group. Note that because of the crossover design each treatment group has 

its own baseline (0 h) samples. *p < 0.05 Mann-Whitney test 
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