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ABSTRACT  

 

Fungal species display an extraordinarily diverse range of lifestyles.  Nevertheless, the 

survival of each species depends on its ability to sense and respond to changes in its natural 

environment.  Environmental changes such as fluctuations in temperature, water balance or 

pH, or exposure to chemical insults such as reactive oxygen and nitrogen species, exert 

stresses that perturb cellular homeostasis and cause molecular damage to the fungal cell.  

Consequently, fungi have evolved mechanisms to repair this damage, detoxify chemical 

insults, and restore cellular homeostasis.  Most stresses are fundamental in nature and 

consequently, there has been significant evolutionary conservation in the nature of the 

resultant responses across the fungal kingdom and beyond.  For example, heat shock 

generally induces the synthesis of chaperones that promote protein refolding, antioxidants are 

generally synthesized in response to an oxidative stress, and osmolyte levels are generally 

increased following a hyper-osmotic shock.  In this chapter we summarize the current 

understanding of these and other stress responses as well as the signaling pathways that 

regulate them in the fungi.  Model yeasts such as Saccharomyces cerevisiae are compared 

with filamentous fungi, as well as with pathogens of plants and humans.  We also discuss 

current challenges associated with defining the dynamics of stress responses and with the 

elaboration of fungal stress adaptation under conditions that reflect natural environments in 

which fungal cells may be exposed to different types of stresses, either sequentially or 

simultaneously.    
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INTRODUCTION 

 

Planet earth plays host to an extravagantly diverse range of fungal species.  Recent estimates 

suggest the probable existence of as many as 3 million fungal species (1), and the circa 

75,000 of these that have been characterized to date display a wide range of lifestyles.  Many 

fungi occupy specific niches within natural environments, playing essential roles in nutrient 

scavenging and recycling.  Some thrive in close harmony with species from other kingdoms, a 

superb example being the mycorrhizal fungi, which display mutualistic interactions with 

plants.  Other fungi are pathogenic, causing devastating infections of plants or animals.  

Indeed, the global threats that fungi pose to human health and food security are being 

increasingly recognized (2).  Fortunately, a relatively small number of fungal species cause 

infections in humans (circa 400 species are described in the Atlas of Clinical Fungi (3)).  

Some of these fungi normally occupy environmental niches, but are capable of colonizing and 

damaging human (or animal) tissues, whereas other fungi appear to be obligately associated 

with their host.   

These diverse fungal niches are dynamic in that they display fluctuations in local 

parameters such as temperature, water balance, pH or the levels of particular compounds such 

as nutrients and reactive oxygen and nitrogen species.  These fluctuations are often capable of 

perturbing cellular homeostasis and causing molecular damage, thereby imposing stress on 

the fungal cell.  Consequently, fungal cells must be able to adapt to these dynamic changes if 

they are to survive, grow and colonize any niche.  This stress adaptation is dependent on three 

fundamental principles.  The first is the ability to detect environmental signals, i.e. the 

changing inputs from the local environment.  The second is the ability to transduce these 

signals to regulate the cellular processes that mediate the stress adaptation.  The third 

represents the adaptive responses themselves that allow cells to survive the stress.  These 
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adaptive processes either counteract or detoxify the initial stress, and repair or remove the 

molecular damage caused by that stress.  These fundamental principles must apply to all 

fungi.   

Given the elemental nature of environmental stresses, it is not surprising that there are 

fundamental similarities across the fungal kingdom (and beyond) with regard to the basic 

cellular processes that mediate adaptation to specific stresses.  For example, evolutionary 

divergent ascomycetes and basidiomycetes induce protein refolding mechanisms in response 

to changes in temperature (4, 5), and the synthesis of antioxidants following exposure to 

oxidative stresses (6, 7).  However, different niches exert different evolutionary pressures, and 

this has led to considerable diversity between fungal species with regard to the robustness of 

specific stress responses.  For example, the yeast Debaryomyces hansenii, which is found in 

hyper-saline waters, can tolerate higher levels of salt than Saccharomyces cerevisiae (8), 

which seems to have evolved to grow on  fruit and to be disseminated by wasps (9).  Also 

Candida glabrata, which is a fungal pathogen of humans that is relatively resistant to 

phagocytic killing (10), displays extremely high levels of oxidative stress resistance compared 

to other yeasts (11).  This evolutionary tuning of stress resistance to the local niche has led to 

some divergence between fungal species in the regulation of the cellular processes that 

mediate adaptation to some stresses.   

This chapter summarizes our current understanding of the mechanisms underlying 

fungal stress adaptation and the regulation of these responses.  We focus on those stresses that 

have been perceived to be the most relevant and hence have been most studied to date, and the 

experimentally tractable model fungi in which stress adaptation mechanisms are best 

characterized.  Also, we compare and contrast these outlooks on stress sensing to those from 

other fungi which have provided fascinating insights into niche-dependent stress adaptation.   
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ADAPTING TO INDIVIDUAL STRESSES 

 

Heat Shock  

Temperature modulates diverse facets of biology and disease.  Organisms across the tree of 

life must contend with changes in temperature that can manifest across a multitude of scales, 

from global climate change, to seasonal environmental change, to abrupt change associated 

with transitions in environmental niches.  For microbial pathogens, temperature can signal the 

successful infection of a host, and serves as a central cue governing proliferation, 

developmental programs, and virulence (12). As an example, fever is a ubiquitous response to 

infection, with elevated febrile temperatures thought to serve as an adaptive host response to 

restrict microbial proliferation.  In a broader context, mammalian endothermy may have 

evolved as a strategy to minimize infections caused by fungal species, most of which have a 

diminished capacity to proliferate at elevated temperatures (13). Of the ~3 million fungal 

species estimated to exist, less than 0.1% are able to cause disease in mammals, and this can 

largely be attributed to most rapidly losing their capacity for growth above ambient 

temperature (14). 

Thermal transitions have a profound impact on fungal development and virulence.  For 

example, virulence of the dimorphic fungal pathogens is controlled by a temperature-

dependent change in morphology (15).  Blastomyces dermatitidis, Coccidioides immitis, and 

Histoplasma capsulatum are key species that exemplify the characteristic response to 

temperature of the dimorphic fungi: these species grow as filamentous molds in the soil in 

response to ambient temperature and converting to growth as yeast cells in response to host 

temperature upon inhalation of spores into mammalian lungs.  The polymorphic fungus, 

Candida albicans  is another fungal pathogen for which temperature induces a dramatic 

morphological change (16).  In contrast to the dimorphic fungi, C. albicans proliferates in the 
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yeast form at ambient temperatures, and elevated temperature promotes a transition to 

filamentous growth.  Temperature of 37°C is required to enable filamentation in response to 

diverse cues such as serum, and a further increase in temperature to 39°C is sufficient to 

induce filamentation in the absence of other cues (17).  Beyond morphogenesis, temperature 

exerts a profound influence on diverse aspects of C. albicans biology, including mating, 

phenotypic switching, and drug resistance (17).  In addition to the phenotypic consequences 

of growth at sustained elevated temperatures, fungi also have a profound response to acute but 

temporary increases in temperature that is referred to as a heat shock response.  Strikingly, a 

transient heat shock can activate a C. albicans transcriptional program that is associated with 

increased host cell adhesion, host cell damage, and virulence (18). 

Fungi have evolved complex molecular machinery and regulatory circuits to respond to 

the stress induced by sustained or transient responses to elevated temperature, with the heat 

shock response as one of the most evolutionarily conserved stress responses in nature.  Core 

to the heat shock response is a global arrest of translation elongation, and transcriptional 

activation of genes encoding heat shock proteins, which include molecular chaperones that 

promote promoting folding and re-folding (19).  In C. albicans and the model yeast 

S. cerevisiae, ~10-20% of genes in the genome are induced in response to heat shock (20, 21).  

This transcriptional response is orchestrated in large part by the heat shock transcription 

factor Hsf1.  In C. albicans, Hsf1 binds to 49 targets constitutively and an additional 55 

targets in response to heat shock, with targets enriched for functions in protein folding and 

entry into the host (18).  Hsf1 typically binds at nucleosome-depleted regions in the promoters 

of target genes, and recognizes three motifs with distinct binding affinities (18).  Hsf1 is 

activated by phosphorylation, and this activation is required for virulence in C. albicans (19, 

21).   
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Complex functional relationships influence mobilization of cellular responses to thermal 

stress.  Hsf1 promotes the basal expression and thermal induction of genes encoding the 

molecular chaperone Hsp90 (Figure 1).  Hsp90 in turn physically interacts with Hsf1, thereby 

exerting a repressive effect on activation of the heat shock response (19).  As a consequence, 

perturbation of Hsp90 function by small molecules, mutations, or elevated temperature causes 

activation of Hsf1 and induction of the heat shock response in the absence of thermal stress.  

In contrast, Hsp90 is required to mobilize a rapid transcriptional response to thermal stress, 

such that depletion of Hsp90 causes delayed induction of the transcriptional program induced 

by heat shock (18).  Hsp90 influences transcriptional programs not only via effects on Hsf1, 

but also by modulating chromatin remodeling, nucleosome removal, and RNA polymerase II 

stalling (22-24). 

As a molecular chaperone, Hsp90 regulates the stability and function of diverse client 

proteins, which include many core cellular regulators beyond Hsf1.  For many client proteins, 

Hsp90 stabilizes otherwise metastable regulators, thereby enabling their activation in response 

to stress or other cues (25, 26).  In the context of thermal adaptation, Hsp90 stabilizes the 

Hog1 stress activated protein kinase, as well as the mitogen activated protein kinases Mkc1 

and Cek1 (27-29).  In this context, Hsp90 enables signaling required for cell wall remodeling 

and adaptation to heat shock.  Classical genetic screens and chemical genomic approaches to 

identify mutants that are hypersensitive to Hsp90 inhibition under distinct stress conditions, 

have provided powerful strategies to identify novel Hsp90 client proteins and key regulators 

of thermal adaptation (27, 29, 30). 

The circuitry underpinning thermal adaptation can be activated by a remarkable 

diversity of temperature sensing mechanisms.  For example, Hsp90 function is exquisitely 

sensitive to elevated temperature as the global problems in protein folding that arise for 

thermal stress create an elevated cellular demand for Hsp90 that exceeds its functional 
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capacity to engage with client proteins (30).  In the broader context, DNA, RNA, proteins, 

and lipids can all serve as thermosensors that sense changes in temperature to initiate crucial 

cellular responses and developmental programs (12). 

 

Osmotic Stress 

Managing changes in water balance represent another fundamental challenge for fungi in 

most environments.  The classic experimental model for this has been the imposition of 

hyper-osmotic shock through addition of sorbitol or salts such as NaCl (31).  This results in a 

sudden loss in the intracellular turgor pressure that is required for fungal growth.  The fungus 

must restore its turgor pressure before it can resume growth, and to achieve this, it activates 

the synthesis and accumulation of intracellular osmolytes such as glycerol, for example 

(Figure 1).   

S. cerevisiae responds to osmotic stress by increasing the flux from glycolysis to 

glycerol.  This is achieved by inducing the genes encoding glycerol-3-phosphate 

dehydrogenase (GPD1) and glycerol-3-phosphate phosphatase (GPP1).  S. cerevisiae can also 

assimilate glycerol from the growth medium, although this uptake is repressed by glucose 

(32) which is in contrast to the response of some other yeasts (33, 34).  However, the 

intracellular accumulation of glycerol is also dependent on restricting glycerol efflux from the 

cell through the plasma membrane-based aquaglyceroporin, Fps1 (35).  Following the 

imposition of a hyper-osmotic stress, the intracellular accumulation of glycerol and the 

restoration of turgor pressure take in the order of 30 minutes (36), after which growth may 

resume.   

This type of response, which involves signalling, gene regulation and subsequent 

changes in metabolism, is too slow to protect the fungal cell against hypo-osmotic shock.  

This stress causes the immediate accumulation of water and rapid increases in cell volume 
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which, if not countered quickly, would cause a yeast cell to burst (37).  In S. cerevisiae this 

rapid rise in turgor pressure is alleviated by swift opening of the Fps1 aquaglyceroporin, the 

activity of which is regulated by protein phosphorylation.  Mutations that inactivate Fps1, and 

hence block rapid glycerol efflux, confer hypo-osmotic stress sensitivity on the yeast cell 

(38).  Clearly, responses to hyper- and hypo-osmotic shocks occur over differing timescales 

that reflect the relative imminence of potentially irreversible damage to the fungal cell.   

Regarding the regulation of osmotic stress responses, the activation of Hog1 in 

S. cerevisiae has formed the paradigm of osmotic stress activation of fungal SAPKs (39).  

Like all MAPK modules, the Hog1 MAPK module comprises three tiers of kinases; the 

MAPKKK(s) at the top of the pathway phosphorylates and activates a downstream MAPKK, 

which then phosphorylates and activates the terminal MAPK.  The central importance of this 

MAPK module in fungal stress sensing is illustrated by its involvement in diverse 

environmental responses in diverse fungi, which even include light sensing in Aspergillus 

nidulans (40).  In S. cerevisiae, two functionally redundant pathways converge at the MAPKK 

Pbs2 to relay osmotic stress signals to Hog1.  These are the Sln1 two-component signalling 

pathway, and a pathway that contains the SH3-domain-containing Sho1 transmembrane protein.  

In the first pathway, loss of turgor pressure, induced by high osmolarity, inactivates the 

transmembrane histidine kinase Sln1 and thus halts phosphorelay through the phosphorelay 

protein Ypd1, leading to a rapid dephosphorylation of the Ssk1 response regulator (41).  

Dephosphorylated Ssk1 activates the MAPKKKs Ssk2/22 in a two-step mechanism (42), leading 

to phosphorylation and activation of the Pbs2 MAPKK.  In the second pathway, the Ste11 

MAPKKK phosphorylates Pbs2 when stimulated by osmotic stress signals received from the 

Sho1 branch of the Hog1 pathway (43).  Many proteins are involved in the osmotic stress 

signalling from Sho1 to Ste11-Pbs2, including Cdc42, Ste20, Cla4, Ste50 and Opy2 (43, 44).  

Sho1 was originally thought to function as the osmosensor at the top of pathway (45).  
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However, two functionally redundant osmosensensors have since been identified; the mucins, 

Msb2 and Hkr1 (46).  As different signalling mechanisms are employed by Msb2 and Hkr2 

(47, 48) the Sho1 branch is now divided into the Hkr1 and Msb2 sub-branches.  Whilst Msb2 

and other Sho1 branch components also participate in the filamentous growth MAPK 

pathway, Hkr1 plays a specific role in Hog1 signalling (49) and this is mediated through the 

newly discovered scaffold protein Ahk1 (50). 

As the SAPKs are amongst the most evolutionarily conserved stress signalling proteins 

in fungi (51), it is remarkable that the mechanisms underlying the osmotic stress regulation of 

S. cerevisiae Hog1 have significantly diverged.  For example, in the distantly related model 

yeast Sz. pombe, two-component signalling functions to relays H2O2, but not osmotic, stress 

signals to the Sty1 SAPK (52), and an orthologue of Sho1 is seemingly absent from the 

fission yeast genome (51).  In C. albicans, although Sho1 pathway components have been 

identified and characterised they are not required for the relay of osmotic stress signals to 

Hog1 (53, 54).  Consistent with this, Hog1 in C. albicans is regulated by a single MAKKK, 

Ssk2, with the Ste11 MAPKKK - predicted to function downstream of Sho1 - having no 

obvious role (55).  In contrast, the available evidence does support the involvement of two-

component signalling in the activation of C. albicans Hog1 by osmotic stress, as close 

homologues of the Sln1-Ypd1-Ssk1 pathway are present in C. albicans, and Hog1 is 

hyperactivated in cells lacking Sln1 (54).  However, the observation that osmotic stress-

induced Hog1 activation is not notably impaired in cells lacking the Ssk1 response regulator 

(56) suggests the presence of a novel osmotic stress sensing pathway in this fungal pathogen.  

In certain C. glabrata isolates, only the Sho1 branch functions to relay osmotic stress signals 

to Hog1.  This is due to a truncated ssk2 allele which prevents signalling through the Sln1 

branch (57).  Intriguingly, gain of function mutations have been identified in the related Ssk2 
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MAPKKK in Cryptococcus neoformans (58), which are responsible for high basal levels of 

Hog1 activation in serotype A strains (59).   

Hog1 has been shown to play a central role in the regulation of osmoadaptation in 

S. cerevisiae.  This MAPK regulates glycerol accumulation of glycerol via transcriptional 

activation of GPD1 and GPP1 in response to osmotic stress via the transcription factors Hot1, 

Msn2 and Msn4 (60), and by controlling the activity of the Fps1 acquaglyceroporin (61).  It 

should be noted that additional TORC2/Ypk1-dependent signalling mechanisms do contribute 

to the regulation of Fps1 and hence to survival in the face of hyper-osmotic stress (38).  

However, Hog1 also mediates the transient delay in cell cycle progression following hyper-

osmotic shock by phosphorylation of Sic1 and Hsl1, and by down-regulating G1 and G2 

cyclins (62).  Once osmo-adaptation is achieved, the yeast cell has essentially achieved a new 

homeostatic state in which turgor pressure has been restored in the face of the external 

osmotic conditions (63).  Consequently, the input signal has been dampened, Hog1 becomes 

de-activated, the block to cell cycle progression is released, and growth can resume.   

 

Oxidative Stress  

Reactive oxygen species (ROS) are highly damaging, reduced forms of oxygen, which 

include the superoxide anion O2
., hydrogen peroxide (H2O2), and the hydroxyl radicle (.OH).  

These reactive molecules damage proteins, DNA, and lipids, and can trigger programmed cell 

death (64).  All fungi that grow aerobically are exposed to superoxide anions generated as a 

by-product of aerobic respiration in the mitochondria (65).  Environmental fungi are also 

exposed to ROS generated following exposure to UV light or to drugs/xenobiotics found in 

the environment (64).  In addition, pathogenic fungi are exposed to superoxide and hydrogen 

peroxide ROS which are generated by plant (66) or animal (67) host defence systems as a 
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major antimicrobial defence mechanism.  Significantly, other toxic chemicals are 

subsequently derived from the host-generated ROS (67).   

Oxidative stress occurs when the levels of ROS exceed the antioxidant capacity of the 

cell which functions to maintain the intracellular redox environment in a reduced state.  In 

response to oxidative stress, fungal cells mount a wide range of defence and repair strategies.  

One well-characterized and conserved response involves the rapid induction of mRNAs that 

encode oxidative stress detoxification and repair proteins (Figure 1).  Transcript profiling 

studies indicate that a set of core anti-oxidant genes are induced in fungi following exposure 

to H2O2 (20, 68-72).  These include catalase (CAT1), glutathione peroxidase (GPX), and 

superoxide dismutase (SOD)- antioxidant encoding genes, in addition to genes encoding 

components of the glutathione/glutaredoxin (GSH1, TTR1) and thioredoxin (TSA1, TRX1, 

TRR1) systems.  An additional and very rapid response to oxidative stress, that precedes 

transcriptional activation, is the dynamic redirection of the metabolic flux from glycolysis to 

the pentose phosphate pathway.  This metabolic switch is triggered by the oxidation and 

inactivation of the glycolytic enzyme GAPDH, which functions to promote the generation of 

reducing power in the form of NADPH (73).  Yeast cells also transiently delay cell cycle 

progression following exposure to ROS to allow DNA damage repair.  For example, H2O2 

causes a G2 cell cycle arrest in S. cerevisiae by activating the Rad53 DNA damage 

checkpoint (74).  For more details on activation of DNA damage checkpoints in S. cerevisiae 

the readers are directed to this recent excellent review (75).  In the pathogenic fungus, 

C. albicans, exposure to H2O2 also triggers a Rad53-mediated cell cycle arrest.  Interestingly, 

in this fungus, such genotoxic-induced cell cycle arrest promotes the formation of a 

filamentous hyperpolarized bud growth form (76, 77).   

Orthologues of transcription factors that are vital for oxidative stress-responsive gene 

induction in S. cerevisiae, the AP-1-like bZip factor Yap1 and the Skn7 response regulator, 

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006074
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have now been studied in many fungi (67).  The elegant mechanism underlying activation of 

S. cerevisiae Yap1 is well characterized.  Following exposure to H2O2, specific cysteine 

residues located within two distinct two cysteine-rich domains (CRDs) become rapidly 

oxidised (78).  This oxidation event, which requires the thiol peroxidase Gpx3 (79), and the 

Yap1 binding protein Ybp1 (80), triggers a conformational change within Yap1 that masks a 

nuclear export sequence (81).  Consequently, Yap1 accumulates in the nucleus resulting in the 

induction of Yap1-dependent genes (79).  In the human fungal pathogen, C. albicans, Cap1 

oxidation is similarly regulated by Gpx3 and Ybp1 (82).  However, in the model yeast 

Sz. pombe, Pap1 oxidation depends instead on the 2-Cys peroxiredoxin Tpx1 (83), and in the 

fungal symbiont Epichloe fustucae redox regulation of the analogous YapA factor is 

independent of both Gpx3 and Tpx1 (84).  Thus multiple mechanisms may exist to regulate 

the oxidation of fungal AP-1-like factors.  Interestingly, AP-1-like factors have been found to 

be dispensable for the virulence of the human fungal pathogens Aspergillus fumigatus (85), 

Cr. neoformans (86), and C. albicans (82, 87), but are required for the virulence of a number 

of plant pathogens (88-90).   

In S. cerevisiae, Yap1 collaborates with Skn7 to regulate many oxidative stress-

response genes and this may be conserved, as similar findings have been reported in 

C. glabrata (91), and Sz. pombe (92).  Little is known about Skn7 activation following 

oxidative stress, but a study has reported a DNA-independent interaction between Yap1 and 

Skn7 in S. cerevisiae (93), and in C. glabrata Yap1 and Skn7 cooperatively bind to the 

upstream region of core oxidative stress genes (91).  In Sz. pombe, a role for two-component 

mediated phosphorylation of the Skn7 homologue in responses to high levels of H2O2 stress 

has been uncovered (94).  A recent review summarizes the functions of Skn7 and roles in 

fungal virulence (95).   
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In addition to Yap1 and Skn7, are the bZip factors of the ATF/CREB family.  The best 

characterized is the Atf1 transcription factor in the model yeast Sz. pombe.  In response to 

oxidative stress Atf1 is hyper-phosphorylated by the Sty1 SAPK (96).  This stabilizes this 

transcription factor which is vital for its function in oxidative stress-induced gene expression 

(97, 98).  Analogous transcription factors shown to play roles in oxidative stress mediated 

gene expression include Atf1 in Cr. neoformans (99), Moatf1 in Magnaporthe oryzae (100), 

and AtfA in A. nidulans and A. fumigatus (101, 102).  Moreover, there is emerging evidence 

to support the general concept that such transcription factors are targets of fungal SAPK 

pathways (102, 103). 

Although the Hog1 SAPK in S. cerevisiae is dispensable for oxidative stress responses 

(20, 104), homologues play important roles in oxidative stress tolerance in many other fungi.  

These include the model yeast Sz. pombe (105), the filamentous fungus A. nidulans (102), a 

number of human pathogenic fungi including C. albicans (106), Cr. neoformans (59), 

A. fumigatus (107), and the plant pathogens Bipolaris oryzae (108) and 

Fusarium graminearum (109).  The Sty1 pathway in the model yeast, Sz. pombe, has provided 

key insight into the oxidative stress mediated activation of such pathways.  Sty1 is robustly 

phosphorylated in response to oxidative stress and plays a major role in the regulation of the 

oxidative-stress induced transcriptome (92).  In Sz. pombe, a two-component signalling 

system operates to relay H2O2, and not osmotic, stress signals to the Sty1 SAPK module.  The 

Mak2 and Mak3 histidine kinases contain redox sensing PAS and GAF domains, that are 

essential for the relay of H2O2 signals to Sty1 (94).  In addition, protein oxidation also 

regulates the H2O2-induced activation of Sty1.  The redox sensitive peroxiredoxin enzyme 

Tpx1 is essential for H2O2-mediated Sty1 activation and, as intermolecular disulphide bonds 

are formed between conserved cysteine residues in Sty1 and Tpx1 following H2O2 stress, it 

appears that Tpx1 may regulate Sty1 function directly (110).  Mechanisms underlying H2O2-



15 

mediated SAPK activation have also been explored in C. albicans.  C. albicans Hog1 is 

robustly activated following exposure to H2O2  (71), and hog1Δ cells are sensitive to a range 

of ROS (106, 111), despite a limited transcription role (71).  Similar to that in Sz. pombe, 

oxidative stress-induced Hog1 phosphorylation is drastically reduced in cells lacking the Ssk1 

response regulator (56), although no similar roles have been found for the upstream histidine 

kinases (54, 112).  Both the redox sensitive peroxiredoxin Tsa1, and thioredoxin Trx1, 

enzymes are vital for H2O2-induced Hog1 activation in C. albicans (76).  Thus protein 

oxidation appears to be an important mediator of both C. albicans and Sz. pombe SAPK 

activation following oxidative stress.  Mechanistic details regarding oxidative-stress mediated 

SAPK activation in other fungi are lacking, although in A. nidulans it has been shown that the 

SskA response regulator is essential for oxidative stress-induced activation of the SakA SAPK 

(113). 

 

Nitrosative Stress  

Fungal cells experience nitrosative stress when they are exposed to relatively high levels of 

reactive nitrogen species (RNS).  These RNS include nitric oxide (·NO) and its derivatives 

peroxynitrite (ONOO−, which formed by the reaction of nitric oxide with superoxide, O2·−), 

nitrite (NO2
-), nitrogen dioxide (·NO2

-) and nitrate (NO3
-).  Fungi are confronted by RNS in 

the soil, as well as in mammalian hosts where these reactive molecules are components of the 

phagocytic armoury used to combat microbial infection (114-116).  Therefore, the protective 

responses of fungal pathogens against nitrosative stress are important for pathogenicity and 

have been examined in some detail, for example in C. albicans and Cr. neoformans (117, 

118).  In contrast, for plant pathogens such as Blumeria graminis, Botrytis cinerea and 

M. oryzae, NO has been shown to promote the spread of infection in plant hosts.  These 
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effects might be mediated by the action of NO as a developmental signal (119-121), but could 

also be due to the influence of fungus-derived NO upon the behaviour of the plant host (122).   

Excess RNS damage proteins by reacting with thiols, metal centres and tyrosine 

residues.  Fungi protect themselves by buffering RNS with antioxidants such as glutathione, 

and by inducing mechanisms to detoxify the RNS and repair the damage they cause.  NO 

reacts with glutathione (GSH) to generate S-nitrosoglutathione (GSNO).  To restore redox 

homeostasis, fungi recycle this GSNO to GSH, via glutathione disulphide (GSSG).  This is 

achieved through the evolutionarily conserved enzymes S-nitrosoglutathione reductase 

(GSNOR: Fdh3) and glutathione reductase (Glr1) (123-125).  NO detoxification to nitrate is 

mediated by nitric oxide oxidoreductases (e.g. S. cerevisiae Yhb1), which are conserved 

enzymes that are members of the flavohaemoglobin family (126).   

While the processes that protect against RNS are evolutionarily conserved, the 

regulatory mechanisms that induce these processes in response to RNS appear to have 

diverged.  For example, while RNS exposure triggers global changes in the expression 

profiles of S. cerevisiae and C. albicans that include the induction of Yhb1 and glutathione 

synthesis (117, 127), seemingly unrelated transcription factors drive these changes.  In 

S. cerevisiae, YHB1 expression is induced by the transcription factor Fzf1 (127) (Figure 1), 

whereas Cta4 activates YHB1 in C. albicans (128).  Nevertheless, the outcomes are similar: 

these transcription factors both promote Yhb1 and glutathione expression, and hence 

nitrosative stress resistance in these fungi.  For the fungal pathogen, C. albicans, the deletion 

of YHB1 or its activator CTA4 attenuates virulence slightly (117, 128, 129).  Similarly, 

inactivation of the nitric oxide oxidoreductase (Fhb1) or the GSNOR (Gno1) in 

Cr. neoformans attenuates the virulence of this pathogen (130).  NO production by the host 

does not seem to be a major factor in limiting fungal virulence (117).  Nevertheless, the 

available data suggest that RNS detoxification does contribute to fungal virulence. 
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Cell Wall Stress   

The fungal cell wall is a dynamic structure that is continually remodeled during cell growth 

and division.  The cell wall represents ~25% of the yeast cell dry weight, underscoring the 

extensive metabolic commitment to support this elaborate structure, which provides the key 

interface for mediating interactions with the environment (131).  Fungal cell wall architecture 

involves layers of polysaccharides and glycoproteins, although the specific composition 

varies across species.  Typically, a matrix of chitin, β-1,3-glucan and β-1,6-glucan constitute 

the core inner layer, with mannans and other mixed glycans and glycoproteins prevalent in the 

outer layer.  Cell walls provide crucial protection against changes in external osmotic 

potential, and can confer resistance to infection and to degradation by soil predators such as 

amoebae and protists.  These adaptive advantages may contribute to the emergence and 

maintenance of cell walls in the fungal kingdom (132).  Cell walls serve not only as a 

protective shell, but also as a means to modulate immune recognition.  Fungal cell wall 

glycans, glycolipids, and proteins that are absent from mammals activate a wealth of immune 

recognition mechanisms, and the dynamic exposure of such pathogen-associated molecular 

patterns can serve to modulate immune recognition (133).  As a consequence, perturbation of 

fungal cell wall architecture can potentiate immune responses and induce lethal cell wall 

stress.  Molecules that potently inhibit fungal cell wall biosynthesis have been elaborated in 

nature as with the echinocandins, and exploited in modern medicine with semi-synthetic 

derivatives now a front-line treatment for fungal infections (134). 

 Fungi have evolved complex cellular circuitry to sense and respond to cell wall stress.  

Although details vary among fungi, the core architecture is broadly conserved.  Cell wall 

stress is typically sensed at the plasma membrane via cell surface sensors, which include 

Wsc1, Wsc2, Wsc3, Mid2, and Mtl1 in S. cerevisiae (131).  This stimulates nucleotide 
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exchange on the small G-protein Rho1, which orchestrates cell wall integrity signaling.  

Downstream effectors of Rho1 coordinate synthesis of β-glucans, transcriptional control of 

cell wall genes, polarization of the actin cytoskeleton, and targeting of secretory vesicles.  The 

most well established pathway through which cell wall integrity signals are transduced from 

Rho1 is the mitogen activated protein kinase cascade that includes Pkc1, Bck1, Mkk1/2, and 

Mpk1/Slt2 in S. cerevisiae (17).  Although this cascade provides a powerful mechanism to 

amplify cell surface signals and coordinate highly sensitive responses, additional robustness is 

integral to ensure maintenance of cell wall physiology and is achieved by complex genetic 

interaction networks.  These networks can enable compensatory responses to cell wall 

perturbations.  For example, activation of chitin synthesis suppresses the antifungal activity of 

echinocandins (135-137), which inhibit biosynthesis of β-1,3-glucan.  The highly connected 

genetic networks that control cell wall stress response circuitry can be activated by diverse 

environmental stresses, providing a powerful strategy to rapidly mobilize protective 

mechanisms. 

Environmentally contingent hubs of cellular signaling are crucial for orchestrating cell 

wall stress responses.  An excellent example is the molecular chaperone Hsp90.  Hsp90 

modulates the stability and function of diverse regulators of cellular signaling, thereby 

enabling responses to a myriad of stresses, including perturbation of the cell wall (29, 138, 

139) (Figure 1).  Hsp90 enables responses to cell wall stress at least in part by modulating cell 

wall integrity signaling.  Hsp90 stabilizes the terminal mitogen activated protein kinase in the 

cell wall integrity pathway, Slt2 in S. cerevisiae and Mkc1 in C. albicans (140-142).  Hsp90 

also stabilizes an additional mitogen activated protein kinase that is implicated in cell wall 

remodeling, Cek1 (29).  Compromise of Hsp90 function leads to depletion of these kinases 

and hypersensitivity to cell wall stress.  Additional Hsp90 client proteins important for cell 

wall remodeling are the protein phosphatase calcineurin and kinase Hog1.  Signaling through 
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the cell wall integrity pathway, Hog1, and calcineurin coordinately regulates the synthesis of 

chitin in response to stress induced by perturbation of the cell wall or cell membrane (143).  

Chitin levels are dramatically increased in response to echinocandins, which provides 

protection that enables cells to cope with cell wall damage (135).  Cell damage induced by 

various genetic or environmental insults can also be buffered by activation of other core 

cellular signaling pathways, such as the cyclic AMP protein kinase A cascade (17).  Although 

the molecular details have been explored in the greatest depths in S. cerevisiae, many 

conserved principles of coordinate control of cell wall stress response are emerging from 

studies in diverse fungi (144-147). 

 There is broad therapeutic potential of targeting core regulators of cell wall stress 

responses as a strategy to enhance the efficacy of antifungal drugs that target the cell wall, as 

with the echinocandins.  This potential is illustrated by the discovery that inhibition of Hsp90 

of calcineurin enhances the efficacy of echinocandins against diverse fungal pathogens in 

multiple models of infection (138, 145, 148).  The therapeutic challenge of exploiting these 

conserved eukaryotic cellular regulators as targets for antifungal drug development lies in 

development of molecules that can distinguish the pathogen from the host.  Achieving this 

goal can be facilitated by structure-guided drug design (149).  As a complementary approach 

to targeting regulators of cell wall stress response, systematic screens for molecules that 

potentiate the activity of echinocandins provides a powerful strategy to enhance the efficacy 

of our limited arsenal of antifungal drugs and thwart the emergence of drug resistance (150). 

 

pH stress 

Alkaline pH imposes a number of stresses on fungi.  One of the most significant relates to 

nutrient acquisition.  At high extracellular pH, the establishment of electrochemical gradients 

across the plasma membrane for nutrient transport and ATP synthesis is more difficult (151).  
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Moreover, the solubility and biological availability of essential elements such as iron is 

dramatically reduced at high pH.  The finding that addition of micromolar concentrations of 

copper or iron ions significantly improves the growth of S. cerevisiae at high pH suggests that 

these two elements are limiting factors for growth under alkaline pH conditions (152).  

An important aspect of pH regulation is the ability to regulate gene expression in 

response to ambient pH, which allows fungi to synthesize the environmentally appropriate 

gene products, particularly secreted proteins. This ability has practical implications, for 

example in the production of secondary metabolites or for fungal pathogenicity on plant and 

animal hosts (153, 154).  Environmental pH also has profound effects on fungal development.  

For example, in C. albicans a shift from acidic to neutral-alkaline pH promotes the transition 

from yeast to filamentous growth ((153).  

The best known alkaline pH-responsive signal transduction mechanism in fungi is the 

Pal/Rim pathway (Figure 1).  This pathway has been extensively studied in A. nidulans (Pal) 

and S. cerevisiae (Rim).  In A. nidulans, the Pal pathway sequentially involves the proteins 

PalH, PalI, PalF, PalC, PalA and PalB.  Moreover, the pathway encompasses a number of co-

opted components of the multivesicular body (MVB) and ESCRTs (endosomal sorting 

complexes required for transport) (154).  Activation of the pathway by alkaline pH leads to 

proteolytic activation of the zinc finger transcription factor PacC/Rim101 (155, 156).  PacC 

undergoes two successive C-terminal proteolytic cleavages from the full length 72-kDa to the 

processed 27-kDa active form, the first of which is pH-dependent and carried out by the 

signalling protease PalB (154).   

PalH/Rim21, a seven-transmembrane domain plasma membrane protein, is thought to 

function as pH receptor.  PalH forms a complex with the arrestin-like protein PalF/Rim8, 

which is ubiquitinated in an alkaline pH-dependent manner and recruits ESCRT-I Vps23, 

thereby creating multiple docking sites for the downstream signalling components (157-160).  
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An open question is how PalH/Rim21 senses alkaline ambient pH.  The membrane 

potential of the yeast plasma membrane is mainly generated by differences in proton 

concentration between the inside and outside of the cell.  External alkalization therefore leads 

to impaired phospholipid flipping and plasma membrane depolarization by collapsing the 

proton electrochemical gradient.  Interestingly, it was shown that the Rim101 pathway in 

yeast can be activated in a pH-independent manner by either protonophore treatment or 

depletion of phosphatidylserine in the inner leaflet of the plasma membrane, both of which 

cause plasma membrane depolarization similar to external alkalization.  This activation is 

dependent on Rim21, suggesting that plasma membrane depolarization is a key signal sensed 

by Rim21 (160).  Moreover, a recent study suggests that alterations in lipid asymmetry cause 

changes in lipid composition and local charge on the inner leaflet, leading to dissociation of 

the Rim21 complex from the plasma membrane and recruitment of downstream proteins 

(161).  Thus Rim21 senses external alkalization, as well as altered lipid asymmetry. It was 

proposed that Rim21 uses its flexible C-terminal cytosolic tail like an antenna to monitor the 

status of membrane lipid asymmetry (161). 

To achieve infection, pathogenic fungi must adapt to wide variations in the ambient pH 

of host tissues, which, in humans, can vary from 2 to >8 depending on the niche.  Early 

studies in C. albicans revealed that genes encoding two functionally redundant cell wall β-

glycosidases, PHR1 and PHR2, display divergent pH-dependent expression patterns and 

virulence functions in cell wall remodelling.  While PHR1 is expressed preferentially at 

neutral-alkaline pH and is required for systemic infection, PHR2 is expressed preferentially at 

acidic pH and is required for vaginal infection (162).  These pH-dependent expression 

patterns are dependent on PacC/Rim signalling (163).  More recently, multiple roles for the 

PacC/Rim pathway during human colonization and infection have been established in 

C. albicans, including filamentation, adhesion to host cells, tissue invasion, iron acquisition 
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and protease secretion (153).  The role of PacC/Rim101 in mammalian infection is conserved 

in filamentous ascomycetes such as Fusarium oxysporum and A. fumigatus (164, 165). In the 

basidiomycete human pathogen Cr. neoformans the RIM pathway is also involved in 

pathogenicity (166), although the function of PalH/Rim21 appears to be carried out by a 

distinct membrane protein (167).  

Alkaline pH signalling is also of relevance in other fungus-host interactions. For 

example, deletion of PacC in the nematophagous fungus Clonostachys rosea and the insect 

pathogen Metarrizium robertsii results in attenuated virulence (168, 169).  In plant pathogens, 

the role of PacC in virulence varies depending on the pathogen-host system.  While it 

contributes to virulence in the rice blast fungus M. oryzae and the fruit pathogen Penicillium 

expansum, it appears to function as a negative virulence regulator in the vascular wilt fungus 

F. oxysporum (170-172).   

Besides the Pal/Rim pathway, additional cell signalling pathways function in fungal 

adaptation to neutral/alkaline pH.  The calcium-dependent protein phosphatase calcineurin 

and its downstream transcription factor Crz1 are required for growth at alkaline pH and for 

fungal virulence on animal and plant hosts (173-177).  Crz1 also mediates tolerance to high 

cation concentrations (178).  Mds3, a negative regulator of the TOR pathway, promotes 

adaptation to neutral/alkaline pH as well as virulence-related morphogenesis in C. albicans 

(179).  Moreover, mutations in the cell wall integrity MAPK cascade confer sensitivity to 

alkaline stress, and alkalinization results in rapid and transient phosphorylation of the Slt2 

MAPK in S. cerevisiae (180).  This suggests that alkaline pH stress profoundly affects the 

composition of the fungal cell wall. 

Recently, a novel signalling pathway was identified which is required for resistance to 

alkaline pH and cation stress in A. nidulans (177).  This pathway, which appears to be specific 

to filamentous fungi, is defined by the transcription factor SltA and the serine protease SltB.  
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Activation of SltA requires proteolytic cleavage and removal of the N-terminal domain by 

SltB and phosphorylation of the functional C-terminal moiety (181).  Interestingly, while the 

SltA pathway is conserved in filamentous fungal pathogens, its role in infection remains to be 

determined. 

 

Weak Acid Stress Response 

The weak acid stress response has been largely studied in the context of food spoilage, but it 

is likely to be highly relevant to environmental and pathogenic fungi that occupy acidic niches 

or that are exposed to phagocytic attack.  Weak organic acids such as acetic, propionic, sorbic 

and benzoic acid impose stress on fungal cells when the environmental pH lies below the pKa 

of the acid in question (i.e. below pH 4.8 for acetic acid).  Below its pKa, a weak acid is in its 

associated nonpolar form and is better able to cross the plasma membrane.  Acetic acid enters 

the S. cerevisiae cell via the aquaglyceroporin Fps1, whereas propionic, sorbic and benzoic 

acid appear to diffuse passively across the plasma membrane (182).  Once they enter the 

higher pH of the cytoplasm they dissociate into the free acid anion and proton (H+).  The 

equilibrium of this reaction drives the accumulation of the acid anion and protons, and 

consequently acidification of the cytoplasm.  Weak acid stress is imposed partly by this 

cytoplasmic acidification, and partly by the accumulation of the organic anion, which can 

impose toxic effects on yeasts and moulds (183, 184).  For example, sorbic acid appears to 

exert membrane-active antimicrobial effects in S. cerevisiae (183).   

Fungal cells respond to weak acid stress by attempting to maintain their intracellular pH 

and by exporting the organic anion.  In S. cerevisiae these tasks are executed by Pma1 and 

Pdr12, respectively (185, 186).  Pma1 is the plasma membrane H+-ATPase proton pump.  This 

pump is essential for growth and for the restoration of cytoplasmic pH, which is an energy-

demanding process (187).  Pdr12 is an ATP binding cassette transporter that mediates efflux 
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of the organic anion from the yeast cell.  Pdr12 is also important for the restoration of 

cytoplasmic pH during sorbic and benzoic acid stress (188).   

In S. cerevisiae resistance to acetic acid stress is dependent on Hog1 signalling.  Hog1 

down-regulates the Fps1 aquaglyceroporin, thereby reducing acetate accumulation (182), and 

activates the Haa1 transcriptional regulon which includes genes encoding membrane stress 

proteins (189).  Meanwhile resistance to propionic, sorbic and benzoic acids depends on the 

induction of PDR12 (185) via the transcription factor War1 (190, 191).  War1 is potentially 

regulated by direct binding of the organic anion, thereby precluding a requirement for 

upstream signaling.   

Analogous regulatory mechanisms appear to exist in some yeasts.  For example, Hog1 

mediates sorbic acid resistance in C. glabrata (192), and resistance to this weak acid in 

C. albicans is dependent upon a War1 orthologue (193) as well as the Msn2/Msn4-like 

transcription factor Mnl1 (194).  However, alternative mechanisms seem to mediate weak 

acid stress resistance in other yeasts, most notably the food spoilage organism, 

Zygosaccharomyces bailii, which displays high levels of weak acid stress resistance.  In this 

species, survival in the face of weak acid stress is appears to be dependent on population 

heterogeneity: a proportion of cells that display low cytoplasmic pH, and therefore reduced 

weak acid accumulation, give rise to a population of resistant cells (195).  Rather than 

inducing a Pdr12-like weak acid exporter, Z. bailii degrades sorbate and benzoate, exploiting 

them as a carbon source (185).   

 

Core Stress Response  

In the preceding sections we have discussed fungal responses to individual stresses.  Here we 

describe how exposure to different types of stress can lead to similar responses via what has 

been termed the Core Stress Response (CSR).  Genome-wide transcript profiling studies first 
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revealed the existence of CSRs in the model yeasts S. cerevisiae (20, 68) and Sz. pombe (69), 

in the pathogenic fungus C. glabrata (72), and to a lesser extent  in C. albicans (70, 71).  

Formally, the CSR describes a set of genes that are commonly regulated in response to 

diverse types of stress (Figure 2). 

In S. cerevisiae, between 200 and 300 genes were found to be up regulated in response 

to diverse stresses including heat shock, osmotic stress, oxidative stresses, increases or 

decreases in pH, and amino acid starvation (20, 68).  In addition, between 300 and 600 genes 

were commonly down regulated following exposure to these diverse stress treatments (20, 

68).  Thus in S. cerevisiae the CSR involves approximately 10-14% of the yeast genome.  

Similar numbers of genes were reported to be regulated in the closely related, but pathogenic, 

yeast C. glabrata following exposure to glucose starvation, osmotic, oxidative and heat 

stresses (72).  Furthermore, in the divergent yeast, Sz. pombe approximately 140 genes are 

commonly upregulated and 100 downregulated in response to a range of stresses including 

osmotic, oxidative, heavy metal, DNA damage, and heat stress (69).  Common processes were 

represented in the induced core stress gene sets such as carbohydrate metabolism, protein 

folding and degradation, redox regulation and DNA repair.  In contrast, repressed genes were 

associated with energy consuming and growth-related processes, including RNA processing, 

transcription and translation, and biosynthesis of ribosomes and nucleotides.  Interestingly, 

the pathogenic fungus C. albicans mounts a significantly smaller CSR than those described 

above, as only 24 and 37 genes were commonly induced or repressed, respectively, by 

osmotic, oxidative and heavy metal stress (71).  Despite this, the CSR genes in C. albicans do 

belong to some of the same functional categories as those in S. cerevisiae, Sz. pombe, and 

C. glabrata, suggesting that some of the processes involved in the CSR are evolutionarily 

conserved.   
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In S. cerevisiae, different signalling pathways and transcription factors converge to 

control a common set of stress genes, although the functionally redundant Msn2 and Msn4 

(C2H2)2 zinc finger transcription factors play a major role (20, 68).  Consistent with this, many 

of the CSR genes carry a stress response element (STRE) within their promoters, to which 

Msn2 and Msn4 bind (20, 68).  This Msn2/4-mediated CSR forms the basis of the previously 

characterised General Stress Response in S. cerevisiae, which is comprised of a Msn2/4-

STRE regulon that is activated in response to diverse stresses (196).  Msn2/4 rapidly 

accumulate in the nucleus following a range of nutrient and stress conditions (197, 198), and 

are subject to complex regulation by a number of pathways (199).  However, a number of 

other factors also regulate the CSR in S. cerevisiae.  In response to osmotic stress the Hog1 

SAPK contributes to the regulation of CSR genes (20), likely through the Hot1 transcription 

factor (60), whereas the Yap1 AP-1-like transcription factor contributes to CSR gene 

induction post-oxidative stress (20).  In addition, the Mec1 DNA-damage specific pathway 

contributes to CSR gene regulation in response to DNA damaging agents (200).   

Recently, it has been shown that the Msn2 transcription factor also makes a major 

contribution to the regulation of CSR genes in C. glabrata (72).  Consistent with this, in this 

pathogenic yeast, Msn2 rapidly localizes to the nucleus following glucose starvation and in 

response to osmotic, oxidative or heat stress (72).  In stark contrast, homologues of Msn2 and 

Msn4 do not have the same broad stress-protective roles in C. albicans (194, 201), which may 

in fact contribute to the relatively small CSR seen in this fungus (71).  Moreover, in 

Sz. pombe, which lacks close homologues of Msn2/4, the CSR is regulated by a different 

mechanism.  In this yeast, the Sty1 SAPK is activated in response to diverse stress conditions 

including osmotic, oxidative and heat stress, nutrient limitation, UV light and cold stress 

(202).  Following activation, Sty1 accumulates in the nucleus where it phosphorylates the 

Atf1 transcription factor leading to its activation and stabilisation (96-98).  Sty1, and to a 
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lesser extent, Atf1 are the major regulators of the CSR in Sz. pombe (69).  It is interesting that 

CSR genes implicated in stress defense are dependent on Sty1 and Atf1, whereas CSR genes 

with regulatory functions are induced by Sty1 independently of Atf1 (69).   

Similar to the Sty1 SAPK in Sz. pombe, the Hog1 SAPK in the fungal pathogen 

C. albicans is activated in response to diverse stresses (111).  Significantly, a CSR was only 

observed after treating cells with three stress conditions – osmotic, oxidative and heavy metal 

stress - that activate Hog1 (70, 71).  Intriguingly, however, Hog1 regulated the transcriptional 

responses to osmotic and heavy metal stresses, but not to oxidative stress, and this was 

reflected in the role of Hog1 in the regulation of C. albicans CSR genes.  Instead, the Cap1 

AP-1-like transcription factor regulated the C. albicans CSR following oxidative stress (71).  

Thus, the C. albicans SAPK pathway functions in parallel with other pathways to regulate the 

core transcriptional response to stress.  Hence, although aspects of a CSR are conserved 

across the fungal kingdom, the mechanisms underlying its regulation have diverged 

significantly. 

What is the physiological role of a CSR?  Earlier studies in S. cerevisiae revealed a 

phenomenon called ‘stress cross protection’, in which exposure to a non-lethal dose of one 

stress provided significant protection to the subsequent exposure of a potentially lethal dose 

of a second unrelated stress (203) (Figure 2).  Such stress cross protection was impaired in the 

presence of cycloheximide illustrating a role for new protein synthesis (203).  The Msn2/4 

mediated general stress response in S. cerevisiae, together with the identification of the CSR, 

probably accounts for the observed stress-cross protection in a number of fungi (69, 72, 111).  

Interestingly, subsequent studies have revealed that the CSR triggered by the initial low stress 

dose, is not required to survive this stress, but instead provides protection against the second 

stress (204).  Furthermore, the actual genes and processes necessary to acquire resistance to 

the same severe stress are different depending on the nature of the initial mild stressor.  In 
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other words, the mechanism of stress-cross protection is determined by the initial stress (205).  

This probably underlies previous findings that stress-cross protection is context dependent 

and not always reciprocal (204) (Figure 2).   

But why might stress-cross protection have evolved?  Some microbes occupy 

reasonably predictable niches in which one environmental input is generally followed by a 

second input.  In such cases, fungi that have evolved to anticipate the second input following 

exposure to the first would have a fitness advantage (206)  Domesticated brewing yeasts 

provide an excellent example of this “adaptive prediction” because, as they ferment sugars, 

they become exposed to increasing ethanol concentrations (input 1) and then, when the sugars 

are exhausted, they switch to respiratory metabolism and become exposed to oxidative stress 

(input 2).  Presumably as a consequence of this environmental predictability, S. cerevisiae has 

evolved to activate oxidative stress genes following exposure to ethanol (207). Asymmetric 

adaptive prediction appears to have evolved in other fungi such as C. albicans (208, 209).  

Unlike S. cerevisiae, this pathogen displays increased resistance to acute oxidative stress 

following exposure to glucose (210), which possibly reflects anticipation of phagocytic attack 

after entry to the bloodstream.  Therefore, it is conceivable that CSRs have evolved as a result 

of adaptive prediction.   

 

ADAPTING TO STRESS IN NATURAL ENVIRONMENTS 

 

Combinatorial Stress Responses 

Our understanding of stress responses in yeast has been shaped largely by the study of 

individual stresses, or as discussed in the previous section, how the prior exposure to one 

stress can provide stress cross protection to a second unrelated stress.  However, the diverse 

environments that fungi occupy are complex and dynamic, and it is conceivable that fungi 
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will often be exposed to multiple stresses.  At times these stresses may be imposed 

sequentially, in which stress cross protection may facilitate survival.  However, at other times, 

a fungus may be exposed simultaneously to multiple stresses, termed ‘combinatorial stress’.  

Recent studies have revealed that certain combinations of stresses are particularly potent in 

terms of their ability to kill functionally divergent model (S. cerevisiae, Sz. pombe) and 

pathogenic (C. albicans, C. glabrata) yeasts (211, 212).  Notably, all of these species are 

acutely sensitive to combinations of cationic and oxidative stresses (211).  Pathogenic fungi 

encounter this combination of stresses following phagocytosis; microbes are exposed to high 

levels of ROS generated by the respiratory burst (213), and the resulting accumulation of 

anionic charge is compensated by a rush of potassium (K+) ions into the endocytic vacuole 

which simultaneously imposes a cationic stress (213).  Strikingly, studies investigating the 

mechanistic basis underlying the exquisite sensitivity of C. albicans to such combinations of 

stress have revealed that exposure to cationic stress prevents this pathogen from mounting an 

oxidative stress response.  The oxidative stress regulon in C. albicans is largely regulated by 

the Cap1 AP-1-like transcription factor (214), and Cap1 fails to be activated following 

exposure to combinatorial oxidative and cationic stress (211, 215).  This phenomenon, which 

has been termed “stress pathway interference” (211) (Figure 3), contrasts starkly with that of 

stress cross-protection in which exposure to one stress protects against the subsequent 

exposure to a different stress (104).  Exposure of C. albicans to H2O2 triggers the rapid 

oxidation of Cap1, this masks the nuclear export sequence, resulting in the rapid nuclear 

accumulation of Cap1 and the induction of Cap1-dependent genes.  However, cationic stress 

inhibits this Cap1-mediated oxidative stress response in two ways.  First, cations inhibit 

catalase activity which triggers significant increases in intracellular ROS levels following 

combinations of cationic and oxidative stresses (211).  Such high levels of ROS trap Cap1 in 

a partially oxidised form that fails to induce target antioxidant-encoding genes (215).  Second, 
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cations stimulate the interaction of Cap1 with the nuclear export factor Crm1, which results in 

significant delays in the H2O2-induced nuclear accumulation of this transcription factor.  

Importantly, the cationic stress-mediated inhibition of oxidative stress responses contributes 

to the fungicidal potency of human neutrophils, as effective killing of C. albicans is 

dependent on the combinatorial effects of the oxidative burst and cationic fluxes (211).  These 

findings may also explain the lack of expression of C. albicans oxidative stress genes in 

certain host niches, such as during systemic infections of the kidney, despite the presence of 

neutrophil infiltrates (216).    

Although to date studies have focused on combinatorial oxidative plus cationic stress, it 

is feasible that other stress combinations will influence stress outputs (208). Indeed, we have 

found that pH has drastic effects on the oxidative stress tolerance of a number of fungi (JQ, 

AJPB unpublished).  This is an exciting new area in the field of stress responses that is likely 

to be of broad relevance across the fungal kingdom due to the complexity of natural 

environments. 

 
 
Dynamics of Stress Responses 

Our perspectives of fungal stress responses and stress resistance have been shaped largely by 

our experimental approaches.  For example, plate assays, which are widely used to examine 

stress resistance, often do not differentiate between the ability of a strain to survive 

immediately following exposure to an acute stress and its ability to adapt and resume growth 

in the longer term.  Also, the availability of powerful molecular genetics and genomics 

approaches has led to major advances in our understanding of fungal stress responses at the 

gene and protein levels, but the metabolic changes that that underlie stress adaptation have 

received less attention.  Yet these changes play vital roles in fungal stress resistance.   
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The resistance of yeast cells to stress is enhanced by increases in metabolic flux towards 

the generation of antioxidants such as glutathione and of stress protectants such as trehalose 

(123, 217-220).  Like the accumulation of glycerol in response to hyper-osmotic stress (36), 

these increases in glutathione and trehalose levels are mediated in large part by changes in 

gene expression and enzyme synthesis, and hence are slow.  Other metabolic responses are 

much faster.  For example, there is a rapid shift in metabolic flux from lower glycolysis 

towards the pentose phosphate pathway upon exposure to oxidative stress (73). This 

metabolic shift, which is mediated through the sensitivity of glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) to oxidative inactivation (221), increases the NADPH synthesis, 

and hence the availability of protective reducing equivalents (73).  This metabolic response to 

oxidative stress occurs within seconds, preceding transcriptional responses to oxidative stress 

(222).  

Clearly, different aspects of a fungal adaptive response take place over different 

timescales (36) (Figure 4).  Initial metabolic and biophysical responses can occur within 

seconds to minutes (37, 222).  Signal transduction is activated rapidly, within minutes, and 

often remains active for tens of minutes (36).  This triggers changes in gene expression: 

transcript levels often rise within five minutes and, depending on the stability of the mRNA, 

can remain elevated for tens of minutes.  Resultant changes in enzyme levels are often 

observed in tens of minutes and can last for hours, depending on the stability of these 

proteins.  Consequently, the accumulation metabolites such as glycerol can take tens of 

minutes to an hour.  

While these general principles hold, the dynamics of a stress response are strongly 

influenced by the dose.  Large single doses are often applied to experimentally dissect a stress 

response in vitro.  However, in reality that stress response might have evolved to maintain 

cellular homeostasis in the face of less acute but multiple challenges.  For example, 
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researchers often use large acute heat shocks to study thermal adaptation, although many 

fungi encounter less dramatic thermal fluctuations in the wild.  Also, researchers generally 

examine the impact of a single dose, and yet fungi can face repetitive doses of certain stresses 

in some habitats (e.g. repetitive hypo-osmotic shock during rainfall).  The mathematical 

modelling of stress responses permits the analysis of the vast theoretical space represented by 

variations in the dose, exposure time and frequency of a stress.  Indeed, mathematical 

modelling is already improving our appreciation of the dynamics of stress responses, the 

influence of stress dose, and their impact on stress adaptation in fungi (36, 63, 223, 224).  

These dynamics are significant because they influence the length of time for which the 

molecular memory of a stress is retained, and hence the period over which stress adaptation 

provides protection against a subsequent stress (225) (see Core Stress Response).   

 

Impact of Growth Conditions upon Stress Resistance  

Historically, the dissection of fungal stress responses has largely been performed under a 

relatively small set of experimental conditions to facilitate comparison between studies.  This 

has influenced our perceptions of stress adaptation.  For example, it is well known that 

changes in carbon source exert dramatic effects upon stress resistance in S. cerevisiae.  Yet 

stress adaptation in C. albicans has largely been examined using glucose-rich media although 

this fungus generally inhabits glucose-poor niches.  Also temperature affects stress responses 

(29).   

A shift from glucose to non-fermentative carbon source increases stress resistance in 

S. cerevisiae, partly through activation of the CSR.  Glucose inhibits the CSR through 

Msn2/Msn4 phosphorylation, which is mediated by Ras-cAMP-protein kinase A signalling 

(226).  Phosphorylation of Msn2/Msn4 prevents the nuclear accumulation of these 

transcription factors, thereby blocking their activation of core stress genes (197).  Glucose 
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also regulates YAP1 (the AP1-like transcription factor central to the transcriptional response 

to oxidative stress) and ENA1 (a P-type ATPase Na+ pump required for cationic stress 

resistance) (227, 228).   

Changes in carbon source also affect stress resistance in C. albicans.  Exposure to 

glucose increases oxidative stress resistance by upregulating oxidative stress genes in this 

yeast (210).   In contrast, growth on glucose decreases the resistance of C. albicans to osmotic 

and cell wall stresses, in large part through carbon source-dependent changes in the pre-

adapted state of the cell wall (37, 229).  Consequently, as different host niches contain 

different carbon sources, the nature of a niche must determine the ability of C. albicans to 

counteract stresses in that niche.  Not surprisingly, the virulence of this pathogen is influenced 

by the carbon source (229).   

 

CONCLUSIONS AND PERSPECTIVES 
 
 

It is clear that major advances have been made in our understanding of fungal stress 

adaptation over the last decades.  However, much remains to be learned with regard to how 

cells respond to stress in their natural environments.  Several issues should be addressed.   

First, many gaps remain in our understanding of stress signaling pathways and of stress 

responses themselves, even for individual stresses in model fungi.  Just one example is our 

understanding of how nitrosative stress responses are regulated, which is rudimentary 

compared to oxidative and osmotic stress signaling even in S. cerevisiae.  The situation is 

worse for model ascomycete and basidiomycete pathogens such as C. albicans and 

Cr. neoformans.  Their life-styles differ markedly from S. cerevisiae and Sz. pombe, and 

differential evolutionary pressures appear to have driven regulatory rewiring and niche-
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specific tuning of stress responses, yielding different stress sensitivities and different patterns 

of stress cross-protection.   

Second, our understanding of the dynamics of stress adaptation needs to improve, 

incorporating the immediate and long term contributions of metabolic responses and 

biophysical changes alongside those driven by transcriptional and post-translational gene 

regulation.  This needs to be considered alongside the issue of population heterogeneity.  The 

molecular basis for the differential stress sensitivity of genetically identical cells experiencing 

the same environmental conditions needs to be better understood.  To achieve this we require 

experimental approaches that provide dynamic views of cell-to-cell variation at high 

resolution.   

Third, more consideration needs to be given to the nature of the stresses that are 

encountered by a fungus in its natural habitat, and the nature of the microenvironment(s) in 

which it must respond to these stresses.  How acute is the stress, how long is the exposure, 

and how frequently is it encountered?  This is significant because, in reality, some fungal 

stress responses may have evolved to maintain cellular homeostasis in the face of modest but 

repetitive challenges rather than single acute doses (see Dynamics of Stress Responses).  Is the 

stress imposed in combination with other environmental insults?  This should be considered 

because certain combinations of stress can yield unexpected stress responses (see 

Combinatorial Stress Responses).  What is the temperature of the niche and what nutrients are 

available?  These factors are important because they strongly influence the pre-adapted state 

of the fungus and hence its ability to counteract the stress (see Impact of Growth Conditions 

upon Stress Resistance).   

If these issues are addressed, there will be a paradigm shift in our understanding of 

fungal stress responses and their relevance to survival in natural environments.   
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FIGURE LEGENDS 

 

Figure 1: Cartoon summarizing stress pathways in the model fungus S. cerevisiae.   

See text.  This figure summarizes some, but not all, of the known components of these 

signalling pathways.  Components of MAP kinase signalling modules are highlighted in 

blue, transcription factors in pink, components of the calmodulin-calcineurin pathway in 

cyan, Rim pathway components in green, and the molecular chaperone Hsp90 in 

yellow.  Note the C. albicans Cek1 MAPK pathway, which contributes to cell wall 

remodelling in this fungus, is included (dark blue ovals with white lettering). 

Figure 2: The Core Stress Response can lead to stress cross-protection.   

A. Core Stress Responses, which have been defined by genome-wide transcriptional 

profiling, represent the set of genes that is commonly up- or down-regulated by 

different types of stress (see text).  This Venn Diagram illustrates the conceptual 

overlap between these sets of genes, highlighting the Core Stress genes.  B. A Core 

Stress Response can lead to stress cross-protection during exposure to sequential 

stresses, i.e. cells that are exposed to one type of stress can then display elevated 

resistance to a subsequent stress of a different type (see text).  In some cases no cross-

protection is observed.  In other cases it is observed, but this cross-protection can be 

reciprocal or non-reciprocal.  This can depend on the nature and dose of the initial and 

subsequent stress.   

Figure 3: Exposure to combinatorial stresses can yield non-additive outputs.   

Simultaneous exposure to some combinations of stress (i.e. certain combinatorial 

stresses) can yield additive outputs if there are no significant interactions between the 

stress pathways that mediate these responses.  However, for some combinatorial stresses 

(see text), stress pathway interference can block the normal response to one of the 
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imposed stresses, leading to combinatorial stress sensitivity.  We are unaware of any 

examples of the opposite effect, where stress pathway enhancement might lead to 

elevated levels of combinatorial stress resistance. 

Figure 4: Different aspects of stress adaptation occur over different timescales.   

This generic figure summarizes this principle for an environmental insult such as 

osmotic stress (see text).  However, some stresses may include adaptation mechanisms 

that occur over other timescales.   
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