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Abstract 

We propose a simple and robust approach for investigating uncertainty in the results 

of inversion in geophysics. We apply this approach to inversion of Surface Nuclear 

Magnetic Resonance (SNMR) data, which is also known as Magnetic Resonance 

Sounding (MRS). Solution of this inverse problem is known to be non-unique. We 

inverse MRS data using the well-known Tikhonov regularization method, which 

provides an optimal solution as a trade-off between the stability and accuracy. Then, we 

perturb this model by random values and compute the fitting error for the perturbed 

models. The magnitude of these perturbations is limited by the uncertainty estimated 

with the singular value decomposition (SVD) and taking into account experimental 

errors. We use 106 perturbed models and show that the large majority of these models, 

which have all the water content within the variations given by the SVD estimate, do 

not fit data with an acceptable accuracy. Thus, we may limit the solution space by only 

the equivalent inverse models that fit data with the accuracy close to that of the initial 

inverse model. For representing inversion results, we use three equivalent solutions 

instead of the only one: the “best” solution given by the regularization or other inversion 

technic and the extreme variations of this solution corresponding to the equivalent 

models with the minimum and the maximum volume of water. For demonstrating our 

approach, we use synthetic data sets and experimental data acquired in the framework of 

investigation of a hard rock aquifer in the Northern Ireland (County Donegal).  

 

Key words: hydrogeophysics, Ireland, hard rock aquifer, magnetic resonance 

sounding, MRS, surface NMR, SNMR. 
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Introduction 

NMR phenomenon can be observed in nuclei possessing both magnetic moment and 

angular momentum (hydrogen H1, for example). It consists of selective absorption and 

transmission of electromagnetic energy by atomic nuclei. Surface NMR method 

(SNMR), also known as Magnetic Resonance Sounding (MRS) is an application of the 

NMR phenomenon to groundwater investigation (Semenov, 1987; Schirov et al., 1991; 

Legchenko and Valla, 2002; Legchenko, 2013; Behroozmand et al., 2015). The 

resonance behavior of proton magnetic moments ensures that the method is sensitive 

only to groundwater. Thus, the method is selective. The capacity of a non-invasive 

detection of groundwater is the competitive advantage of MRS compared to other 

geophysical tools. For performing MRS measurements, we use a wire loop on the 

ground. MRS is a large-scale method and the investigated volume depends on the size 

of the loop. Usually, the same loop acts as a coincident transmitting/receiving antenna. 

However, separated transmitting and receiving loops can be also used (Legchenko and 

Pierrat, 2014). The system is tuned to the Larmor frequency (the resonance frequency 

for hydrogen nuclei of water) known from measurements of the earth’s magnetic field. 

Additionally to detection of groundwater, MRS allows locating water-saturated 

geological formations. One sounding consists of generating a pulse of oscillating 

electrical current in the transmitting loop and measuring the amplitude of MRS signal 

after the pulse is terminated. These measurements are performed with different values 

of the current in the loop. The shape of the sounding curve allows resolving aquifers 

using inversion procedure.  
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Inversion of MRS data is ill-posed. One of the most popular methods of MRS 

inversion is the Tikhonov regularization (Tikhonov and Arsenin, 1977). It allows 

obtaining the Tikhonov solution based on the assumption of the smoothness of the 

inverse model and selecting the parameter of regularization taking into account 

experimental errors. The Tikhonov solution is unique, but different equivalent solutions 

may be also obtained using other inversion procedures. For example, assumptions on 

the solution shape other than the smoothness constrain can be used for performing 

blocky inversion (Mohnke and Yaramanci, 2002). Uncertainty in the inverse model can 

be estimated using different methods. The singular value decomposition (SVD) allows 

estimating resolution of the MRS inverse problem assuming that the problem is linear 

(Weichman et al., 2002; Müller-Petke and Yaramanci, 2008). Guillen and Legchenko 

(2002a) reported application of the linear programming algorithm to investigation of the 

solution space. Weng (2010) reported application of the Occam’s inversion using a non-

linear formulation of the MRS inverse problem. Inversion for the electrical resistivity 

(Braun and Yaramanci, 2008) as well as inversion using MRS data measured in varying 

geomagnetic field (Legchenko et al., 2016) also require application of non-linear 

algorithms. For both, linear and non-linear MRS inverse problems the Monte Carlo 

inversion has been reported successful (Guillen and Legchenko, 2002b; Chevalier et al., 

2014). Parsekian and Grombacher (2015) applied the bootstrap statistics for accelerating 

uncertainty estimate suitable for linear as well as non-linear inverse problems. One can 

see that many different approaches can be used but regardless of the inversion scheme, 

knowledge of the uncertainty in the selected solution is a matter of practical importance.  
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We developed a simple and robust approach for investigating uncertainty in each 

particular inverse model by applying random perturbations to this model. We present 

the case of application of this approach to the inverse models obtained with the 

Tikhonov regularization method, but random perturbations can be also applied when 

using any other inversion algorithm. We carried out field tests aiming to evaluate MRS 

efficiency and to optimize the methodology of MRS application to investigation of 

hard-rock aquifers. Any hard-rock aquifer is an important, but difficult target for 

geophysics and hydrogeology because of their high heterogeneity and generally low 

water content. In this paper, we use MRS data measured in Ireland, but our results can 

be easy extended to other parts of the world.  

In Ireland, highly heterogeneous weathered/fractured hard rock aquifers underlay 

over 60 % of the island (Comte et al., 2012). These aquifers have generally low 

permeability and porosity and are typical for post-glaciated temperate regions covering 

large areas in the Northern hemisphere (Comte et al., 2012; Cassidy et al., 2014). The 

recent glaciations have eroded the shallow part of the bedrock and overlaid this 

formation by highly heterogeneous glacial and fluvioglacial materials of variable 

thicknesses. Geological heterogeneity controls the groundwater recharge and aquifer 

properties (Misstear et al, 2008; Comte et al., 2012; Cai and Ofterdinger, 2015). Under 

these conditions, sparse borehole information may be often incomplete and the MRS 

method has the potential to provide a valuable contribution to investigation of 

groundwater resources.  

Background 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 

6 

For performing MRS measurements, we use the coincident loop configuration. The 

loop is energized by pulses of alternating current )cos()(
00
tIti   and acts as the 

transmitter. The pulse moment 
0

Iq   is a product of the current amplitude 
0

I  and 

pulse duration  . After the pulse is cut off, the loop is switched to the receiver. In non-

magnetic rocks, one pulse is sufficient for measuring the free induction decay signal 
0

e  

as a function of the pulse moment q . Assuming the horizontal stratification, the 

amplitude of MRS signal can be computed as  

 


V

dVzwMB
I

qe )()(

0

0

0


,     (1) 

where 


B  is the transversal component of the loop magnetic field, 


M  is the 

transversal component of the nuclear magnetization and )(zw  is the water content 

distribution versus depth (Legchenko and Valla, 2002). Under near resonance 

conditions  

)2/sin(
0




 BMM .     (2) 

The water content in the subsurface )(zw  is solution of the integral Equation (1). For 

resolving this equation, we approximate it by a system of algebraic equations  

0
eAw  ,     (3) 
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where 






ji
a

,
A  is a rectangular matrix of JI  , T

Ii
eeee ),..,,..,,(

000201


0
e  is the 

set of experimental data and T

Jj
wwww ),..,,..,,(

21
w  is the water content.  

Discretization of the Equation (1) consists of defining the number and values of the 

pulse moment and the depth 
j

z  and the thickness 
j

z  of layers in the inverse model 

that compose columns in the matrix A  with respect to  







J

j
jjjj

zzzzz
1

max1
, ,   (4) 

where 
Jj

zzzz  ....
21

 and 
max

z  is the maximum depth of water 

saturated formation that may contribute to measured MRS signal. In general, the 

number of pulses should be minimized for accelerating fieldwork but should not be less 

than the number of layers in the Equation (4) for not degrading resolution (Legchenko 

and Shushakov, 1998; Dalgaard et al., 2016). We recommend to select pulses so that 

each pulse moment 
i

q  corresponds to the maximum of the MRS signal from one model 

layer 
j

z . In practice, this rule is usually not respected because pulses are set by the 

hardware following approximately the logarithmic distribution of the pulse moments. 

For selecting the thickness of each layer (
j

z ), we compute the correlation matrix R  

composed of the Pearson correlation coefficients between columns of the matrix A   

ADDAR
T

      (5) 

where D  is a diagonal matrix with the elements  
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I

i
ji

jj

a

d

1
,

2

,

1
 .      (6) 

The discretization rule consists of selecting 
j

z  and the correlation coefficient ( r ) 

between the neighboring layers so that 
JJjjjj

rrrr
,12,11,

...


 . Thus, varying r  

we may obtain different distributions with respect to Equation (4). Straightforward 

application of this rule may provide very thin shallow layers. In practice, extensive 

horizontal thin layers is a rare case and we limit the minimal thickness by setting 

5.0
j

z  m.  

The singular value decomposition (SVD) allows investigating resolution of the MRS 

inverse problem. For that, we present the matrix A  as a product of three orthogonal 

matrixes: U , V , and S  (Aster et al., 2005) 

TUSVA  ,      (7) 

where U  is an II   matrix representing the data space, V  is an JJ   matrix 

representing the model space and S  is an JI   diagonal matrix with nonnegative 

diagonal elements (singular values). The model resolution matrix 
m

R  describing how 

well the recovered model is able to represent the original model is  

TVFVR 
m

,    (8) 
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where F  is an JJ   diagonal matrix representing the effect of regularization (the 

filter factor). Without regularization IF   with I  being the identity matrix. The model 

will be perfectly recovered by the inversion if IR 
m

.  

The discretization is an iterative procedure. It consists of: 1) selecting the number 

and distribution of pulse moments (often I  is provided by the hardware during 

fieldwork and cannot be increased); 2) selecting the number of model layers J  in 

Equation (3) with respect to IJ  ; 3) computing the thicknesses of the model layers 

(
j

z ) and the model resolution matrix 
m

R ; 4) discretization is completed when 

IR 
m

.  

Sensitivity of the inversion to experimental and computational errors can be 

characterized by the condition number, which is the ratio of the maximum (
max

s ) and 

minimum (
min

s ) singular values. For stable inversion the matrix A  should have  

1/)(
minmax

 sscond A .     (9) 

For estimating uncertainty caused by experimental noise we assume independent and 

identically distributed normal data errors 2 . In this case, the covariance for the model 

becomes  

TVVFSw 22)( Cov .     (10) 

The corresponding 95% confidence intervals for w  can be computed as  
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 )(96.1
95.0

ww Covdiag ,     (11) 

and its standard deviation as  

2/96.1/
95.095.0

www  .     (12) 

For inversion of MRS data, the Tikhonov regularization method (Tikhonov and 

Arsenin, 1977) is often used. Minimization of a Tikhonov functional )(M  provides an 

approximate solution of the Equation (3)  

min)(
22


LL

M weAw
0

 ,   (13) 

where 0  is called the regularization parameter. Regularization acts as a filter for 

the solution. The Tikhonov filter function F  is a diagonal matrix with the diagonal 

elements given by the filter factors is  




j

j

j
s

s
f

2

2

,      (14) 

where 
j

s  are the singular values.  

MRS provides the water content and the thickness of water-saturated formation, 

which allows estimating the volume of water per surface unit  





J

j
jj

zwV
1

.     (15) 

The water volume is a more stable parameter than the water content 
j

w  and the 

thickness 
j

z  separately (Legchenko et al., 2004). However, one should be careful 
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when using the water volume estimates provided by MRS because the water volume can 

be reliable only for formations that MRS inversion is able to resolve. For example, the 

resolution of the MRS inversion is known to degrade with increased depth. 

Consequently, MRS estimation of the water volume in deep layers may be erroneous 

without additional information about the depth and the thickness of these layers.  

Inversion procedure 

For performing inversion, we have to approximate an integral Equation (1) by a 

matrix Equation (3). The first step consists of defining of the maximum depth of 

investigation 
max

z . It can be estimated taking into account measuring conditions (loop, 

pulse moment, rocks electrical conductivity) and assuming as a test layer a 1-m-thick 

layer of bulk water (Legchenko et al., 2002). Hunter and Kepic (2005) alternatively 

suggested to use a homogeneous test layer of infinite thickness with the water content 

corresponding to that expected in the investigated formation. The depth to the top of this 

layer producing measurable MRS signal is considered as 
max

z . In practice, a small 

difference in 
max

z  estimation obtained with these two approaches is not critical because 

it only affects the water content in the last layer that cannot be resolved by inversion 

anyway. Then, we prescribe the thickness of each model layer to increase progressively 

with depth and with respect to conditions given by Equation (4). We define the number 

of the model layers for inversion so that when setting 0  we obtain IR 
m

, where 

I  is the identity matrix. With such a discretization, inversion is able to resolve Equation 
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(3) for noiseless data. In practice, these ideal conditions do not exist and consequently, 

the solution can be obtained with some uncertainty  

Δwww  ,      (16) 

where Δw  is an estimate of the uncertainty (Equation 12). Note that the SVD 

assumes that the inversion is linear and that the noise is normally distributed. However, 

these assumptions are not always justified for MRS data. Indeed, for inversion we 

assume a non-negative solution and optimization is carried out considering complex 

MRS signal but optimizing only amplitudes (Chevalier et al., 2014). Thus, for real data, 

the SVD estimate of the uncertainty is an approximation. For a non-linear problem, the 

inversion and uncertainty analysis can be performed using Monte Carlo based 

algorithms (Sambridge and Mosegaard, 2002). However, an approach based on the use 

of an entirely randomized generation of models is known very inefficient and hence 

time-consuming. For accelerating convergence, different assumptions on the solution 

are usually applied. We propose to use the Monte Carlo approach for investigating 

uncertainty in the inverse model provided by any inversion method (regularization, 

block inversion etc). The inverse problem can be linear as well as non-linear.  

In this paper, we obtain 
mod

w  using the Tikhonov regularization method assuming 

the non-negative water content. Then, we perturb this model within the uncertainty 

given by the SVD. The water content in each layer of the perturbed model thus becomes  













00

,95.0mod

jj

jnjjj

wthenwif

xwww
.    (17) 
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For generating pseudo-random numbers 
jn

x
,

 ( Nn ,..,2,1 ) uniformly distributed 

between -1 and 1, we use the multiply-with-carry method (Marsaglia and Zaman, 1991). 

Note that each perturbed model respects conditions given by Equation (16), but not 

necessary fits well experimental data. An estimate of the fitting error is given by the 

root mean square error  





I

i
ii

ee
I

RMSE
1

2

mod
)(

1
,    (18) 

where 
i

e  and 
i

e
mod

 are measured and theoretical amplitudes respectively.  

Let us generate N  perturbed models and for each model we compute the fitting error 

n
RMSE . We consider these values as a set of random numbers characterized by the 

mean M  and the standard deviation S   

























N

n
n

N

n
n

MRMSE
N

S

RMSE
N

M

1

2

1

)(
1

1

.     (19) 

The obtained set of random values can be also characterized by the probability 

density function ( PDF ). The PDF  is a function, whose value at any given point 

provides a relative likelihood that the value of the random variable ( RMSE  in our case) 

would equal that point. If we assume a normal distribution of RMSE  then the PDF  

can be computed using corresponding mean and standard deviation (Billingsley, 1979). 

The PDF  can be also computed statistically. For that, we count the number of 

perturbed models with RMSE  corresponding to each of the equal intervals of the 
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RMSE  (
RMSE

 ) so that 
minmax

)( RMSERMSE
RMSE

 . For verifying whether the 

distribution of RMSE  is normal or not, we compute the PDF  using both the mean and 

the standard deviation and statistically. If the normal distribution curve fits the statistical 

one then the distribution is normal. Otherwise, it is not. The water volume V  can be 

treated in the similar way to RMSE .  

The SVD provides a linear projection of noise from the data space to the model 

space. The model space may contain a great number of solutions perturbed by noise and 

the SVD does not suggest how to select the best solution. For estimating uncertainty in 

the inverse model 
mod

w  provided, in our case, by regularization, we select only 

solutions that are equivalent to 
mod

w . For selecting the extreme inverse models from 

many equivalent models, we propose to use such a physically justified parameter such 

as the volume of water under MRS loop. Thus, if we use N  equivalent models then the 

extreme solutions become  



















)()()(

)(max

)(min

maxmodmin

max

min

VRMSEVRMSEVRMSE

VV

VV

nN

nN

.   (20) 

These three equivalent inverse models (
maxmodmin

VVV  ) provide the vertical 

distribution of the water content corresponding to the extreme variations of the water 

volume thus showing the uncertainty in the inversion results.  

Numerical results 
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For demonstration, we use synthetic data assuming a 25×25 m2 figure-eight loop 

(Trushkin et al., 1994) with two turns of wire. The loop is energized by pulses of 

electrical current with the maximum pulse moment of 5000 A-ms, the inclination of the 

earth’s magnetic field of 55°, the Larmor frequency of 2111 Hz and the resistivity of the 

subsurface of 100 ohm-m.  

First, we estimate the maximum depth of investigation by computing the amplitude 

of the MRS signal versus depth (Figure 1a). A 1-m-thick layer of bulk water located at 

the depth of 55 m produces the signal of 5 nV, which approximately corresponds to the 

practical threshold of the MRS instrument limited by ambient electromagnetic noise 

(Legchenko and Pierrat, 2014). For this example, we define 55
max

z m. The depth 

interval of 0-55 m is divided into 15 layers with respect to Equation (4). The thickness 

of these layers and the diagonal elements of the model resolution matrix 
m

R  are 

presented in Figures (1b) and (1c) respectively. Rather high value of the condition 

number ( 1390)( Acond ) suggests that inversion will be sensitive to experimental and 

other errors.  

For the first example, we generate synthetic data set assuming a model consisting of 

a 10-m-thick water-saturated layer ( %5w , 200
2

* T  ms) located at a well-resolved 

depth of 5 m. Synthetic signals have been contaminated by normally distributed random 

noise representing about 7% of the signal maximum amplitude. Results of inversion of 

this data set are presented in Figure (2).  
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Figure (2a) shows the water content in the initial model and the inverse model given 

by regularization versus depth. The standard deviation of the water content was 

estimated with the SVD. It shows that deep layers have much higher relative uncertainty 

in comparison with shallow ones. Figure (2b) presents the Vmax and Vmin solutions. The 

diagonal elements of the model resolution matrix (Figure 2c) predict the most reliable 

results between approximately 5 and 25 m. A poor resolution close to the surface can be 

explained by insufficient number of pulses corresponding to small values of the pulse 

moment (insufficient sampling). One can see that the initial model located between 5 

and 15 m is reasonably well resolved. However, due to insufficient resolution and the 

noise influence, artifacts have been generated below 30 m. Figure (3) demonstrates that 

the theoretical signals computed considering these equivalent solutions fit synthetic data 

equally well ( 9.2RMSE nV).  

Figure (2) shows results obtained using data with a high signal to noise ratio. 

However, the solution is composed of the component w  representing MRS signal and 

the component w  representing noise (Equation 16). Equations (10) – (12) show that 

when noise ( ) is increasing w  is also increasing. If   becomes larger, then the 

solution will represent rather noise than the signal. If 0 , then 0w  and one 

may expect that the solution becomes exact and unique. Unfortunately, it is not true 

because imperfection of the mathematical model, accumulation of computational errors 

and geological noise render inversion results non-unique anyway and the Vmax and Vmin 

equivalent solutions may exist even for noiseless data.  

Figures (4a) and (4b) show the PDF  of RMSE  and the PDF  of V  respectively. 

One can see that for this example, the PDF  of RMSE  does not correspond well to the 
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normal distribution whereas the PDF  of V  does. Figure (4c) presents the relationship 

between V  and RMSE . The mean V  (solid black line) and the standard deviation of V  

(dashed lines) versus RMSE  show uncertainty in the volume estimate for the equivalent 

models corresponding to each value of RMSE . Crosses show volumes corresponding to 

the Vmax, Vregulariz and Vmin equivalent solutions.  

We generated N perturbed models (in this paper we use 610N ) with respect to the 

95% confidence interval computed using the SVD (Equation 17). However, Figure (4a) 

shows that only a relatively small number of these models fit MRS amplitudes with the 

prescribed 9.2RMSE nV. The great majority of these models fit the amplitudes with 

higher error. Table (1) presents a summary of the water volume estimates for all the 

examples discussed in this paper.  

Because of insufficient resolution for deep layers, inversion of a 1-layer model 

overestimates the water volume due to inexistent deep layers generated by inversion. An 

artifact can be recognized by analyzing the SVD-estimated resolution and by making 

comparison of Vmin and Vmax solutions. Usually, a large difference in the water content 

observed between these two solutions may point to an artifact. For example, Figure (2b) 

shows that the deep layer vary significantly which suggests an artifact.  

For comparison, we show inversion of a model composed of two layers of equal 

thickness and water content ( %5w , 200
2

* T ms) located at a depth of 5 and 30 m 

(Figure 5).  

One can see that if a deep layer exists then all the equivalent models show it. In 

practice, to recognize an artifact is not always easy and we recommend constraining 
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inversion with additional knowledge about the subsurface. For example, when 

investigating hard rock aquifers, Electrical Resistivity Tomography (ERT) can delineate 

the weathered part of the subsurface with a high degree of reliability (Hertrich and 

Yaramanci, 2002; Legchenko et al., 2006; Descloitres et al., 2008; Günther and Müller-

Petke, 2012). Joint use of Transient EM method and MRS for hydrogeological purposes 

has been reported when investigating sand and clay formations (Goldman et al., 1994; 

Behroozmand et al., 2012; Vouillamoz et al., 2012; Kemgang et al., 2015).  

Experimental results 

We performed MRS measurements in the Republic of Ireland (the Gortinlieve 

Catchment in County Donegal) in 2010 and 2016 (Figure 6). The MRS stations were 

located as close as possible to an ERT profile and boreholes accomplished during 

previously performed study (Comte at al., 2012).  

In 2010, we used the NUMISPLUS MRS Instrument and in 2016 the NUMISPOLY 

MRS system, both manufactured by IRIS Instruments. We used the figure-eight square 

loops of three sizes: 1) 25-m-side with two turns, 2) 37.5-m-side with one turn, 3) 50-m-

side with one turn. In 2016, one reference loop (multi-turn loop of 5-m-side) was used 

during data acquisition aiming to improve the signal to noise ratio. In the Gortinlieve 

Catchment, MRS soundings were located near boreholes included in the National 

groundwater-monitoring network of the Environmental Protection Agency of Ireland. 

We present two of them as examples of the inversion.  

Borehole GO-3 is located in the valley floor and the bedrock is covered by about 10 

m of glacio-fluvial sandy clay, with occurrence of peat and gravel beds (Figure 7a). The 

water table is shallow (about 2 m deep). The shallow part of the bedrock is weathered 
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and highly fractured. It represents a water transitional formation down to approximately 

30 m. Below 30 m, water flows preferentially through a limited number of 

interconnected fractures (Caulfield et al., 2014; Cai et al., 2015). The resistivity log 

extracted from the ERT profile (Figure 7b) shows a 10-m-thick low-resistivity 

formation (200 ohm-m) corresponding to the glacio-fluvial overburden. Between 10 and 

20 m deep, the resistivity of about 700 ohm-m has been interpreted as clay-leached 

topmost horizon of the weathered schists (Comte at al., 2012; Cassidy et al., 2014). The 

underlying layer of about 400 ohm-m down to a depth of about 40 m corresponds to a 

clay-rich weathered schist formation. The gradual increase in resistivity with depth 

below 40 m was explained by the decrease in weathering intensity, clay content and 

fractures density. At this site, we performed MRS measurements using a 50-m-side 

figure-eight loop. The maximum depth of water detection estimate suggest 70
max

z  m. 

Inversion (Figures 7c and 7d) shows a relatively high water content in the upper 

(coarser) part of glaciofluvial overburden (5 to 6%) and less water (2 to 3%) below 

(clay-leached schists). All the equivalent solutions detect water below 30 m thus 

suggesting that the bedrock should contain water. However, estimated resolution 

(Figure 7e) shows that layers below 30 m cannot be accurately resolved and thus, 

quantification of deep water cannot be done using MRS alone. 

Figures (8a) and (8b) show that the large majority of the perturbed solutions fit 

experimental data with much higher RMSE  than the solution given by regularization 

( nVRMSE 1.5 ). Vregulariz solution provides the water volume estimate with the 

uncertainty given by Vmin and Vmax solutions (Figure 8c and Table 1). Note that because 
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of the poorly resolved deep water-saturated formation (>30 m) the water volume 

estimate may be also inaccurate.  

MRS measurements near borehole GO-1 (Figure 9) have been performed using a 

37.5-m-side figure-eight loop and the maximum depth of water detection has been 

estimated at 60 m. This station is located about 1 km uphill from the borehole GO-3 and 

is about 140 m higher in altitude. The soil layer is practically absent, which allows 

direct estimation of the water content in bedrock. Previous hydrogeological studies 

suggest insignificant seasonal water circulation in the first 5 m of the subsurface. The 

resistivity log shows values of more about 2500 ohm-m thus confirming very small 

amount of water in the subsurface. Between about 5 and 15 m, resistivity drops to about 

1500 ohm-m. This value corresponds to a weathered/fractured psammitic schist and 

values higher than 2000 ohm-m below 20 m to a slightly decomposed psammitic shists 

(Comte et al., 2012). MRS suggests some water between 15 and 35 m approximately. 

The water content in this layer was estimated about 1%, which is a reasonable value for 

a saturated psammitic schist. Figure (9d) shows that the Vmin solution does not show 

water below 35 m and consequently we consider the second water-saturated layer 

shown by the Vmax solution below 45 m as unreliable.  

Figure (10) shows measured amplitude of the MRS signal at these two stations and 

the theoretical fits obtained with these three equivalent solutions.  

Discussion 

Inversion of MRS data is a typical problem in geophysics. The non-uniqueness of the 

solution shifts the main difficulty from being a problem of fitting experimental data 

with an inverse model to being a problem of selecting the best model out of many 
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equivalent models, sometimes rather different. Such a selection can be done by 

imposing additional criteria based on knowledge and/or assumptions on the solution 

shape. For example, the regularization method assumes that the solution has to be 

smooth. For such a selection, we propose to use a physically justified criterion: the 

volume of water, which can be calculated for each inverse model. Taking into account 

that selection of the “best” model is more or less subjective; we propose to use three 

inverse models instead of the only one. Thus, the solution is composed of the model 

obtained with the regularization or any other inversion technic (the best model) and two 

equivalent models corresponding to the maximum and the minimum volumes. 

Knowledge of the water volume in the subsurface is itself an important issue for 

hydrogeologists. In addition, we obtain an estimate of the uncertainty for the water 

volume and corresponding water content distributions. However, one should be careful 

with using the water volume because it can be reliable only within the depth interval 

where MRS has an acceptable resolution. For investigating deep targets where 

resolution is poor, inversion has to be constrained using additional knowledge of the 

subsurface (boreholes, other measurements etc).  

When the problem considered linear, the SVD analysis provides a statistically 

justified estimate of the uncertainty. For the non-linear inverse problem, the Monte-

Carlo simulation is often recommended. We investigate uncertainty by combining both 

approaches.  

First, we carry out inversion and select a model, which we consider the best. 

Obviously, this inverse model must fit experimental data with acceptable accuracy. 

Then, we apply random perturbations to this model. We limit the magnitude of these 
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perturbations by the SVD estimated uncertainty given by the 95% confidence interval. 

Thus, we apply local and statistically justified perturbations to the inverse model that 

greatly accelerates Monte-Carlo modeling. All the perturbed models create the solution 

space around the “best” model. This solution space is characterized by the mean, the 

standard deviation and the probability density function ( PDF ). The PDF  allows 

insight into the entire solution space for additional analysis. Our results, both numerical 

and experimental, show that only a small part of the perturbed models fit experimental 

data with acceptable accuracy. This observation suggests that the SVD provides very 

general estimates that may be difficult to use in practice. Understanding of the RMSE  

distribution allows reducing the solution space given by the SVD by only equivalent 

models that fit experimental data with desirable accuracy. We used this approach for 

interpretation of real data from our survey in the Northern Ireland. We observed a good 

consistency of MRS results with other available data (boreholes, ERT, hydrological 

modeling).  

For processing these data we used a standard HP lap-top computer with the 64 bit 

processor (Intel® Core™ i-7 5600U CPU @ 2.60 GHz) and the 16 Gb RAM. The linear 

inversion with SVD takes about 3 s. The Monte-Carlo simulation (14 layers, 16 q 

values, 106 combinations) takes about 14 s. 

Conclusions 

In this paper, we propose a simple and robust approach for estimating uncertainty in 

the inversion of MRS data. For that, we apply random perturbations to the inverse 

model given by the Tikhonov regularization. The perturbations are limited by the 

uncertainty estimated applying the SVD analysis. The use of an inverse model that 
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already fits experimental data greatly accelerates the Monte Carlo simulations and 

allows overcoming the problem related to heavy computing, which is often considered 

as an important limitation of the Monte Carlo method. In our study, we use the 

Tikhonov regularization, but this approach of investigating uncertainty can be also 

applied to the analysis of inverse models obtained with other than regularization 

inversion schemes.  

We applied MRS to investigation of a weathered/fractured hard-rock aquifer in the 

Gortinlieve Catchment in the Republic of Ireland and presented two examples. One 

MRS station was located in the valley floor and another one located near the hilltop 

about 140 m higher in altitude. The water content in this psammitic schist aquifer was 

estimated with MRS at about 1% in deep bedrock. In the upper most 

weathered/fractured bedrock, MRS shows 2 to 3%, against 5 to 6% in the overlying 

glaciofluvial deposits. These results are consistent with other data (boreholes geological 

logs, ERT data, hydrological monitoring data) and previous hydrogeological conceptual 

understanding. 
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Figure caption 

Figure 1. Discretization of the linear equation: a) the amplitude of the MRS signal 

generated by a 1-m-thick layer of bulk water versus depth of this layer; b) the thickness 

of the model layers versus depth; c) the diagonal elements of the model resolution 

matrix.  

Figure 2. Inversion of a 1-layer model: a) the solution given by regularization with 

the error bars corresponding to the standard deviation estimated with the SVD; b) the 

Vmax and Vmin solutions; c) the diagonal elements of the model resolution matrix.  

Figure 3. Inversion of a 1-layer model: the data set (circles) and the theoretical 

signals computed after inversion results (RMSE=2.9 nV). 

Figure 4. Inversion of a 1-layer model: a) the PDF computed counting RMSE 

distribution (solid line) and the PDF computed with the assumption of a normal 

distribution of RMSE (dashed line); b) the PDF of V; c) the mean volume of water 

versus RMSE (solid line) with corresponding standard deviation (dashed lines). All the 

equivalent solutions are ranged along the grey line (RMSE=2.9 nV) with crosses 

showing solutions corresponding to Vmax, Vregulariz and Vmin. 

Figure 5. Inversion of a 2-layer model: a) the solution given by regularization; b) the 

Vmax and Vmin solutions; c) the diagonal elements of the model resolution matrix.   

Figure 6. Location of the investigated area in the Northern Ireland is shown by a 

black star: a) general map; b) geological formations in County of Donegal. 

Figure 7. Inversion of experimental data set obtained near borehole GO-3: a) the 

borehole log; b) the resistivity log; c) the solution given by regularization; d) the Vmax 

and Vmin solutions; e) the diagonal elements of the model resolution matrix.  
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Figure 8. Inversion of experimental data set obtained near borehole GO-3: a) the 

PDF computed counting RMSE distribution (solid line) and the PDF computed with the 

assumption of a normal distribution of RMSE (dashed line); b) the PDF of V; c) the 

mean volume of water versus RMSE (solid line) with corresponding standard deviation 

(dashed lines). The grey line shows RMSE values for all the equivalent solutions and 

the crosses show the volumes of water for the solutions corresponding to Vmax, Vregulariz 

and Vmin.  

Figure 9. Inversion of experimental data set obtained near borehole GO-1: a) the 

borehole log; b) the resistivity log; c) the solution given by regularization; d) the Vmax 

and Vmin solutions; e) the diagonal elements of the model resolution matrix. 

Figure 10. Measured amplitude of the MRS signal versus pulse moment (circles) and 

the theoretical signals computed after inversion results: a) borehole GO-1; b) borehole 

G03.  
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Tables 

Data set Vmin 

(m3/m2) 

Vregulariz 

(m3/m2) 

Vmax 

(m3/m2) 

RMSE 

(nV) 

Commentaries 

1-layer model 0.56 0.6 0.73 2.9 Vmod = 0.5 (m3/m2) 

2-layer model 1.1 1.3 1.5 2.85 Vmod = 1.0 (m3/m2) 

Field data near 

borehole GO-3 

1.35 1.46 1.55 5.1 Shallow soil layer 

over bedrock 

Field data near 

borehole GO-1 

0.23 0.25 0.37 0.48 Bedrock  

 

Table 1. Summary of the inversion results corresponding to the examples presented 

in this paper.  
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Figure 10 
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Highlights 

 An efficient method of investigating uncertainty in SNMR inversion is 

proposed.  

 SNMR is able to provide an estimate of the water volume.  

 A Monte Carlo simulation allows analyzing linear or nonlinear inverse 

problems.  

 The method is efficient for investigating Irish bedrock aquifers.  


