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Abstract. In this work, we present novel general analytical solutions
for the currents that are developed in the edges of network-like cir-
cuits when some nodes of the network act as sources/sinks of DC or
AC current. We assume that Ohm’s law is valid at every edge and that
charge at every node is conserved (with the exception of the source/sink
nodes). The resistive, capacitive, and/or inductive properties of the
lines in the circuit define a complex network structure with given im-
pedances for each edge. Our solution for the currents at each edge is
derived in terms of the eigenvalues and eigenvectors of the Laplacian
matrix of the network defined from the impedances. This derivation also
allows us to compute the equivalent impedance between any two nodes
of the circuit and relate it to currents in a closed circuit which has
a single voltage generator instead of many input/output source/sink
nodes. This simplifies the treatment that could be done via Thévenin’s
theorem. Contrary to solving Kirchhoff’s equations, our derivation al-
lows to easily calculate the redistribution of currents that occurs when
the location of sources and sinks changes within the network. Finally,
we show that our solutions are identical to the ones found from Circuit
Theory nodal analysis.

1 Introduction

The currents in each edge of an electrical circuit, which is composed of linear ele-
ments (i.e., resistance, capacitance, and inductance) and where conservation of charge
at each node is granted, are generally found by solving Kirchhoff’s equations [1].
In particular, for resistor networks, the solution for the currents at each edge is
related to random walks in graphs [2], first-passage times [3], finding shortest-paths
and community structures on weighted networks [4], and network topology spectral
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characteristics [5,6]. Although the relationship between currents and voltage differ-
ences follows Ohm’s law, network circuits modelling capabilities are enormous. For
example, circuit networks are used to model fractures in materials [7], biologically
inspired transport networks [8], airplane traffic networks [9], robot path planing [10],
queueing systems [11], to name a few.
In practice, resistor networks are used in various electronic designs, such as current

or voltage dividers, current amplifiers, or digital to analogue converters. These devices
are usually inexpensive, relatively easy to manufacture, and require little precision on
the constituents. In order to solve the voltages across these networks, two methods
are broadly used: nodal analysis and mesh analysis [1]. In the former, nodes are
labelled arbitrarily and voltages are set by using Kirchhoff’s current equations. In the
later, loops are defined with an assigned current, discarding any inner loops; then,
Kirchhoff’s voltage equations are solved. These constitute classic techniques of Circuit
Theory.
However, nodal and mesh methods (or even transfer function methods [12]) be-

come inefficient to recalculate the voltage drops across the network if the location of
inputs and outputs changes constantly, e.g., if the cathode and/or anode of a voltage
generator are moved from one node of the network to another. This switching situa-
tion is common in the modelling of the modern power-grid as an impedance network
circuit or in general supply-demand networks [5–8]. An example of this case is shown
in Figure 1 for a resistor network with a single source-sink nodes. Another redistri-
bution of currents, which is also poorly accounted by these methods, happens if a
single source node and single sink node are decentralized for multiple sources and/or
multiple sinks that preserve the initial input and output magnitudes [7,13]. In any
case, both former situations require the application of the classical Circuit Theory
methods for each configuration of the sources and sinks in order to find the currents
at every edge of the network.
In this work, we present general solutions for current conservative DC/AC circuit

networks with resistive, capacitive, and/or inductive edge characteristics. The novelty
in our derivations comes from expressing the currents and voltage drops in terms of
the eigenvalues and eigenvectors of the admittance (namely, the inverse of the edge
impedance) Laplacian matrix of the circuit network.
In order to derive our solutions we assume that the impedance values at every

edge and the location of the source/sink nodes are known. Our solutions give the
exact DC/AC currents that each edge of the circuit holds under these conditions and
are identical in magnitude to the ones found from nodal Circuit Theory analysis.
The practicality of our solutions comes from, allowing to compute the equivalent im-
pedance between any two nodes of the network directly [14–16] and allowing to easily
calculate the redistribution of currents that happens when the location of sources and
sinks is changed within the network (such as in the example of Fig. 1). In this sense,
we are performing a direct calculation of Thévenin theorem [17] without the need for
short-circuiting the system.
The scientific interest of our solutions comes from establishing a clear relationship

between the currents and voltages in DC/AC circuits with the topology invariants
of the network. In other words, it provides a rigorous link between network topology
and both the steady-state constant (DC) and oscillatory (AC) currents of a conser-
vative circuit network. Moreover, the approach we develop provides new analytical
insight into the transmission flow problem [18], exhibiting different features than other
available solutions, and allows to analyse resonant behaviour in linear circuits [19].
Previous studies about dynamics and topology informed on the intertwined relation-
ship that these observables hold. In particular, when a network of equal oscillators
becomes fully synchronous in their amplitudes and phases, the eigenvalues of the
Laplacian matrix (topology) provide bounds for the coupling strength of the oscil-
latory modes (dynamics) to become stable [20–22]. In our approach, the nodes are
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(a)

(b)

Fig. 1. Panel (a) shows a schematic representation of a resistor network with a single
input current of I = 6A at a source node S and a single output current of I = 6A at a
sink node T . Panel (b) shows the same resistor network but with multiple inputs I1, I2, I3
(nodes S1, S2, S3) and outputs I4, I5 (nodes T1, T2) which add to the same inflow/outflow
magnitudes than in panel (a). Changing the system from panel (a) to panel (b), or vice-versa,
generates a global redistribution of currents.

not considered to be amplitude synchronous since they are passive entities, however
our solutions provide an extension and a compelling link between topology and the
steady-state dynamic in complex structures. Our DC/AC circuit-network analysis
provides a solution other than the one from Kirchhoff’s analysis. At the same time, it
also provides solutions to two paradigmatic broadly used non-linear models of com-
plex system: the random walker moving along an arbitrary complex structure (the
DC solution) and the generalised Kuramoto phase-oscillator (i.e., the second order
Kuramoto model) network in its steady-state solution (AC solution). As a practical
application, we relate these solutions to closed circuits where a voltage generator is
present (instead of having open sources/sinks that feed current to the network) and
solve a simple network where we can compare our solutions to the ones provided by
solving directly Kirchhoff’s nodal equations.

2 DC/AC circuit networks

2.1 The mathematical model

The model we solve corresponds to a conservative circuit network with known in-
put/output net currents and obeys Ohm’s and Kirchhoff’s law for conservation of
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charge. We assume that the input (output) net current
∑
k Isk (

∑
k Itk) at the source

(sink) node s (t), its frequency ω (with ω = 0 for DC currents and ω > 0 for AC cur-
rents), and their phases are known. The extension to various input or output nodes
is done in Appendix C.
Ohm’s law linearly relates the current at an edge of the circuit with the voltage

difference between the nodes that the edge connects. Specifically,

I
(s,t)
kl =

V
(s,t)
k − V (s,t)l

Zkl
=
ΔV

(s,t)
kl

Zkl
, (1)

where I
(s,t)
kl is the current passing from node k to node l given a current source located

at node s and a sink node located at node t, ΔV
(s,t)
kl is the voltage difference, and

Zkl = Zlk is the impedance of the symmetric edge. Zkl depends on the edge’s resistive,
capacitive, and/or inductive properties, and the network topological properties of the
circuit.
The variables in equation (1) are complex numbers in the case of AC input/output

currents and real numbers for DC currents. In general, a resonance in the kl-edge
appears for a minimum of the impedance, namely, when the input/output frequency ω
is tuned to a frequency related to the natural frequency of the edge line. For example,
in the case that the edge is modelled by a series RLC circuit, the impedance of the
edge is

Zkl = Rkl + j ω Lkl

⎡

⎣1−
(
ω
(LC)
kl

ω

)2
⎤

⎦ = Zlk , (2)

where ω
(LC)
kl =

√
1/LklCkl is the natural frequency of the edge, γ

(RL)
kl = Rkl/Lkl is

the dissipation of the edge, Lkl is the edge’s inductance, Ckl is the edge’s capacitance,
Rkl is the edge’s resistance, and j =

√
−1. In this case, a resonance in the kl-edge ap-

pears if ω = ω
(LC)
kl . Consequently, our solutions are valid as long as the input/output

frequency ω is different from any of the M resonant frequencies associated to the
M ∈ [N − 1, N(N − 1)/2] edges of the connected circuit network.
The topological properties of the network are also included in the value of the

impedance of each edge. For instance, the impedance between two nodes that are
disconnected is assumed to be |Zkl| =∞ because Rkl =∞ for a non-existing line.
Otherwise, the impedance of two connected nodes is |Zkl| <∞. Hence, the inverse of
the impedance, which is known as the admittance, defines a complex valued matrix,
giving the edges complex weight connecting each pair of nodes in the circuit.
Kirchhoff’s charge conservation law states that current is conserved at every node

in the circuit. In other words, the inflow equals the outflow at a node, with the
exception of the source and sink nodes (the extension to multiple sources and sinks
is detailed in Appendix C). Specifically,

N∑

l=1

I
(s,t)
kl = δks F

in − δkt F out, (3)

where F in (F out) is the complex valued net current inflow (outflow) and δks (δkt) is
the Kronecker delta function. By assuming local conservation of charge at every node
of the circuit, we get that the total flow in the network needs to be null, namely,

global conservation of charge holds:
∑
k

∑
l I
(s,t)
kl = 0, which is fulfilled only if F in =

F out = F .
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Using equations (1) and (3), the model equations are

V
(s,t)
k

N∑

l=1

1

Zkl
−
N∑

l=1

V
(s,t)
l

Zkl
= F (δks − δkt) , (4)

which are expressed in matrix form as

GV(s,t) = F(s,t) , (5)

where G is the weighted admittance Laplacian matrix of the network [with complex

entries given by Gkl = δkl(
∑N
m=1 1/Zkm) + (δkl − 1)/Zkl], F(s,t) is the inflow/outflow

vector (with non-zero entries only at node s, F , and at node t, −F ), and V(s,t) is the
voltage potential at each node of the network. Properties of the weighted Laplacian
matrix G are dealt in Appendix A.

2.2 The analytical solutions

We are deriving two main analytical results in this work. An expression for the DC/AC
currents flowing through each edge of the network (as function of the location of the
source and sink nodes and the net inflow magnitude) and the equivalent impedance
between any two nodes of the network. Both results are expressed in terms of the
eigenvalues and eigenvectors of the Laplacian matrix G of equation (5), and are
found from the inversion of G (see Appendix B for details on the inversion of G).
We find that after the inversion ofG the voltage difference between any two nodes

of the circuit is given by

ΔV
(s,t)
kl = F

N−1∑

n=1

([vn]k − [vn]l)
λn(G)

(
[vn]

�
s − [vn]

�
t

)
, (6)

where λn(G) is the complex n-th eigenvalue of Laplacian G (with n = 0, 1, . . . , N − 1
and λ0(G) = 0 [2]) and [vn]k is the corresponding n-th eigenvector k coordinate (with
k = 1, . . . , N). With the exception of F (assuming the phase difference between the
net input and output flows is null, which guarantees global charge conservation),
the remaining quantities are complex numbers, hence, they have an amplitude and a
phase, and the � indicates complex conjugation. Thus,

ΔV
(s,t)
kl = F

N−1∑

n=1

[
α
(st)
kl (n) + j β

(st)
kl (n)

] ej φ
(st)
kl

λn(G)
, (7)

where α
(st)
kl (n) [β

(st)
kl (n)] is the real [imaginary] part of the product ([vn]k −

[vn]l)([vn]
�
s − [vn]�t ) and the phases φ

(st)
kl are

φ
(st)
kl =

−α(st)kl (n)λn(GI) + β
(st)
kl (n)λn(GR)

α
(st)
kl (n)λn(GR) + β

(st)
kl (n)λn(GI)

, (8)

with λn(GR) [λn(GI)] being the n-th eigenvalue of the real [imaginary] part of the
Laplacian matrix G (details on the properties of these eigenvalues are provided in
Appendix A).
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Our first main analytical result is the current passing through the kl-edge, namely,

I
(s,t)
kl =

F

Zkl

N−1∑

n=1

[
α
(st)
kl (n) + j β

(st)
kl (n)

] ej φ
(st)
kl

λn(G)
, (9)

where Zkl = |Zkl| ej ϕkl , ϕkl being the impedance phase value. This phase also cor-
responds to the phase difference between the voltage drop ΔV

(s,t)
kl between nodes k

and l and the current I
(s,t)
kl at the kl-edge.

Setting the source at node k and the sink at node l, equation (6) results in

ΔV
(k,l)
kl = F

N−1∑

n=1

| [vn]k − [vn]l |
2

λn(G)
, (10)

and the second main analytical result is derived, i.e.,

Z
(eq)
kl =

N−1∑

n=1

| [vn]k − [vn]l |
2

λn(G)
. (11)

Z
(eq)
kl is the effective weight that all edges linking node k with l weigh [5,6,15], namely,
the equivalent impedance. Its value is identical to the ones obtained by using Green
functions [14] or Circuit Theory analysis [1,17]. For example, if all series and parallel
impedances between nodes k and l are added, then the final value is equal to the one
that is found from equation (11).

2.3 Practical examples

Here we show how to relate the solution in equation (9) to the currents in the edges
of a network-like circuit for given input/output nodes with the currents in the edges
of a closed circuit with a single voltage generator. As it is known, solutions for closed
linear circuits with given boundary voltage values correspond to finding solutions
of the Laplace equation without sources, which are widely known. Hence, finding
a relationship between equation (9) with the closed circuit currents, in our case, is
equivalent to finding a relationship between topological invariant properties of the
network structure (impedances) with Laplace boundary problem solutions.
For a single source-sink problem (like the one depicted in Fig. 2a) to be trans-

formed to a Laplace problem (Fig. 2b), the source and sink nodes (S and T ) are
plugged into a voltage generator. The known data from the source-sink problem is
the fixed input net current F , which the generator will need to provide to the network
circuit between nodes S and T . Hence, the voltage requirement for the generator to
supply is: εst = Vs − Vt = ρst F , where ρst is the equivalent resistance between the
nodes S and T of the known network circuit structure (dashed square in Fig. 2b).
The equivalent resistance is found from [3,5,6]

ρst =

N−1∑

n=1

1

λn
([vn]s − [vn]t)

2
, (12)

where λn (vn) is the real n-th eigenvalue (eigenvector) of the resistor network Lapla-
cian matrix (which is also positively defined because its entries are all real valued).
Equation (12) is the resistive version of equation (11). Then, the corresponding iden-
tical Laplace problem to the single source-sink pair of nodes is solved for the border
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(a)

(b)

Fig. 2. Panel (a) shows a schematic representation of a resistor network with a single input
current of I = 6A at a source node S and a single output current of I = 6A at a sink node
T . Panel (b) shows the same resistor network but with a voltage generator and a resistive
line connecting nodes S and T such that the inflow (outflow) at node S (T ) equals I.

conditions corresponding to a voltage generator supplying a constant voltage differ-
ence εst between nodes S and T of magnitude

εst = ρst (G) F , (13)

where G = {V, E} is the node and edge set which define the circuit network.
Equation (13) establishes a direct relationship between solving Laplace problems in
circuits with transportation problems. Consequently, this relationship increases the
importance of our voltage solution in terms of the Laplacian matrix spectral proper-
ties.
As another practical example, we compare our solutions for a square-like resistor

network with equal edges with the solutions found from linear Circuit Theory analysis.
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We index the nodes in the square as s, a, t, b in clockwise direction and the edge’s
resistances as Rsa = Rat = Rsb = Rbt = R. Setting an input (output) source (sink) at

node s (t) with magnitude F
(st)
s = I (F

(st)
t = −I), nodal analysis gives the following

results for the edge currents that this circuit system has: Isa = Isb = I/2 and Ita =
Itb = −I/2. The resultant equivalent resistance between nodes s and t is

ρst =

(
1

Rsa +Rat
+

1

Rsb +Rbt

)−1
= R . (14)

In our framework, we transform the resistor network into a topological problem,
i.e., we analyse the Laplacian matrix G of the network. Applying Ohm’s and
Kirchhoff’s laws, a square-like resistor network has the following conductance ma-
trix G [see Eq. (5)]

G =
1

R

⎛

⎜
⎜
⎜
⎝

2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

⎞

⎟
⎟
⎟
⎠
=
1

R
L , (15)

where the first column/row corresponds to node s, then node a, node b, and finally
node t. The eigenvalues of G are λ0 = 0, λ1 = λ2 = 2/R, and λ3 = 4/R, and the
eigenvectors are v0 =

1
2 (1, 1, 1, 1)

T , v1 =
1√
2
(0,−1, 1, 0)T , v2 = 1√

2
(1, 0, 0,−1)T , and

v3 =
1
2 (−1, 1, 1,−1)T . Thus, using equation (6) for the edge current between nodes s

and a, we have

I(st)sa =
ΔV

(st)
sa

R
=

3∑

n=1

([vn]s − [vn]a)
I

Rλn
([vn]s − [vn]t) ,

that results in

I(st)sa = I ([v2]s − [v2]a)
1

2
([v2]s − [v2]t) =

I

2
, (16)

where the other eigenvector modes in the sum are cancelled or have null coordinates.
Similarly, the remaining edge currents are calculated and found identical to the ones
from nodal analysis. Moreover, the equivalent resistance for nodes s and t using
equation (12) is

ρst =
([v2]s − [v2]t)

2

2/R
= R , (17)

which again, is identical to the one in equation (14).
We can extend this problem easily for the case where the square circuit has equal

impedances Z = R+ j ω L [1− (ω20/ω)2] in every edge, where ω20 = 1/LC is the char-
acteristic frequency of each edge and ω is the input frequency (F

(st)
s (T ) = I ej ω T =

F
(st)
t (T ), for every time T ). Then, the admittance Laplacian matrix entries from
equation (5) are given by

Gkl = δkl

(
4∑

m=1

1

Zkm

)

− (δkl − 1)
Zkl

. (18)

The inverse of the impedance (admittance) is given by

1

Zkl
= Akl

e−j ϕ

|Z| , (19)
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where Akl = 1 if node k is connected to node l, Akl = 0 otherwise, and tan(ϕ) =
L (ω2 − ω20)/Rω. The resultant admittance Laplacian matrix in this case is

G = GR + jGI =
e−j ϕ

|Z| L =
L

Z
, (20)

with GR (GI) being the real (imaginary) part of the entries in equation (18) and
L the Laplacian matrix from equation (15). Consequently, the eigenvalues of G are
simply the eigenvalues of L divided by the impedance Z and these matrices share the
same eigenvectors.
In this case (the square circuit with identical impedances for its edges), the AC

current flowing between nodes s and a is

ΔV
(st)
sa

Zsa
=
I ej ω T

Zsa
([v2]s − [v2]a)

|Z|
2 e−j ϕ

([v2]s − [v2]t) ,

I(st)sa (T ) =
I

2
ej ω T , (21)

which is the same result as in the equal resistances DC case [Eq. (16)] for the modu-
lus because Zsa = Z. Furthermore, the analogy is further seen when calculating the
equivalent impedance between the source (s) and sink (t) nodes using equation (11).
This results in

Z
(eq)
st =

|[v2]s − [v2]t|
2

2/Z
= Z. (22)

The solution is identical to the one that Circuit Theory derives and is in direct
correlation with the DC problem as expected.
In more general scenarios, the relationship between the DC and AC circuit is not

direct. In such situations, the complex entries of the Laplacian matrix for the AC
case are not related to the DC Laplacian matrix. Hence, further assumptions need
to be done to find analytical solutions. For instance, one could have to impose that
the input frequency to be larger than the natural frequencies of the lines (ω > ωkl for
every edge), such that the imaginary part of the Laplacian be positive semi-defined
(see Appendix A).

3 Conclusions

The approach we develop provides new analytical insights into the transmission flow
problem and exhibits different features than other available solutions. Moreover, it
provides a tool to achieve the voltage/current solutions and to analyse resonant be-
haviour in linear circuits. As a practical application, we relate these solutions to closed
circuits where a voltage generator is present (instead of having open sources/sinks
that feed current to the network) and solve a simple network where we can compare
our solutions to the ones provided by solving directly Kirchhoff’s equations. Our find-
ings help to solve problems, where the input and output nodes change in time within
the network, more effectively than classical Circuit Theory techniques.

All authors thank the Scottish University Physics Alliance (SUPA) support. NR also ac-
knowledges de support of PEDECIBA, Uruguay. MSB acknowledges the support of EPSRC
grant Reference EP/I032606/1.
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Appendix A: Complex weighted Laplacian matrix characteristics

The weighted Laplacian matrix of the network G with edge properties given by the
symmetric line impedances Zkl = Zlk has the following complex-valued entries

Gkl = δkl

(
M∑

m=1

1

Zlm

)

+
(δkl − 1)
Zkl

, (A.1)

hence,
N∑

l=1

Gkl = 0 , ∀ k, (A.2)

which is the first requirement for a Laplacian matrix: the zero-row-sum property.
The eigenspace of G is composed of a set of N complex eigenvalues λn and eigen-

vectors vn with n = 0, 1, . . . , N − 1, such that

Gvn = λnvn , ∀n ,

thus,

GP = PΛ , (A.3)

where P = {v0, v1, . . . ,vN−1} is a unitary matrix (I = P−1P = P�TP, I being the
identity matrix) of eigenvectors and Λ is a diagonal matrix of eigenvalues (Λkl =
δkl λk−1).
Due to equation (A.2), G has a null eigenvalue (referred to as λ0 in the follow-

ing) associated to the kernel vector v0 = 1/
√
N , where 1 = (1, . . . , 1). Using equa-

tion (A.2), G1 = 0 = λ01. Hence, the kernel of the matrix (the space of eigenvectors
associated to the null eigenvalues) is at least of dimension 1 and direct inversion of
the matrix is impossible. This is the second property of a Laplacian matrix,

det(G) = det(PΛP−1) = det(Λ) =
N−1∏

n=0

λn = 0 , (A.4)

which implies that the rank of the matrix is strictly less than N .
The third property is that Laplacian matrices are positive semi-defined. In par-

ticular, for any column vector x, the Dirichlet sum is such that

x ·Gx = 1
2

M∑

k=1

N∑

l=1

Wkl (xk − xl)2 ≥ 0 , (A.5)

where “·” is the inner product operation and Wkl = 1/Zkl is the weighted adjacency
matrix of the circuit network. This inequality holds only if Wkl ≥ 0 for all k and l.
As a consequence, it implies that all eigenvalues are non-negative, because x can be
any of the vn eigenvectors. In that case,

0 ≤ vn ·Gvn = λnvn · vn = λn ,

where the last equality is possible because of the unitary property of the eigenvectors

(vn · vm =
∑N
k=1[vn]k[vm]

�
k = δnm). However, equation (A.5) is always valid only for

Laplacian matrices with non-negative real entries.
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For complex entries, such as inG, the inequality in equation (A.5) can be analysed
by splitting the matrix G into a real (GR) and an imaginary (GI) part, i.e., G =
GR + jGI , where

GR = δkl

(
M∑

m=1

cos (ϕlm)

|Zlm|

)

+
(δkl − 1) cos (ϕkl)

|Zkl|
, (A.6)

GI = −δkl

(
M∑

m=1

sin (ϕlm)

|Zlm|

)

− (δkl − 1) sin (ϕkl)|Zkl|
, (A.7)

and Zkl = |Zkl| ej ϕkl . The Laplacian matrix GR contains the information of the net-
work resistive part and the Laplacian matrix GI contains the information of the
network reactive part. In other words, the dissipative and the resonant structure of
the circuit, respectively.
In order to have a positive (or negative) semi-defined Laplacian matrix, the

weighted adjacency matrix elements need to be positive (or negative) for all pairs

of nodes. For example, for the real part, if W
(R)
kl = cos(ϕkl)/|Zkl| ≥ 0, then GR

is positive semi-defined. Consequently, the validity of this property depends on
the magnitude of the phases that the line impedances introduce. In particular, for

lines that can be modelled by series RLC, the W
(R)
kl ≥ 0 for every kl-edge, hence,

GR has a non-negative spectra of eigenvalues. However, in such a case, the sign

of W
(I)
kl = sin(ϕkl)/|Zkl| depends on the input/output frequency [see Eq. (2)]. For

ω < ω
(LC)
kl for all kl-edges, W

(I)
kl ≥ 0, thus GI has a non-negative spectra of eigen-

values as GR. For ω > ω
(LC)
kl , W

(I)
kl ≤ 0, thus, the opposite happens.

In general, a rule of thumb for knowing the character of the spectra of the matrix
G is missing (the elements are complex and are unbounded, namely, the elements
can be outside the complex-plane positive-quadrant). However, the unitary property
of the associated eigenvectors set, {v0,v1, . . . ,vN−1}, is always valid, meaning that

vn · vm =
N∑

k=1

[vn]k [vm]
�
k = δnm , (A.8)

and
[
P−1P

]
kl
=

N−1∑

n=0

[vn]k [vn]
�
l = δkl . (A.9)

Equation (A.8) is the verification that the eigenvector set is composed solely by
linearly independent vectors. Equation (A.9) is the completeness property, and it is
the verification that the set is also a generating set. Hence, it conforms a basis of the
linear functions that operate over the set of nodes.

Appendix B: Inversion of the Laplacian matrix and the node
voltage potential solutions

Due to the existence of the null eigenvalue in any Laplacian matrix, the inverse is ill
defined. We overcome this problem by means of a translation in equation (5) and the
removal of the kernel from the eigenvector base. The process results in what is known
as the Moore-Penrose inverse Laplacian matrix [23]. Namely,

GV(st) +
J

N
V(st) = F(st) + e (st), (B.1)
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where all entries of matrix J are equal to unity (Jkl = 1) and e
(st)
i = 1

N

∑
k V

(st)
k , with

i = 1, . . . , N , is the resultant vector of the product between J/N and V(st).
From equation (A.3) we can write the elements of G in terms of its complex

eigenvalues and eigenvectors as

Gkl =

N−1∑

n=1

[vn]k λn [vn]
�
l , (B.2)

where the term corresponding to n = 0 has been removed because λ0 = 0. Similarly,
we define the following matrix X entries by

Xkl =

N−1∑

n=1

[vn]k
1

λn
[vn]

�
l . (B.3)

Here we show that X+ J/N is the inverse matrix of G+ J/N . In general, G
is a matrix that represents the edge admittances, whereas X represents the edge
impedances. First, we note that J2 = N J, hence, J2/N2 = J/N . Then, we observe
that GJ = 0 because of the zero-row-sum property. Similarly, XJ = 0. This is seen
from,

N∑

l=1

Xkl Jlm =

N∑

l=1

Xkl =

N−1∑

n=1

[vn]k
1

λn

N∑

l=1

[vn]
�
l .

However, as equation (A.8) holds for every eigenvector of G, in particular, v0 ·
vm = 1 · vm/

√
N = δ0m, then

∑N
l=1[vn]

�
l = 0 for every spanning eigenvector (n �= 0).

Finally,

[XG]kp =

N∑

l=1

(
N−1∑

n=1

[vn]k
1

λn
[vn]

�
l

N−1∑

m=1

[vm]l λm [vm]
�
p

)

=

N−1∑

n=1

N−1∑

m=1

[vn]k
1

λn

(
N∑

l=1

[vn]
�
l [vm]l

)

λm [vm]
�
p ,

where, using equation (A.8), results in

[XG]kp =

N−1∑

n=1

[vn]k [vn]
�
p . (B.4)

Now, observing that equation (A.9) can be written as

1

N
+
N−1∑

n=1

[vn]k [vn]
�
p = δkp ,

Equation (B.4) is further simplified to

[XG]kp = δkp −
1

N
= [I]kp −

[J]kp
N
. (B.5)

Consequently, we have shown that

(

X+
J

N

)(

G+
J

N

)

= I . (B.6)
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Returning to equation (B.1), and using equation (B.6), we obtain the voltage
potentials at each node

V(st) =

(

X+
J

N

)

F(st) + e (st) , 0 (B.7)

where we use that Xe (st) = 0 and J e (st) = N e (st). If global conservation of charge
is granted, namely, if the input current equals the output current in phase and mag-
nitude, then, JF(st) = 0. Otherwise, JF(st) is a vector with all the elements equal
to the magnitude and/or phase difference between the input and output net currents
[see Eq. (3)]. We note that the role of e (st) in equation (B.7) is to add an arbitrary
constant to the node voltage potential. This is easily interpreted as the arbitrary en-
ergy reference point. Such arbitrary value is eliminated once voltage differences are
calculated. Moreover, voltage differences eliminate also the possible constant value
given by JF(st). Consequently, the voltage difference between two arbitrary nodes k
and l in the network is given by

ΔV
(st)
kl = V

(st)
k − V (st)l =

[
XF(st)

]

k
−
[
XF(st)

]

l
. (B.8)

Thus,

ΔV
(st)
kl = F in ( [X]ks − [X]ls )− F out ( [X]kt − [X]lt )

= F [( [X]ks − [X]ls )− ( [X]kt − [X]lt )]

= F

[
N−1∑

n=1

([vn]k − [vn]l)
1

λn

(
[vn]

�
s − [vn]

�
t

)
]

.

Appendix C: Many input/output flows and the relationship
to voltage generators

In order to analyse how equation (B.8) changes when many sources and sinks are
present, we need to rewrite equation (3) to include the new sources of inflow and
sinks of outflow. Thus, in general, the net current at a node is

N∑

l=1

I
(Vs,Vt)
kl = F

(
∑

s∈Vs
as δks −

∑

t∈Vt
bt δkt

)

, (C.1)

where Vs (Vt) is the set of nodes that act as sources (sinks) and as (bs) is the frac-
tion of the total inflow (outflow) F that goes through node s ∈ Vs (t ∈ Vt), namely,∑
s∈Vs as = 1 (

∑
t∈Vt bt = 1). Consequently, global conservation of charge is granted.

Substituting equation (C.1) into equation (B.8), the voltage difference between nodes
k and l in the circuit network with multiple sources and sinks is

ΔV
(Vs,Vt)
kl = F

[
N−1∑

n=1

([vn]k − [vn]l)×
1

λn
×
(
∑

s∈Vs
as [vn]

�
s −

∑

t∈Vt
bt [vn]

�
t

)]

.

When multiple sources and sinks exist (e.g., Fig. C.1a), then the transformation of
the problem to a closed circuit problem requires the inclusion of a single super source
S node and super sink node T need to be created (Fig. C.1b). All original source
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(b)

(a)

Fig. C.1. Panel (a) shows a schematic representation of a resistor network with many input
(I1, I2, I3, nodes S1, S2, S3) and output (I4, I5, nodes T1, T2) currents. Panel (b) shows the
same resistor network but as a closed system containing a voltage generator and a new
resistor set. These supply the input (output) currents at nodes S1, S2, S3 (T1, T2) via the
new resistors (R1, R2, . . .) with an identical magnitude as in panel (a).

(sink) nodes are then connected to the new super source (sink) node that provides
the total input (output) that the multiple sources (sinks) were feeding (consuming)
in the original system G, namely, I (−I). Consequently, the multiple source-sink
configuration in G is transformed into a single S-T pair configuration of a new network
G̃ that has 2 nodes more than the original network G. In such conditions, the former
process enables to analyse the new network setting by means of a single generator
that connects these two new nodes. In other words, once a super source S (sink T )
that connects to all the original sources Si ∈ Vs ⊂ V (sinks Tj ∈ Vt ⊂ V) is defined,
then a Laplace problem can be defined by setting a voltage generator providing

ε̃ST = ρST

(
G̃
)
I, (C.2)

where the equivalent resistance ρST(G̃) between the super source and super sink is
unknown. This is because the impedance (resistance) values for the new edge con-
nections between the multiple sources Si (sinks Tj) to the super source are unknown.
Moroever, they have to be set such that the current entering the network circuit
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through the old multiple sources (sinks) is identical to the one the particular source
(sink) supplies (consumes), e.g., as in Figure C.1b.
In order to determine the impedances (resistances) of the edges connecting the

super source (sink) to the multiple source (sink) nodes, we observe that:
{
VS − V ini = Rini ai I , if i ∈ {S}
V outj − VT = Routj bj I , if j ∈ {T }

,

where neither the voltages nor the resistances are known. Nevertheless, the voltages
of the super nodes fulfil equation (C.2), thus, we can arbitrarily set the unknown

resistances, Rini and R
out
j , for the new edges to unity. Consequently, ρST(G̃) can be

derived and the node voltages for each of the multiple sources and sinks calculated,
i.e., {

V ini = VS − 1ai I = (ρST − ai)I + VT ,
V outj = VT + 1bj I = (−ρST + bi)I + VS ,

(C.3)

where we use the fact that ε̃ST = VS − VT [Eq. (C.2)] and note that both experssions
necessarily have always an arbitrary constant (VS and VT ).
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