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Abstract  

Inhibition of specific Akt isoforms in CD8+ T cells promotes favored differentiation into 

memory versus effector cells, the former of which are superior in mediating anti-tumor 

immunity. In this study, we investigated the role of upstream PI3K isoforms in CD8+ T cell 

differentiation and assessed the potential use of PI3K isoform-specific inhibitors to favorably 

condition CD8+ T cells for adoptive cell therapy. The phenotype and proliferative ability of 

tumor antigen specific CD8+ T cells was assessed in the presence of PI3K-α, -β, or -δ inhibitors. 

Inhibition of PI3K-δ, but not PI3K-α or PI3K-β, delayed terminal differentiation of CD8+ T cells 

and maintained the memory phenotype, thus enhancing their proliferative ability and survival 

while maintaining their cytokine and granzyme B production ability. This effect was preserved in 

vivo after of ex vivo PI3K-δ inhibition in CD8+ T cells destined for adoptive transfer, enhancing 

their survival and also the anti-tumor therapeutic activity of a tumor-specific peptide vaccine. 

Our results outline a mechanism by which inhibitions of a single PI3K isoform can enhance the 

proliferative potential, function and survival of CD8+ T cells, with potential clinical implications 

for adoptive cell transfer and vaccine-based immunotherapies. 
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Introduction 

CD8+ T-cell response comprises effector and memory T-cells (1, 2). Memory T-cells possess 

enhanced proliferative ability, greater functionality and better longevity than effector cells.  

Different subsets of CD8 memory T-cells including effector (TEM) and central (TCM) memory T-

cells represent different stages of the CD8 differentiation spectrum (2, 3). TCM are an earlier 

stage of differentiation and therefore possess superior qualities enabling them to better fight 

microbial challenges and mediate therapeutic antitumor immunity when compared to TEM , 

which in turn are superior to the terminally differentiated effector cells (4-7).  

The differentiation of T-cell is under the control of the PI3K/Akt pathway (1). Akt activation was 

found to regulate the effector/memory CD8+ T-cell differentiation (8). In fact,  Akt inhibition 

was reported to augment anti-tumor immune responses by enhancing the expansion of CD8+ T-

cells with memory characteristics (9). Also, we have reported that inhibition of specific Akt 

isoforms, Akt1 and Akt2, delays the terminal differentiation of CD8+ T-cells while enhancing 

the TCM phenotype. Targeting these specific Akt isoforms therefore enhanced the proliferative 

ability, longevity and cytokine production in CD8+ T-cells(10)  

We therefore investigated the potential role of specific upstream PI3K isoforms in the regulation 

of the CD8+ T-cell differentiation with the aim of exploring the potential use of specific PI3K 

isoforms inhibitors to condition CD8+ T-cells for adoptive cell transfer for better therapeutic 

outcome. 

We found that the inhibition of only PI3K-δ, but not PI3K-α or PI3K-β, delays the terminal 

differentiation of CD8+ T-cell and maintains the memory phenotype thus enhancing their 

proliferative ability and survival while maintaining their cytokine and Granzyme B production 
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ability. We further demonstrated the ex-vivo PI3K-δ inhibition enhances anti-tumor therapeutic 

ability of adoptively transferred CD8+ T-cells in animal models compared to non-treated CD8+ 

T-cells. 

In cancer immunotherapy, it is important to maintain a CD8 that is antigen specific, highly 

cytotoxic, renewable, highly proliferative and in earlier stages of differentiation to delay 

exhaustion.  Here, we report that ex-vivo inhibition of a single isoform, PI3K-δ, in CD8+ T-cells 

enhances their proliferation, cytokine production and subsequently their anti-tumor therapeutic 

ability and delays their exhaustion. 

This discovery has important clinical implications. Recently, clinical trials using the PI3K-δ 

inhibitor Idelalisib (Zydelig, CAL-101) to treat malignancies were put on hold(11) and new 

guidelines for its prescription were introduced. This was due to the increased number of deaths in 

the Idelalisib (Zydelig, CAL-101) group which were mainly attributed to infections by P 

jirovecii and cytomegalovirus, in addition to  respiratory events possibly caused by infection 

(12). Our discovery provides a plausible explanation, where the use of PI3K-δ inhibitors delays 

the later stages of CD8 differentiation, which are thought to be the most potent against 

opportunistic viral infections. Hence their systematic administration deprives the body of the 

most potent anti-viral CD8+ T-cells.    

Our findings suggest a strategy that enhances the anti-tumor therapeutic efficiency of adoptive 

cell transfer while avoiding the adverse effects of the systemic administration of PI3K-δ 

inhibitors.  We show that ex-vivo PI3K-δ inhibition delays terminal differentiation, maintains 

memory phenotypes, prolongs the life span and enhances the expansion of tumor specific CD8+ 

T-cells without affecting their cytotoxic activity. This translates into an enhanced in vivo anti-

tumor therapeutic ability and therefore holds great clinical implications for the use of these 
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inhibitors as immune modulators in a safe and effective approach. 

Materials and Methods 

Mice and reagents 

pMel-1 mice (B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J) used for in vitro experiments carry a 

rearranged T-cell receptor transgene (Vβ13) specific for gp100 (13).  For feeder cells and in vitro 

experiments, female C57BL/6(H-2b) wild-type (WT) mice were used. For in vivo experiments, 

4-6 week old WT female mice were used. (Mice were purchased from Jackson Laboratory and 

housed under pathogen-free conditions according.  All procedures were carried out in accordance 

with Institutional Animal Care and Use Committee (IACUC).   

B16 cell line was purchased from American Type Culture Collection (ATCC) (Manassas, VA) 

which routinely authenticate and test cell lines (for mycoplasma, by the Hoechst stain, PCR and 

the standard culture test). These cells were used in experiments after two to three passages from 

thawing (between 2014 and 2015). B16 was authenticated and tested for mouse parvovirus 

(MPV) and mouse hepatitis virus (MHV) using PCR at Augusta University. All tests were 

negative. 

Inhibitors were purchased from Selleckchem. GDC-0941 is a pan PI3K inhibitor with IC50 of 

3nM for p110α, 33nM for p110β, 3nM for p110δ and 75nM for p110γ. GDC-0941 was used in 

vitro at 11, 33, 99 and 279nM concentrations, ensuring inhibition of all three Class 1isoforms. 

A66 is a selective p110α inhibitor with IC50 of 32nM for the p110α, 236nM for PI4Kβ, 462nM 

for C2β and >1.25μM for p110δ. A66 was used in vitro at 32, 96 and 288nM concentrations, 

ensuring selectivity to PI3Kα. TGX-221 is a highly selective PI3Kβinhibitor with IC50 of 5μM 

for p110α, 5nM for p100β, 0.1μM for p100δ and > 10μM for p110γ. In in vitro experiments, 
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TGX-221 was used at 5, 15 and 45nM to ensure selectivity. CAL-101 is a selective PI3Kδ 

inhibitor with IC50 of 820nM for p110α, 565nM for p110β, 2.5nM for p110δ and 89nM for 

p110γ. This inhibitor was tested in vitro at 0.28, 0.83, 2.5, 7.5, 22.5, 67.5,and 202.5nM to 

maximize the drug’s specificity. 

The gp10025-33 9-mer peptide (KVPRNQDWL) (ANASPEC) was used for in vitro activation of 

pMel-1 splenocytes at 1µM as described (10).  

For in vivo experiments, the vaccine was prepared using the same gp10025-33 peptide and 

administered at 100µg per mouse in combination with PADRE at 10µg and Quil-A at 25µg per 

mouse. 

Lymphodepletetion of mice was achieved using a combination of 250mg/kg cyclophosphamide 

(Sigma) and 50mg/kg fludarabine (Selleckchem). 

In vitro activation of CD8+ T-cells 

Tumor antigen-specific CD8+ T-cells 

CD8+ T-cells from pMel-1 mice were activated in vitro as described(10). Briefly, homogenized 

pMel-1 splenocytes  were stimulated with gp10025-33 peptide at 1µM (day 0). Cells were cultured 

in RPMI-1640 (Lonza) supplemented with 10% FBS, penicillin (100 U/mL), streptomycin (100 

mg/mL), 0.1% β-mercaptoethanol (Life Technologies, Invitrogen) and IL-2 (100U/ml) 

(Peprotech)  at 37ᵒC with 5% CO2. pMel-1 cells were cultured with or without  different PI3K 

inhibitors. The concentration of the inhibitors was maintained throughout the culture by 

changing the media every 48-72 hours. 
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On Days 7, 14 and 21, cells were re-stimulated with gp10025-33 at  1µM  using feeder cells 

(irradiated WT splenocytes, 4000 Rads) at 1:1 ratio using the same culture conditions.   

TCR stimulation and co-stimulation 

Viable CD8+ T-cells from WT mice were sorted using FACS ARIA II (BD Biosciences; purity > 

99%). Cells were activated on anti-CD3-coated plates (10ug/ml) and cultured in activation media 

(IL2 (100U/ml) and anti-CD28 (2.5ug/ml)) in the presence or absence of PI3K inhibitors for 72 

hrs. 

Proliferation assay and phenotyping of CD8+ T-cells 

Cells were labeled with 5µM Violet Cell Trace (VCT) proliferation dye (Life Technologies, 

Invitrogen) prior to their stimulation (day 0). Proliferation of CD8+ T-cells was assessed via 

VCT dye dilution (day 3) using LSRII SORP with HTS Flow Cytometer (BD Biosciences). Data 

were analyzed using FlowJo-10 (Tree Star). 

Cultured cells were harvested on days 3, 7, 14 and 21 to assess their phenotype. Cells were 

stained with the following surface marker antibodies (BD Biosciences): APC-Cy7 labeled anti-

CD8, FITC labeled anti-Vβ13, PE labeled anti-CD62L, APC labeled anti-CD44, PE-CF594 

labeled anti-CD127, APC labeled anti-KLRG-1 in addition to the viability stain 7AAD. All 

analyses were performed on viable (7AAD-), Vβ13+CD8+ T-cells.  

For intracellular staining, cells were stained with the fixable near infra-red Live/Dead viability 

stain (Life Technologies, Invitrogen), and fixed , permeabilized and stained with APC labeled 

anti-CD8, V450 labeled anti-Vβ13, PE labeled anti-CD62L and PE-CF594 labeled anti-CD44 

(BD Biosciences) and FITC labeled Granzyme B (Biolegend). The analyses were performed on 

viable (Live/Dead negative), Vβ13+CD8+ T-cells. 
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Cytometric bead array 

Using the stimulation protocol above, CD8+ T-cells were harvested on day 7 after the first and 

second stimulation. Viable (trypan blue negative) cells were co-incubated (at 1:1 ratio) with 1µM 

gp10025-33 pulsated irradiated splenocytes (4000 Rads) for 24 hours using the same culture 

conditions. Supernatants were collected and the level of IL-2, TNF-α and IFN-γ was assessed 

using the mouse Th1/Th2/Th17 Cytokine Kit BD™ Cytometric Bead Array (CBA) kit. Cytokine 

levels were collected using an LSRII SORP with HTS flow cytometer (BD Biosciences), and 

analyzed using the FCAP Array Software v3.0 (BD Biosciences).  

In Vivo tumor treatment 

C57BL/6 female mice were implanted with 400,000 B16 cells/mouse subcutaneously (s.c.) in the 

right flank on day 0 (B16 expresses gp100 antigen). On day 7, mice were lymphodepleted by s.c. 

injection of a cocktail of 250mg/kg cyclophosphamide and 50mg/kg fludarabine (CyFlu). On 

Day 8, gp100 activated CD8+ T-cells from pMel-1 mice cultured in the presence or absence of 

CAL-101 (202.5nM,  for 7 days as described above) were adoptively transferred intravenously 

(i.v) (1 million cells per mouse). The appropriate groups were vaccinated with gp100 peptide 

vaccine (gp10025-33  with PADRE and Quil A) on days 8, 15 and 22. The vaccine doses 

represented stimulations 2, 3 and 4 of CD8+ T-cells. Animal survival and tumor growth were 

monitored and  animals were sacrificed upon tumor ulceration or reaching the volume of 1.5cm3 

according to institutional regulations.   

Statistics 

Statistical parameters (average values, SD, significant differences between groups) were 

calculated using Microsoft Excel and GraphPad Prism. Statistical significance between groups 
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was determined by paired t test or one-way ANOVA with post hoc Tukey’s multiple comparison 

test (p < 0.05 was considered statistically significant). 

Results 

PI3K inhibition enhances the proliferative ability and survival of CD8+ T-cells by 

preserving the memory phenotype 

Memory CD8+ T-cells are superior mediators of antitumor immunity than effector cells due to 

their greater proliferative ability (4-7, 10). Many T-cell functions are regulated by the PI3K/Akt 

pathway (14, 15). To test the role of PI3K in the differentiation and proliferation of CD8+ T-

cells, we tested the effect of the pan PI3K inhibitor GDC-0941 (GDC) on stimulated pMel-1 

CD8+ T-cells activated with 1µM gp10025-33. 

After 3 days of stimulation, we found that GDC-treated cells consisted of a high percentage of 

TCM cells (CD62LhiCD44hi) in addition to TEM cells (CD62LloCD44hi), while the majority of non-

GDC treated cells were TEM. This was observed at all concentrations used (Figure 1A). Unlike 

non-treated cells, the higher percentage of memory CD8+ T-cells (both TCM and TEM) was 

maintained after the second and third stimulations (Figure 1A). As expected, the percentage of 

TCM in GDC-treated cells, decreased following the second and third stimulations due to the 

memory recall of TCM following multiple stimulations; leading to the differentiation of TCM into 

TEM and effector cells. However, the memory phenotype was significantly higher than the non-

treated cells after each stimulation. In Fact, Non-treated cells virtually lost all the TCM phenotype 

after the second stimulation and started losing their TEM following the third stimulation in favor 

of the terminally differentiated phenotype (CD62LloCD44lo). This lead to a significantly higher 
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percentage of TEM in GDC treated cells following the third stimulation in comparison to the non-

treated cells. 

Taken together, these data show that PI3K inhibition delays terminal differentiation and 

preserves a reservoir of memory cells (TCM and TEM), after several encounters with the antigen. 

The non-treated cells on the other hand lost their TCM cells, and a significant percentage of the 

TEM while simultaneously reaching terminal differentiation as evidenced by the significantly 

higher percentage of  terminally differentiated effector CD8+ T-cells (CD62LloCD44lo) after 

consecutive stimulations. 

Since TCM CD8+ T-cells possess a greater proliferative ability than TEM  (4-7) we assessed the 

proliferation and expansion of CD8+ T-cells under the effect of PI3K inhibitors. After three days 

of the first stimulation, the proliferation and expansion of CD8+ T-cells treated with GDC was 

only slightly inhibited (Figure 1B), which is expected given the role PI3K plays in the 

proliferation of T-cells. At the highest concentration tested (279nM) the inhibitor was found to 

be toxic, and was therefore used at lower concentrations for the rest of the experiments.  

However, with further stimulation (stimulations 2 and 3), CD8+ T-cells treated with the PI3K 

inhibitor expanded at a significantly higher rate than non-treated cells (Figure 1B) Non-treated 

cells lost the ability to expand following the third encounter with the antigen. These findings 

show that PI3K inhibition enhances the cell proliferation and survival of CD8+ T-cells which 

correlates with their memory phenotype.   

Correlating with the enhanced proliferation ability observed with the inhibitor treatment,  CD8+ 

T-cells treated with GDC maintained high expression levels of CD62L (days 3, 7, 14 and 21), 
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which is a marker associated with memory phenotype and with high proliferative potential 

(Figure 1C).  

We next measured IL-2 secretion in CD8+ T-cells,, a property that is diminished in terminally 

differentiated CD8+ T-cells. We found that CD8+ T-cells treated with GDC maintained  a 

significantly high level of IL-2 secretion after re-encountering the antigen (Figure 1D). 

Taken together, these data show that PI3K inhibition preserves the memory phenotype in antigen 

stimulated CD8+ T-cells, hence enhancing the proliferative potential and survival while delaying 

the terminal differentiation of these CD8+ T-cells. 

PI3K inhibition does not affect the ability of CD8+ T-cells to produce cytotoxic cytokines 

and Granzyme B  

We have demonstrated that PI3K inhibition enhances proliferation of CD8+ T-cells, preserves 

the TCM phenotype and delays terminal differentiation. Classically, effector functions were 

thought to peak at the effector state (2), however, more recent findings suggest that memory cells 

are superior in their cytotoxic abilities because of memory recall and proliferation potential, and 

therefore are superior options for ACT (7, 10, 16). To assess whether the function of the resultant 

TCM cells is affected by the inhibition of PI3K, we measured their ability to secrete IFN-γ and 

TNF-α and the level of Granzyme B production. 

CD8+ T-cells were re-stimulated on days 7 and 14 (stim2 and 3) and the level of IFN-γ and 

TNF-α production after 24 hours was assessed.  After the second and third stimulations, GDC-

treated and non-treated cells produced high and comparable levels of IFN-γ and TNF-α in 

response to antigen re-encounter (Figure 1D).  
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To further test the cytotoxic ability of the CD8+ T-cells treated with PI3K inhibitor, we assessed 

the level of Granzyme B production by intracellular staining. As shown below, following the 

first and second stimulations, we found that the inhibition of PI3K does not affect the production 

of Granzyme B when compared to CD8+ T-cell that were not treated with PI3K inhibitors .  

The maintained levels of IFN-γ and TNF-α secretion and Granzyme B production suggest that 

CD8+ T-cells treated with PI3K inhibitors maintain their cytotoxic functionality. Added to the 

marked increase in their proliferation potential and their enhanced survival, CD8+ T-cells treated 

with PI3K inhibitors are potentially a superior option for ACT.  

PI3K-δ is the isoform responsible for terminal differentiation of CD8+ T-cells  

We have shown that PI3K inhibition in CD8+ T-cells delays their terminal differentiation, 

preserves TCM cells, enhances their proliferative ability while maintaining their cytokine 

secretion ability and prolonging their survival. The role of specific PI3K isoforms (PI3K-α, 

PI3K-β and PI3K-δ) in the development, proliferation and function of CD8+ T-cells is not 

known. Using selective PI3K inhibitors, we next tested whether the inhibition of a single PI3K 

isoform would be sufficient to delay terminal differentiation of CD8.  

When the phenotype of the cells was assessed after 3 days of the first stimulation, CD8+ T-cells 

treated with inhibitors specific for PI3K-α (A66) or  PI3K-β (TGX-221), there were no 

differences in the phenotype of CD8+ T-cells from the non-treated cells (Figure 2A). However, 

only when the PI3K-δ inhibitor (CAL-101) was used, CD8+ T-cells displayed a phenotype 

similar to that observed with pan PI3K inhibition, where there was a higher percentage of TCM 

cells when compared to non-treated cells (Figure 2A and Supplemental Figure 1). As expected, 

due to memory recall, this effect was less prominent after the second and third stimulations when 
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compared to the first stimulation. Furthermore, the inhibition of PI3K-δ lead to a significantly 

lower percentage of terminally differentiated CD8+ T-cells (CD62LloCD44lo) (Figure 2A and 

Supplemental Figure 1), in particular after the third stimulation.  These findings suggest that 

PI3K-δ is the isoform responsible for terminal differentiation of CD8+ T-cells and that its 

inhibition maintains CD8+ T-cells in earlier stages of differentiation (both TCM and TEM) even 

after several encounters with the antigen. 

To test if the memory phenotype generated by the inhibition of PI3K-δ possesses an enhanced 

proliferative ability.  We assessed the proliferation of CD8+ T-cells under same stimulation 

conditions using specific PI3K isoforms inhibitors. While we found that the inhibition of PI3K-δ 

marginally inhibited the proliferation of CD8+ T-cells compared to cells treated with PI3K-α and 

PI3K-β inhibitors (Figure 2B),the inhibition of PI3K-δ, but not PI3K-α or PI3K-β significantly 

enhanced the proliferative of CD8+ T-cells with further stimulations (days 7 and 14) (Figure 

2C). We also found that treatment of CD8+ T-cells with the PI3K-δ inhibitor maintained high 

expression levels of CD62L (Figure 3A) and high secretion levels of IL-2 (Figure 3B and 

Supplemental Figure 2), consistent with the enhanced proliferative ability of the memory CD8+ 

T-cells. These high levels of CD62L expression and IL-2 secretion were not observed when 

CD8+ T-cells were treated with either  PI3K-α or  PI3K-β inhibitors. 

Treating CD8+ T-cells with the PI3K α, β, or δ isoform specific inhibitors did not affect the 

cells’ ability to produce TNF-α and IFNγ secretion (Figure 4A and Supplemental Figure 2) and 

Granzyme B (Figure 4B). This is important as it emphasizes that maintaining the cells in the 

early stages of differentiation does not affect their cytotoxic ability. 

on July 3, 2017. © 2017 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on June 14, 2017; DOI: 10.1158/0008-5472.CAN-16-1925 

http://cancerres.aacrjournals.org/


14 
 

Similar results were observed when PI3K-δ was silenced in CD8+ T-cells, where the cells 

maintained a higher percentage of central memory phenotype in comparison to knocking down  

PI3K α or β (Supplemental Figure 3A). Furthermore, the proliferation of CD8+ T-cells and their 

ability to produce Granzyme B was not affected by the knock down of any of the isoforms 

(Supplemental Figure 3A). 

These findings were replicated in human CD8+ T-cells, where the stimulation of purified human 

CD8+ T-cells from healthy human donors in the presence of the pan PI3K inhibitor GDC 

resulted in maintaining a high level of CD62L without affecting the proliferation of the cells 

(Supplemental Figure 3B). Furthermore, the inhibition of PI3K-δ in activated human CD8+ T-

cells resulted in the maintenance of a high expression level of CD62L which was not observed 

when PI3K-α or –β were inhibited (Supplemental Figure 3B). 

Taken together, our data demonstrate that PI3K-δ is responsible for the terminal differentiation 

of CD8 and the inhibition of PI3K-δ, but not PI3K-α or PI3K-β, preserves CD8+ T-cells in 

memory state, thus enhancing their proliferative potential, longevity, and survival without 

affecting their ability to produce cytokines and Granzyme B. 

The inhibition of PI3K-δ in CD8+ T-cells significantly enhances their anti-tumor 

therapeutic ability in vivo 

We have shown that PI3K-δ inhibition delays the terminal differentiation of CD8+ T-cells and 

enhances their proliferative ability and survival without affecting their ability to produce 

cytokines and Granzyme B. To test if these findings translate into enhanced therapeutic ability in 

vivo, we adoptively transferred tumor antigen specific CD8+ T-cells treated with CAL-101 into 
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tumor bearing mice and assessed their anti-tumor effect in combination with a tumor specific 

vaccine. 

Briefly, pMel-1 cells activated with gp100 with or without CAL-101 were cultured for 7 days 

and their phenotype assessed. Similar to what is presented above, treated cells consisted of a 

large percentage of TCM. These cells were adoptively transferred into tumor bearing, 

lymphodepleted mice in combination with gp100 vaccine (administered on days 8, 15 and 22 and 

corresponding to stimulations 2, 3 and 4) (Figure 5A). 

Remarkably, the ACT of CD8+ T-cells that were activated in vitro in the presence of the PI3K-δ 

inhibitor CAL-101 greatly slowed down tumor growth in B16 tumor bearing mice. This effect 

was significantly enhanced when the ACT was combined with the gp100 peptide vaccine 

because the vaccine acted a second stimulation for the CD8+ T cells, hence the more potent 

expansion, and the resulting anti-tumor effect. The enhanced therapeutic efficacy was much 

greater than any other single therapy, including the vaccine, the ACT of non CAL-101-treated 

CD8+ T-cells or the combination of both (Figure 5B and 5C). 

Furthermore, the combination of ACT of CAL-101 treated CD8+ T-cells with the vaccine greatly 

prolonged the animal survival (Figure 5D). Similar results were obtained when treatment was 

started at a later date with larger tumors (Supplemental Figure 4). 

These data clearly demonstrate the superior anti-tumor functionality of CD8+ T-cells treated 

with a PI3K-δ inhibitor. This can be attributed to the enhanced proliferative ability, longevity, 

survival and maintenance of the memory phenotype.  

  

on July 3, 2017. © 2017 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on June 14, 2017; DOI: 10.1158/0008-5472.CAN-16-1925 

http://cancerres.aacrjournals.org/


16 
 

Discussion  

In response to antigen encounter, CD8+ T-cell response comprises effector and memory T-cells 

(1, 2). CD8 memory T-cells include several subtypes including TCM and TEM (2, 3). Memory 

cells represent earlier stages of differentiation and are superior in their cytotoxic ability against 

microbial challenges (4, 6) and mediation of therapeutic antitumor immunity when compared to 

terminally differentiated effector cells . TCM cells are by far superior to TEM cells, due to their 

greater proliferative capacity upon antigen re-encounter. TEM in turn are superior to the 

terminally differentiated effector cells (4-7). 

The PI3K/Akt pathway governs many T-cell functions, including proliferation, survival, 

migration, and metabolism(14, 15). The differentiation of CD8 cells into memory T-cells is 

coordinated by PI3K/Akt signaling (1, 17, 18). Continuous activation of this pathway drives the 

terminal differentiation, while its inhibition (at the level of Akt or the downstream mTOR) 

enhances the quality of CD8+ T-cells by prompting a memory phenotype (8-10, 16-19). 

Our group has reported that Akt1 and Akt2 isoforms are the specific drivers of terminal 

differentiation of CD8+ T-cells and that their inhibition preserves a reservoir of highly 

proliferative and functionally superior memory CD8+ T-cells(10).  

Here, we show, for the first time, that the PI3K-δ, but not PI3K-α or PI3K-β, drives the terminal 

differentiation of CD8+ T-cells, and that the inhibition of PI3K-δ enhances their survival and 

proliferative ability upon re-encountering the antigen by preserving a high percentage of memory 

CD8+ T-cells.  This occurs through enhancing the proliferative ability of CD8+ T-cells and 

maintaining a high CD62L expression level and IL-2 secretion. We further demonstrate that 
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CD8+ T-cells treated specifically with an inhibitor of PI3K-δ greatly enhance their anti-tumor 

therapeutic ability when adoptively transferred into tumor bearing mice.  

As CD8+ T-cells differentiate from naïve to effector cells, they lose their ability to produce IL-2 

(3). Here, we further show that PI3K-δ inhibition maintains a higher level of IL-2 secretion in 

CD8+ T-cells. Additionally, we show that the inhibition of PI3K-δ maintains a high level of 

CD62L which is in agreement with the findings of Sinclair et al (2008) who showed that the 

proteolysis of CD62L is controlled by PI3K-δ (20). Classically, cytotoxic effector functions were 

thought to gradually increase from naïve through memory and peak at the effector state (2), 

however more recent reports suggest that memory cells are superior in their cytotoxic abilities (7, 

10, 16). This is in agreement with our findings, where PI3K-δ inhibition enhances the 

proliferative ability and longevity of CD8+ T-cells without affecting their cytotoxic 

functionality. We found that the inhibition of the PI3K-δ also does not affect the CD8+ T-cells’ 

ability to secrete TNF, IFNγ and Granzyme B.  Based on above, it is clear that treatment of 

CD8+ T-cells with PI3K-δ provides a superior quality T cells for more effective ACT. 

Here we further demonstrate that our in vitro findings translated to in-vivo application where 

treating tumor specific CD8+ T-cells with PI3K-δ inhibitor greatly enhances their anti-tumor 

ability when adoptively transferred into tumor bearing mice. This is not surprising given the 

enhanced proliferation, survival and functionality of inhibitor treated cells in vitro. Furthermore, 

we also found that the therapeutic ability of these cells was greatly enhanced with the 

combination of a tumor specific vaccine since memory CD8+ T-cells respond to antigen re-

encounter by proliferating more robustly than exhausted effector CD8+ T-cells. Thus, the 

preservation of memory cells using only PI3K-δ inhibition produces an enhanced cytotoxic anti-
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tumor ability. This was demonstrated by a significant slowdown of tumor growth and a 

significant enhancement of animal survival. 

Interestingly, we found that CD8+ T-cell differentiation is controlled specifically through the 

PI3K-δ isoform that signals downstream through Akt1 and Akt2, the two Akt isoforms we had 

already shown to be responsible for the differentiation of CD8+ T cells (10). We also found that 

in CD8+ T cells, PI3K-α and PI3K-β play no role in proliferation and survival and that these two 

isoforms do not signal through Akt1 and Akt2 (Supplemental Figure 5).  Accordingly, PI3K-δ is 

the only isoform that controls these biologic functions in CD8+ T-cells.  

Based on the above, our findings define a new and vital role for the PI3K-δ isoform in T cell 

biology. We demonstrate that targeting PI3K-δ can modulate the differentiation of effector and 

memory CD8+ T-cells. This adds to the significant roles that PI3K-δ has in different T-cells 

subsets; in particular, its definition as a key controller of the suppressive Tregs (21-23). This has 

important clinical implications for the use of PI3K-δ inhibitors to modulate both Tregs and 

CD8+ T-cells. 

Clinical trials using PI3K-δ inhibitors have recently been put on hold due to a significant 

increase in the incidence of opportunistic infection (mostly CMV). Our data in this manuscript 

provide a plausible explanation for this increase.  The later stages of CD8 differentiation are 

thought to be the most potent against CMV, it is therefore apparent that the use of PI3K-δ 

inhibitors delays the later stages of differentiation, hence their systematic administration could 

deprive the body of the most potent anti-viral CD8+ T-cells. We have shown this to be the case 

in PI3K-δ KO mice, where the percentage CD8+ T-cells at later stages of  differentiation in 

response to antigen administration (in the form of a peptide vaccine) was significantly lower in 
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KO mice in comparison to WT mice (Supplemental Figure 6). This also explains the findings 

that PI3K-δ is required for the generation of an immediate effector response to viral and 

intracellular bacterial infections (24, 25).  

In summary, we report that PI3K-δ inhibition, but not PI3K-α or PI3K-β, enhances the memory 

phenotype, improves CD8+ T-cell survival and enhances their proliferative potential while 

maintaining their ability to produce cytotoxic cytokines and Granzyme B. These findings 

translate into anti-tumor therapeutic efficacy where the ACT of ex-vivo PI3K-δ treated CD8+ T-

cells in an animal tumor model greatly slows down tumor growth and prolongs animal survival. 

Agents with the ability to delay terminal differentiation of CD8+ T-cells without affecting their 

effector function and proliferation are needed.  Here, we outline a strategy that enhances the 

memory phenotype, proliferative potential and survival without affecting the effector function of 

CD8+ T-cells by targeting PI3K-δ. Our findings have significant clinical implications and 

strongly suggest the clinical use of PI3K-δ inhibitors as potent modulators of the immune 

response as part of different cancer immune therapy strategies. 
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Figure Legends 

Figure 1:  

PI3K inhibition preserves the memory phenotype and enhances the proliferative ability of CD8+ 

T-cells. Non-fractionated splenocytes from pMel-1 mice were stained with violet cell trace 

(VCT) and activated with gp10025-33 peptide (1µM) in the presence or absence of GDC-0941 (11, 

33, 99 and 279nM). The cells were re-stimulated with gp10025-33 on days 7 and 14 and their 

phenotype and proliferation assessed.  Gated cells were viable (7AAD-) CD8+Vβ13+.  

A) In this representative example (left panel), non-GDC treated CD8+ T-cells are mainly 

TEM cells (CD62LloCD44hi) (96%), while GDC-treated cells have a high percentage (37% 

at the highest concentration) of TCM phenotype (CD62LhiCD44hi). Terminally 

differentiated T-cells (CD62LloCD44lo) after the third stimulation are significantly higher 

in non-treated cells (36%) compared to only 4% with the highest GDC concentration. 

TCM and  TEM were maintained with GDC treatment after the third stimulation (3.5 and 

93% respectively), compared to only less than 0.01 and 64% in the non-treated cells.  The 

right panel shows bar graphs summarizing data from at least two independent 

experiments. * p<0.05, ** p<0.01 
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B) After 3 days of stimulation, the proliferation of CD8+ T-cells was inhibited in a dose-

dependent manner by GDC-0941 (VCT dilution) (far left).  CD8+ T-cells treated with 

GDC expand at a significantly high rate with further stimulations.* p<0.05, ** p<0.01. 

C) PI3K inhibition by GDC-0941 maintains a high level of CD62L expression in CD8+ T-

cells on day 3, and on day 7 after each stimulation with gp100. Top panel shows a 

representative example of the CD62L expression. Bottom panel shows mean florescence 

intensity (MFI) for CD62L expression (data from at least 2 independent experiments). * 

p<0.05, ** p<0.01 

D) GDC-treated CD8+ T-cells secrete significantly higher levels of IL-2 following 

stimulation 3, which is consistent with their higher proliferative potential. Data 

normalized to GP100, * p<0.05. The ability of CD8+ T-cells to produce IFNγ and TNF-α 

was not affected by PI3K inhibition using GDC-0941. 

Figure 2:  

The inhibition of PI3K-δ, but not PI3K-α or PI3K-β, preserves memory cells and enhances the 

proliferative ability of CD8+ T-cells. Non-fractionated splenocytes from pMel-1 mice were 

stained with VCT and activated with gp10025-33 peptide (1µM) in the presence or absence of A66 

(32, 96 and 288nM), TGX-221 (5, 15 and 45nM) or CAL-101(0,28, 0.83, 2.5, 7.5, 22.5, 67.5 or 

202.5nM). The cells were re-stimulated with gp10025-33 on days 7, 14 and 21. Gated cells were 

viable (7AAD-)CD8+Vβ13+. 

A) PI3K-δ inhibition, but not PI3K-α or PI3K-β preserves the memory phenotype. In this 

representative example, A66 and TGX treated cells have a similar profile to non-treated 

cells, while CAL-101 treated cells have a significantly higher percentage of TCM  
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(CD62LhiCD44hi) (32% compared to 4%, D3, stim1) and TEM cells (CD62LloCD44hi) 

(95% compared to 64%, D7, Stim3), and a lower percentage of terminally differentiated 

T-cells (CD62LloCD44lo) (5% compared to 36%, D7, Stim 3).  

B) The proliferation of CD8+ T-cells is marginally inhibited by PI3K-δ inhibition, but not 

PI3K-α or PI3K-β (day3).  

C) The expansion of CD8+ T-cells treated with the inhibitor is significantly enhanced with 

further stimulations with PI3K-δ inhibition, but not PI3K-α or PI3K-β. * p<0.05, ** 

p<0.01, *** p<0.001. 

Figure 3:  

The inhibition of PI3K-δ, but not PI3K-α or PI3K-β, preserves high expression levels of CD62L 

and high secretion of IL-2 in CD8+ T-cells. Non-fractionated splenocytes from pMel-1 mice 

were stained with VCT and activated with gp10025-33 peptide (1µM) in the presence or absence 

of A66 (32, 96 and 288nM), TGX-221 (5, 15 and 45nM) or CAL-101(0,28, 0.83, 2.5, 7.5, 22.5, 

67.5 or 202.5nM). The cells were re-stimulated with gp10025-33 on days 7, 14 and 21. Gated cells 

were viable (7AAD-)CD8+Vβ13+. 

A) PI3K-δ, but not PI3K-α or PI3K-β maintains a high level of CD62L expression in CD8+ 

T-cells on day 3, and on day 7 after each stimulation with gp100. 

B) CAL-101 treated CD8+ T-cells secrete significantly higher levels of IL-2 following 

stimulation 3, which is consistent with their higher proliferative potential. Data 

normalized to GP100, * p<0.05. 

Figure 4:  
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PI3K inhibition does not affect the secretion of  IFNγ and TNF-α. CD8+ T-cells from pMel-1 

mice were stimulated with gp10025-33 peptide (1µM) in the presence or absence of GDC-0941 

(99µM), A66 (288nM), TGX-221 (45nM) or CAL-101 (202.5nM). On days 7 and 14, CD8+ T-

cells were re-stimulated with gp10025-33 peptide and the IFNγ and TNF-α levels in the 

supernatant assessed after 24 hours using CBA. Granzyme B expression was assessed on days 7 

and 14. 

A) The ability of CD8+ T-cells to produce IFNγ and TNF-α was not affected by the 

inhibition of specific PI3K isoforms. 

B) The ability of CD8+ T-cells to produce Granzyme B was not affected by PI3K inhibition. 

 

Figure 5:  

The inhibition of PI3K-δ in CD8+ T-cells significantly enhances their anti-tumor therapeutic 

ability in vivo. Mice were implanted with B16 in the right flank on day 0. On day 7, mice were 

lymphodepleted with CyFlu and on Day 8, 1 million  CD8+ T-cells from pMel-1 mice cultured 

in the presence or absence of CAL-101 were adoptively transferred. The appropriate groups were 

vaccinated with gp100/PADRE/Quil A vaccine on day 8, 15 and 22. Animal survival and tumor 

growth was monitored.  

NT-no treatment (n=5), Vac-vaccine (n=5), CyFlu-cycophosphamide/fludarabine (n=5), CyFlu + 

Vac - cycophosphamide/fludarabine  + Vaccine (n=4), CD8- ACT of non-treated CD8 (n=5), 

CD8 + Vac –ACT of non-treated CD8 + vaccine (n=5), CD8/Cal-ACT of CD8 treated with 

CAL-101 (n=5), CD8/Cal + Vac- ACT of CD8 treated with CAL-101 + Vaccine (n=5). All mice 

that received ACT were lymphodepleted with Cy/Flu. 
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A) Treatment Schedule 

B) Tumor volumes of individual mice for each treatment measured every 3-4 days. The data 

clearly show that the combination of ACT of CAL-101 treated cells with the vaccine 

significantly slowed down tumor growth when compared to all the other groups. 

C) Mean tumor volume for different groups shown in 5B. Statistical analyses were 

performed between groups on day 20 (before any of the animals died).  The combination 

of ACT of CAL-101 treated cells with the vaccine significantly slowed down tumor 

growth in comparison to non-treated mice and the vaccine alone.  

** p<0.01, **** p<0.0001, 

D) The Kaplan-Meier plot depicts overall survival. The combination of ACT of CAL-101 

treated cells with the vaccine significantly prolonged survival. 
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