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Abstract  

Testing hydrological models over different spatio-temporal scales is important both for 

evaluating diagnostics and aiding process understanding. High-frequency (6hr) stable 

isotope sampling of rainfall and runoff was undertaken during 3 week periods in summer 

and winter within 12 months of daily sampling in a 3.2 km2 catchment in the Scottish 

Highlands. This was used to calibrate and test a tracer-aided model to assess the: (1) 

information content of high resolution data; (2) effect of different calibration strategies 

on simulations and inferred processes; (3) model transferability to <1 km2 sub-catchment. 

The 6-hourly data were successfully incorporated without loss of model performance, 

improving the temporal resolution of the modelling, and making it more relevant to the 

time dynamics of the isotope and hydrometric response. However, this added little new 

information due to old-water dominance and riparian mixing in this peatland catchment. 
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Time variant results, from differential split sample testing, highlighted the importance of 

calibrating to a wide range of hydrological conditions. This also provided insights into 

the non-stationarity of catchment mixing processes, in relation to storage and water ages, 

which varied markedly depending on the calibration period. Application to the nested 

sub-catchment produced equivalent parameterisation and performance, highlighting 

similarity in dominant processes. The study highlighted the utility of high-resolution data 

in combination with tracer-aided models, applied at multiple spatial scales, as learning 

tools to enhance process understanding and evaluation of model behaviour across non-

stationary conditions. This helps reveal more fully the catchment response in terms of the 

different mechanistic controls on both wave celerites and particle velocities.  

 

Key words: high resolution isotopes, tracer-aided modelling, parameter transferability, 

catchment storage, water age, runoff processes   

 

1. Introduction 

Incorporation of conservative isotope tracers into conceptual hydrological models has 

proved insightful in terms of increasing the understanding of integrated catchment 

functioning, and the partitioning, storage and release of water (Seibert et al., 2003; 

Weiler, 2003; Dunn et al., 2007; Van Huijgevoort et al., 2016; Alo aho et al., 2017). This 

understanding is particularly important in headwater catchments, which control 

downstream water quality and quantity (Freeman et al., 2007; Bishop et al., 2008). A 

major benefit of using discharge and isotopes in a coupled modelling approach is that it 

can elucidate storage-flux relationships in a way that reconciles the rapid wave speed 
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celerity of the hydrological response (e.g., rainfall-runoff transformations) and the slower 

pore velocities of water particles (i.e., residence times) implied by conservative tracers 

(Weiler, 2003; McDonnell and Beven, 2014). Therefore, the transit times of water can be 

estimated along with simulating the hydrograph response (McGuire and McDonnell, 

2006; Hrachowitz et al., 2013). Transit times have previously been calculated as a mean 

or distribution. More recent studies have demonstrated the importance of characterising 

the time variability of streamwater age (Botter et al., 2010; McMillan et al., 2012; 

Hrachowitz et al., 2013; Harman, 2015; Rinaldo et al., 2015; Benettin et al., 2017). 

Tracking water fluxes through the internal stores of semi-distributed models is one 

approach to improve our understanding of the evolution and non-stationary nature of 

water ages (Fenicia et al., 2010; Birkel et al., 2015; Soulsby et al., 2015). Through 

characterising these ages, insights into the non-linearities in catchment storage dynamics 

and runoff generation processes are revealed. Additionally, incorporating isotope tracers 

facilitates multi-objective calibration, which provides the opportunity to improve model 

evaluation and constrain parameter sets potentially reducing equifinality (Beven, 1993; 

Birkel and Soulsby, 2015; Finger et al., 2015). A potential drawback is increased model 

complexity introduced through additional mixing parameters for tracers. However, with 

care it seems the insightful information gained outweighs this negative (Seibert, 2003b). 

 

As conceptual models rely on calibration, a key challenge is obtaining parameter sets that 

reflect a physically meaningful catchment behaviour (Gharari et al., 2013). A major issue 

with calibrated parameters is their time dependency, which may limit transferability to 

conditions different from those during calibration (Gharari et al., 2013; Magand et al., 

2015; Thirel et al., 2015a; Yu and Zhu, 2015). Hence, the optimum parameter set for one 

observation period can be significantly different for another, and models may fail to 
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provide robust simulations outside of the calibration conditions (Seibert et al., 2003; 

Beven, 2012). This issue has been increasingly recognised in recent years and studies 

have used tests, similar to differential split sample tests (DSST), to determine model 

performance outwith calibration conditions (Seibert, 2003b; Thirel et al., 2015; Yu and 

Zhu, 2015). Such tests involve calibrating and validating parameter sets over contrasting 

periods with the aim of obtaining good representation in all conditions (Thirel et al., 

2015a). DSSTs help to identify weaknesses in the model structure by investigating 

parameters that are time variant (Clark et al., 2008; Gharari et al., 2013).  

 

While conditions vary in time, they also vary in space. Hence, an important consideration 

is whether models developed at one scale can be upscaled or downscaled (Bloschl and 

Sivapalan, 1995; Didszun and Uhlenbrook, 2008). If the hydrological response units 

(HRU) remain the same between scales, then models are likely transferable (Flügel, 1995; 

Didszun and Uhlenbrook, 2008). The proxy-basin test, proposed by Klemeš (1986), is 

one way to test the spatial transferability of models, whereby, the model is calibrated on 

one basin and validated on another.  

 

A recent appraisal of tracer-aided modelling by Birkel and Soulsby (2015) identified the 

need for using high temporal resolution data for model conceptualisation. Previously, 

isotopes were typically sampled at weekly or daily timescales, where sub-daily variability 

can be obscured by averaging (McGuire et al., 2005; Rodgers et al., 2005; Tetzlaff et al., 

2007). Birkel et al. (2012), found that weekly isotope data did not always capture the 

daily variability, and daily sampling failed to capture isotope dynamics revealed by 4 

hourly sampling. Emergence of improved laser spectroscopy technology now aids high-
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frequency capture of data at lower analytical costs, increasing our ability to fully 

characterise isotope dynamics (Kirchner et al., 2004; Lyon et al., 2009). Previous studies 

using higher frequency data tended to focus on single event data (Weiler, 2003; Carey 

and Quinton, 2005; Wissmeier and Uhlenbrook, 2007) which, although produced 

insightful contributions, did not reveal what happens during low flows or over longer 

time periods (Birkel and Soulsby, 2015). It is important to assess the insights gained by 

higher frequency sampling in order to minimise the risk of information loss and also to 

test the ability of models, developed on coarser resolutions (e.g. daily or weekly), to 

successfully simulate higher resolution data (e.g. sub-daily) (Kirchner et al., 2004).  

 

In this paper we used a modified version of an existing tracer-aided model within a 

calibration learning framework to enhance our understanding of hydrological processes 

and model behaviour across non-stationary conditions. The framework was centred on 

three specific objectives:  

1. To evaluate the additional information content of high temporal resolution (sub-daily) 

isotope data. 

2. To examine the effects of different calibration periods on parameters, model 

performance, estimated catchment storage and streamwater ages, to aid our process 

understanding and evaluate model structure.  

3. To assess the model transferability to a smaller, nested catchment (< 1 km2) to 

determine whether the dominant hydrological processes remain the same.  
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We incorporated higher resolution 6-hourly isotopes sampled for very wet and dry 

conditions. The model was calibrated on three periods: a 12 month period using daily 

isotopes, the wet sub-period and the dry sub-period (6-hour sampling interval). Most 

previous studies that have assessed the influence of calibration periods have focused on 

runoff simulations (Coron et al., 2012; Brigode et al., 2015; Kling et al., 2015; Yu and 

Zhu, 2015). This study goes beyond this to simulate 6-hourly streamflow, deuterium 

(δ2H), catchment storage and streamwater age. Finally, for the first time, the model was 

downscaled from a 3.2 km2 catchment to a nested < 1 km2 headwater.  

 

2. Study site  

The study focused on the Bruntland Burn (BB), a 3.2 km2 catchment in the Cairngorms 

National Park, Scotland. It is a sub-catchment of the Girnock Burn (31 km2), which drains 

into the River Dee. Climate is temperate/boreal oceanic with mean annual air 

temperatures of ~6 °C, ranging between 1 °C in winter to 12 °C in summer. Mean annual 

precipitation is ~1000 mm and lacks seasonal variability as it is dominated by low 

intensity events through the year; <10 % of precipitation falls as snow. Annual 

evapotranspiration is around 400 mm focused on the summer months. Glaciation has 

formed a valley with steep slopes and a wide bottom (Figure 1a) overlain by glacial till. 

This till covers 70 % of the catchment and is up to 40 m deep in the valley (Soulsby et 

al., 2016); resulting in high water storage and a significant contribution of groundwater 

to flow (Birkel et al., 2011). Soils in the valley bottom are organic-rich peats and peaty 

gleys (Figure 1b). These remain close to saturation throughout the year and facilitate 

saturation excess overland flow during rainfall events. Antecedent conditions control the 

extent of the saturation area, which varies between 2-40 % of the catchment. When the 

dynamic riparian saturation extent exceeds ~20 %, steeper hillslopes become connected 
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to the riparian area, facilitating lateral flow of runoff from the hillslopes. These are 

dominated by more freely draining shallow podzol and rankers which usually facilitate 

groundwater recharge. Dominant vegetation cover is Sphagnum mosses and Molinia 

grass on the peaty soils, and heather (Calluna) in the steeper slopes. Forest cover is 

limited to small areas of Scots Pine (Pinus sylvestris) on steeper slopes. More detail is 

given in earlier work (e.g. Tetzlaff et al., 2014; Geris et al., 2015).  

 

Nested within the BB, is a south-facing 0.65 km2 sub-catchment (HW1, Figure 1a). This 

is characterised by an extensive raised (ombrotrophic) riparian peat bog and has a higher 

percentage of peat soils than BB (15 % compared to 9 %, respectively). Furthermore, it 

has a higher percentage of peat fringing the stream channel (81 %) compared to BB (53 

%). Depressions in the peat allow pools of water to form, which are dynamically 

connected/disconnected to the stream and peatland drainage network (Lessels et al., 

2016). Near-stream peat is constantly connected to the stream, facilitating high baseflow 

and high dissolved organic carbon concentrations (Tunaley et al., 2017). The surrounding 

areas of bog receive groundwater from the hillslopes (Lessels et al., 2016).  

 

3. Data and methods  

3.1 Hydrological and isotope data 

Monitoring occurred between 1 May 2014 and 1 August 2015. Discharge was calculated 

at 15 minute intervals from stage height measurements at the catchment outlets of BB 

and HW1 (Figure 1a). Precipitation was measured every 15 minutes from rain gauges 

within BB and HW1 (Figure 1a). Potential evapotranspiration was estimated using a 
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modified Penman-Monteith equation (Dunn and Mackay, 1995), based on meteorological 

data from an nearby automatic weather station (~ 1 km away). Streamwater samples for 

stable isotope analysis were collected daily at 14:00 from the outlet of both catchments 

using ISCO 3700 autosamplers. Integrated daily precipitation samples were also taken 

from the outlet of the BB; given the similar altitude and close proximity they were 

assumed to be representative of both catchments. In addition, two periods of 6-hourly 

sampling of both streamwater and precipitation isotopes took place. The first was 

between 27 October and 20 November 2014 (Nov), representing a wetter, colder period. 

The second was between 2 and 20 July 2015 (Jul), representing a drier, warmer period. 

Paraffin was added to bottles to prevent evaporation within the auto-samplers in the field. 

Samples were analyzed in the laboratory for δ2H and oxygen-18 (δ18O) using a Los Gatos 

DLT-100 laser isotope analyzer (precision of +/- 0.4 ‰ for δ2H; +/-0.1 ‰ for δ18O). 

Results are expressed in δ notation according to the Vienna Standard Mean Ocean Water 

standards. Due to the higher precision, we used the δ2H data in the model. For modelling 

purposes, the hydrological and isotope data were aggregated into a 6-hourly dataset.  

 

3.2 Modelling approach  

3.2.1 Model structure  

The coupled flow-tracer model used in this study was developed by Birkel et al. (2010, 

2011, 2014, 2015) and Soulsby et al. (2015). A brief overview follows, but readers are 

referred to these original papers for full details. Figure 2 shows the model structure, the 

connections between the stores and the basic equations. The model is characterised by 

three linked reservoirs representing the upper hillslopes, the dynamic riparian saturation 

area and a groundwater store. These have associated dynamic storage, Sup, Ssat and Slow, 
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respectively. Central to the model is the non-linear streamflow response that 

conceptualizes the hydrological connectivity of the catchment linking the three 

conceptual stores. The model uses five calibration parameters to simulate discharge (a, r, 

b, k and α) and a further three additional mixing volumes for each reservoir (upSp, satSp 

and lowSp).  The linear rate parameter a (6 hr -1) controls the hillslope water flux to the 

saturated area; r (6 hr -1) controls the groundwater recharge rate; b (6 hr -1) controls the 

rate of groundwater discharge to streamflow; k (6 hr -1) and α conceptualises saturation 

overland flow and controls the nonlinear runoff from the saturation area to streamflow.  

 

The calibrated mixing volumes (upSp, satSp and lowSp, in mm), used to damp out isotope 

variability, did not affect the dynamic water storage and fluxes, hence allowing for the 

differences between celerity and velocity to be captured (Birkel et al., 2011). A key 

feature of the model is the dynamic non-linear variation of the saturation area (dSAT) as 

a way to generate time-variable mixing volumes (MV). A simple antecedent precipitation 

index-type algorithm was used to derive dSAT (Birkel et al., 2010). dSAT was used both 

to distribute precipitation inputs between the hillslope and saturation area and also to 

convert the storage parameters into time-variable mixing volumes (MV). The greater the 

catchment wetness, the greater the saturation area extent and the potential for mixing 

(satMV). In the hillslope reservoir, the mixing volume (upMV) decreases as the 

saturation area expands. Catchment storage was the sum of dynamic storage and the 

additional storage for isotope mixing. Using daily isotopes to time-stamp and track daily 

precipitation, as well as input and output fluxes through the reservoirs, the age of the 

streamwaters could be estimated (see Hrachowitz et al., 2013). Streamwater age was 

extracted by integrating the time-variant contribution of the differently aged water fluxes 

from the three stores, giving non-linear mixing at the catchment scale (Birkel et al., 2015). 
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Previous work in the BB has shown the potential for isotopic fractionation, resulting in 

surface waters becoming relatively depleted in δ2H compared to δ18O and plotting below 

the local meteoric water line (LMWL) (Lessels et al., 2016; Sprenger et al., 2017). There 

was evidence of isotopic fractionation at both sites (Figure 3), occurring predominately 

during the summer and autumn. Therefore, we incorporated evaporative fractionation 

processes in Sup and Ssat. The fractionation scheme was based on Gibson (2002) but 

differs in that it is time variable on a 6-hourly timescale.   

[1] 𝛿𝛿𝐿𝐿(𝑡𝑡) =  𝛿𝛿𝑆𝑆 − (𝛿𝛿𝑆𝑆 − 𝛿𝛿0) exp[−(1 + 𝑚𝑚𝑚𝑚) �𝐼𝐼𝐼𝐼
𝑉𝑉
�] 

where δL is the change in isotopic composition with time (t), δ0 is the initial isotopic 

composition before evaporation, V is the volume of liquid undergoing evaporation, I is 

the inflow, x is the evaporation to inflow ratio, δS is the steady-state isotopic composition 

of the water under constant meteorological conditions (Gonfiantini, 1986) and m is the 

enrichment slope, or rate, of heavy isotope build-up (see Stadnyk et al., 2013 for details).  

 

3.2.2Model calibration and evaluation  

The calibration procedure was based on differential split sample tests (DSST). The eight 

model parameters were calibrated over a one year period (1 August 2014 – 1 August 

2015) and two sub-periods: Nov wet period (27 October – 20 November 2014) and Jul 

dry period (2 – 20 July 2015). These two periods correspond to the high resolution (6 hr) 

event sampling. The model parameters were optimised using a multi-objective 

optimisation algorithm (NSGA2 by Deb et al., 2002) that simultaneously optimised the 
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modified Kling-Gupta efficiency (KGE) for both discharge and isotopes (Kling et al., 

2012):  

[2] 𝐾𝐾𝐾𝐾𝐾𝐾 = 1 −�(𝑟𝑟 − 1)2 +  (𝛽𝛽 − 1)2 + (𝛾𝛾 − 1)2 

where r is the correlation coefficient between simulated and observed values, β is the 

ratio between the mean simulated and mean observed values and γ is the ratio of the 

variability between the simulated and observed values. The KGE was used based on a 

qualitative assessment of the trade-offs between different alternatives and on its use in 

previous dual calibration studies involving stable isotopes (Birkel and Soulsby, 2016; 

Soulsby et al., 2015). The widely used Nash-Sutcliffe efficiency (NSE) was not applied 

as the damped response of isotope data is less well assessed using this metric. In contrast, 

the KGE uses the Euclidian distance of the three components from an ideal point and is 

thus well suited to tracer data. The optimisation included 500 parameter sets, which were 

constrained over 50 iterations. Although no formal uncertainty analysis was undertaken, 

the simulation ranges of the final 500 best performing parameter sets were used as an 

indication of parameter variability (Andrews et al., 2011). The optimised parameter sets 

from the three calibrations were used to simulate discharge and δ2H over the three 

different time periods (one year, Nov and Jul) to cross-validate and assess the 

transferability of different calibrations. This generated nine simulations for which the 

KGE values were calculated. To assess the model transferability to a smaller scale 

catchment, the process was repeated for HW1 and a cross basin test was performed, 

whereby, the parameter set calibrated to HW1 was applied to the BB and vice versa.  

 

4. Results 
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4.1 Hydrological and isotopic variability  

The study began in August 2014, which was wet (Figure 4), with monthly rainfall being 

280 % of the 1971 ̶ 2000 average (see Hannaford et al., 2014). Wetter than average 

conditions continued during October and November, with monthly rainfall 175 % and 

148 % of the 1971 ̶ 2000 average, respectively (Hannaford et al., 2014, Parry et al., 2014). 

Thereafter, monthly rainfall was around average at the start of 2015. There was a brief 

dry period in June 2015, preceding a wet July 2015 when precipitation was 196 % of the 

long-term average (Parry et al., 2015).  

 

Figure 4 also shows the two high-frequency sampling periods (shaded) in the context of 

the year-long daily sampling frequency. For the Nov period, total rainfall of the preceding 

30 days (P30) were four times higher (117.2 mm) than for the Jul period (25.8 mm). 

Antecedent precipitation for the one year calibration period had a P30 of 73.6 mm (Table 

1). These differences were reflected in the maximum and mean discharges during the 

calibration (Qmax and Qmean). During Nov, the Qmax was the second highest flow of the 

year (5.66 mm 6 h-1), whereas, in Jul the Qmax was much lower (2.84 mm 6 h-1, Figure 

4c). The Nov period also had the highest Qmean (1.47 mm 6 h-1), compared with Jul (0.23 

mm 6 h-1) and the year overall (0.46 mm 6 h-1).   

 

Given the close proximity, precipitation inputs for BB and HW1 were very similar (Table 

1); though there were subtle differences in flow. Generally BB had larger high flows (Q5 

= 1.37 mm 6 hr-1) than HW1 (Q5 = 1.31 mm 6 hr-1) and lower low flows (Q95 = 0.08 mm 
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6 hr-1) compared to HW1 (Q95 = 0.09 mm 6 hr-1). However, during the one year and 

November period, HW1 had the highest Qpeak (Table 1).   

 

Deuterium in precipitation was highly variable throughout the year (δ2H range = -145.9 

‰ to -13.9 ‰, CV = 44.7 %) (Figure 4a, Table 1) due to the relatively uniformly 

distributed wet climate but differing air mass sources. The precipitation most depleted 

δ2H occurred in autumn, corresponding to the wettest period. In contrast, streamwater 

δ2H was damped (range in the BB = -72.2 ‰ to -51.2 ‰, CV = 5.3 %), reflecting mixing 

of precipitation with pre-event waters within the catchment (Figure 4b). The most 

depleted streamwater occurred during autumn and winter events, whilst the most enriched 

values occurred during summer. Disparities in hydrological conditions between Nov and 

Jul periods were reflected in the isotopes (Table 1) with Jul having a more enriched range 

of streamwater δ2H (-58.5 ‰ to -51.2 ‰) compared to the Nov period (-65.2 ‰ to -57.5 

‰).  

 

Overall, HW1 had a more enriched mean stream δ2H: -57.7 ‰ compared to -58.7 ‰ for 

the BB. During Nov (Figure 5), the mean δ2H of streamwaters were very similar for BB 

and HW1; they initially depleted during the event and thereafter reflected the 

precipitation isotope dynamics, albeit very damped (Table 1). Unfortunately the 6-hourly 

streamwater response to the relatively enriched precipitation at the beginning of the Nov 

period was missed in HW1 due to technical issues, resulting in a lower sample number 

(114 in HW1, compared to 131 in BB).  In Jul  signatures in the HW1 were more enriched 

than the BB (Figure 6), which reflected the flushing of fractionated peat waters (Sprenger 

et al., 2017).  
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Figures 5 and 6 also show the 6-hourly isotope dynamics (open circles) compared to daily 

sampling (filled circles). For both periods, the general dynamics were well-captured by 

daily sampling. However, the daily isotope sampling regimes usually missed event peaks 

which resulted in the range in δ2H and coefficient of variation (CV) for daily data being 

lower. For example, for the Nov period the daily range was -64.7 ‰ to -60.2 ‰ and CV 

1.3 %, compared to a range for 6-hourly sampling of -65.2 ‰ to -57.5 ‰ and CV 2.4 %. 

However, for the Jul period this was less evident between 6-hourly and daily sampling 

with CVs of 2.9 % and 2.7 %, respectively.  

 

4.2 Sensitivity of model parameters to different calibration periods in the BB 

Calibration performances of the 500 best parameter sets for each period and the parameter 

mean and ranges are shown in Table 2. For discharge (Q) the one year calibration 

performed best (mean KGE of 0.72 compared to 0.64 and 0.60 for Nov and Jul 

calibration, respectively). For δ2H, the one year calibration also performed best (KGE 

0.75 compared to 0.64 and 0.58 for the Nov and Jul, respectively). The July calibration 

favoured lower ranges of parameter b and a higher non-linear surface water runoff (k and 

α) compared to the other periods, suggesting groundwater fluxes were lower and response 

from the saturation area was higher. For the mixing volume parameters, higher values of 

upSp, and lower satSp and lowSp, when calibrated over the Nov period, inferred more 

relative mixing in the upper hillslopes and limited mixing in both the riparian saturation 

area and groundwater. The mean upSp was lowest for the Jul calibration period, 

indicating more limited summer contributions from the upper hillslopes. 
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 4.3 Temporal transferability of parameter sets in the BB  

We compared the performances (the KGE) of the three parameter sets, when applied to 

the alternative periods (Figure 7). For discharge, the one year parameters performed 

reasonably well in the Nov period (KGE = 0.63) but poorly for July (KGE = -0.03). The 

Nov calibration parameter set performed quite well over the other periods. The Jul 

parameter set performed badly for both the one year (KGE = 0.25) and the Nov period 

(KGE = 0.12). This was likely the result of calibrating across a low proportion of the 

discharge range.  

 

For isotopes, the one year, Nov and Jul parameter sets performed well over the periods 

they were calibrated, as expected. However, there was substantial deterioration in the 

KGEs for the different evaluation periods. The Nov parameter set performed particularly 

badly over one year (KGE = 0.3) and Jul (KGE = -1.5), which likely reflected calibration 

to a small range of the most depleted streamwater samples. The Jul parameters performed 

better than the Nov parameter set over the one year period (KGE = 0.51), probably due 

to better capturing the summer fractionation. However, it performed badly for Nov (KGE 

= -0.57), again likely the result of being calibrated to a small range of the most enriched 

isotope samples. Additionally, the one year calibration parameter set performed badly 

over the Jul (KGE = 0.44) and Nov period (KGE = 0.22). The poor performance over the 

Nov period was likely due to the modelled isotopes not recovering fully from the large 

event prior to the Nov sampling period. NSE was also calculated as an additional 

statistical test and results showed similar relative differences in temporal transferability 
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for discharge. However for isotope there were no good performances highlighting the 

inappropriateness of using NSE for isotopes in this study.  

 

Comparison of the median observations and simulations across the three different 

parameter sets show that the overall dynamics are captured quite well (Figure 8 and 9). 

However, small peaks and some large events (e.g. autumn) tend to be underestimated for 

all calibrations which can occur as a result of idiosyncrasies of KGE based calibration. 

However, this effect is less severe compared to that of NSE (Gupta and Kling, 2009). The 

one year parameter set did not capture small peaks particularly well, during dry periods 

(e.g. May and June) and wetting up periods (e.g. July 2015). This set also underestimated 

baseflows during wet periods, whilst overestimating them slightly during dry periods. 

However, this model captured the dynamics best out of the three calibrations. The Nov 

parameter set reproduced baseflow well throughout the whole year, though still 

underestimated peak flows. Re-wetting in July was reproduced as well as the smaller 

peaks. The Jul calibration appreciably underestimated winter baseflows, which probably 

reflects the lower value of the groundwater flux rate (b). It also produced a much flashier 

response, with an over-steep falling limb during wetter periods. During drier periods 

baseflow and peaks were general well-captured.  

 

The isotope component simulations of each parameter set captured the large damping of 

δ2H in streamwater compared to precipitation (Figure 9). The parameter set calibrated to 

the full year performed well overall and captured the dynamics and range of the observed 

data until the summer where the simulations under-predicted isotope values and were less 

responsive to small changes. The Nov parameter set exaggerated the flashiness of the 
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isotope dynamics during larger events, particularly during the re-wetting period. For the 

Jul parameter set simulations, depletion during events were over-estimated, predicting 

more depleted and flashy values than the other parameter sets. The under prediction of 

δ2H was evident from all parameter sets during the drier May and June 2015, indicating 

that the fractionation dynamics were not well-captured.  

 

4.4 Storage and age estimates in the BB 

The estimated catchment storage dynamics for the different parameter sets are shown in 

Figure 10(b).  Storage was highest for the Jul parameter set simulation (1492 mm, SD = 

+ 111 mm); the one year parameter set yielded a similar value (1400 mm, SD = + 41), 

whilst a substantially lower storage for the Nov parameters (512 mm, SD = + 27).  

 

The non-linear interactions between different landscape units with different storage 

dynamics controlled the non-stationary streamwater ages derived from the three 

parameter sets. Estimated water ages were linked to the associated storage values, with 

the parameters sets generating higher storage values resulting in overall older water ages 

(Table 3). Estimated mean streamwater age derived from the one year calibration was 

321 days (± 239 days), similar to the Jul calibration with 353 days (± 263 days), the 

highest of the three models. The mean streamwater age derived from the Nov calibration 

was 150 days (± 69 days), the youngest of the three model set ups. Despite considerable 

uncertainty we focused on the relative differences between the calibration periods and 

used the mean values, which constrained the likely water ages. The streamwater age was 

time variant, with younger waters (1-30 days) during events and winter wet periods, 

whilst older waters (300-800 days) occurred during dry summer periods (Figure 10c). 
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There was less variability and seasonality in streamwater ages produced from the Nov 

parameter set.  

 

4.5 Spatial transferability of parameter sets between BB and HW1  

To determine whether the dominant hydrological processes remain the same when 

downscaling, the model was calibrated on HW1 data as well as the BB. The calibration 

performances (KGEs), for the 500 retained parameter sets for each period, are shown in 

Table 2. Both catchments had very similar performances across the calibration periods 

(Figure 7) and the values of the retained parameter sets were very similar. A subtle 

difference was found between the isotope mixing volume parameters, upSp and satSp, 

which were slightly higher for HW1 across all three calibration periods. Conversely, 

lowSp was slightly lower in HW1. Estimated storage and streamwater age for BB and 

HW1 were also very similar (Table 3). Indeed, the parameter sets for each catchment 

could provide a reasonable simulation to the other and only small differences in 

performance occurred (Table 4). When the HW1 parameter set was used to simulate BB 

discharge and isotopes, the mean KGEs (across all periods) were 0.62 and 0.69, 

respectively, compared to 0.64 and 0.73 when the BB parameter set was used. When the 

BB parameter set was used to simulate HW1 discharge and isotopes, the mean KGEs 

were 0.67 and 0.72, respectively, compared to 0.64 and 0.69 when the HW1 parameter 

set was used. Hence, using BB slightly improved HW1 simulations, particularly for the 

Jul calibration period.  

 

5. Discussion 
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5.1 Importance of high resolution data in tracer-aided modelling  

We integrated 6-hourly δ2H data into a tracer-aided runoff model to evaluate the value of 

high resolution data on model performance and information gain. The model was 

previously developed based on weekly and daily data. The need for collecting higher 

frequency isotope data to improve process representation and modelling capabilities at 

finer temporal scales was highlighted by McDonnell and Beven (2014), and Birkel and 

Soulsby (2015).  Using sub-daily data in models developed for daily time series one 

would expect a decrease in model performance due to the increased variability in the 

input data. However, here, the sub-daily data were successfully incorporated into the 

model with overall good performance resulting in the simulation of discharge, isotopes, 

water age and storage on a 6-hourly frequency. Our study, thus, helps bridge the gap of 

matching the temporal dynamics of the isotopic response to the hydrometric response 

and, hence, improves our ability to understand the different mechanistic controls on 

celerities and velocities within a catchment (Kirchner, 2003; McDonnell and Beven, 

2014). 

 

In the case of the BB, the high-frequency data provided confirmatory evidence that the 

‘isostat’ behaviour of the riparian peatlands – that is the mixing of different source waters 

and damping the streamwater isotope signal (Tetzlaff et al., 2014) – is also dominating 

on sub-daily time scales. Although the higher temporal resolution data provided limited 

new process insights, it highlighted the dominant role of rapid mixing with older waters 

within the riparian area in the storm period response (Tetzlaff et al., 2014). Similar 

dampening and old water dominance has been shown in other environments elsewhere 

(e.g. Berman et al. 2009). Given the modest increase in the information content of data 
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gleaned through the 6-hourly sampling in the BB, it is difficult to justify the quadrupling 

of the resulting logistical and analytical load. However, in other more dynamic 

environments, such as the wet tropics (Birkel and Soulsby, 2016), catchments affected 

by snow and glacial melt (Ohlanders et al., 2013; Peralta-Tapia et al., 2016) or urbanised 

catchments (Jefferson et al., 2015; Soulsby et al., 2015b), high-frequency isotope 

measurements are likely to yield more significant new insights. Overall, it is important to 

evaluate the addition of high-frequency data in order to identify the minimal periodicity 

of isotope sampling required to characterise catchment response (Seibert and Beven, 

2009; Seibert and McDonnell, 2015).  

 

5.2 Use of different calibration periods to test process conceptualisation and inform 

model structure 

Differential split sample tests have been widely used in calibration to test a model’s skill 

beyond the calibration conditions (Klemeš, 1986; Seibert, 2003; Chiew et al., 2009; Vaze 

et al., 2010; Seiller et al., 2012; Brigode et al., 2015; Magand et al., 2015; Thirel et al., 

2015b; Zhou et al., 2015). Here we focused on short sub-periods of high-frequency data 

with different hydrometeorological conditions and used the calibrated parameter values 

to explore inferences about non-stationary catchment processes (Herbst and Casper, 

2008); and assess the implication of the transferability of these parameter sets.  

 

Calibration to a particularly wet period in Nov resulted in the behavioural parameters 

inferring reduced volumes of storage which dampened the tracer signal within the 

saturation area, as simulated by a low satSp parameter. This parameter behaviour caused 
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some precipitation to be routed laterally to the stream channel with limited mixing. The 

majority of mixing occurred in the hillslopes, as inferred by high upSp parameter, which 

subsequently drained water into the riparian saturation area. The transfer of this parameter 

set to drier periods resulted in an exaggerated isotope response and poor model 

performances, due to limited mixing and lack of connectivity to the hillslopes. On the 

other hand, this parameter set simulated discharge quite well over a range of conditions, 

probably due to the calibration being a wet period that captured a non-linear runoff 

response over a range of flows. Such differences between discharge and isotope 

transferability performance highlight the importance of tracer-aided runoff models to 

reveal more fully the catchment response in terms of the different mechanistic controls 

on both wave celerites and particle velocities (McDonnell and Beven, 2014). The more 

rapid water turnover in wetter conditions captured by the Nov parameter set, resulted in 

the model estimating younger streamwater ages. When catchment wetness increased, the 

effective storage available for mixing decreased, because more water moves laterally to 

the stream rather than recharging groundwater, and the age of the water decreased (Birkel 

et al., 2015; Harman, 2015; Soulsby et al., 2015; Van Huijgevoort et al., 2016). Of course, 

the total catchment storage is actually higher in these wetter periods, but the process 

conceptualisation in the model infers a decrease in the storage that is able to mix tracers 

(Soulsby et al., 2015), a processes termed as the inverse storage effect by Harman (2015). 

The younger water ages in this wet period are consistent with results derived from a 

longer term study focusing on the temporal variation in water ages of the main 

hydrological response units. This study showed that water in the saturated riparian zone 

was much younger (~1 month), compared to older deeper groundwater (~4 years) 

(Soulsby et al., 2016).  
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The parameter set derived from calibration to a wetting up period with dry antecedent 

conditions (Jul period) resulted in a low groundwater recharge paramater (b) for 

simulating baseflows. Consequently, the transfer of this parameter set to winter resulted 

in baseflows being significantly underestimated. Furthermore, the small summer 

discharge peaks encompassed by the calibration resulted in a model failure in simulating 

higher peak flows (Seibert, 2003; Brigode et al., 2015). The flashy response of both 

isotopes and discharge simulations during the Jul period was a consequence of the high 

non-linear surface water sources (higher k and α), generating quick simulated runoff from 

the riparian saturation area combined with limited connectivity to the hillslopes. 

However, the corollary is that when this parameter set was applied to wet periods, the 

non-linear surface water runoff generation underestimated mixing, producing an 

exaggerated isotope response with precipitous discharge recessions. Resulting water age 

estimations were overall older than those obtained through calibrating on the Nov period 

due to the higher mixing in the groundwater stores and higher influence of groundwater, 

consistent with empirical data (Blumstock et al., 2015). The differences in the estimated 

streamwater age derived from the calibration to 6-hourly data in short wet and dry periods 

were consistent with those produced by calibration of weekly data in wet (1.1 yr) and dry 

(1.6 yr) conditions in the larger Girnock catchment (Birkel et al., 2015). Variability in 

streamwater age was higher for the Jul calibration due to the marked switch from 

groundwater dominance in dry periods to the younger surface waters produced during 

small events. This is also consistent with Soulsby et al. (2015) and Tunaley et al. (2016), 

who showed that youngest waters in the BB were transmitted to the stream during small 

events with dry antecedent conditions. In contrast, the wet period calibration showed 

limited age variability due to the lower groundwater influence. The incorporation of water 
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ages allowed us to test the value of different calibrations on parameter sets and to link 

this to integrated catchment processes.  

 

Unsurprisingly, calibration over the whole year captured the dynamics of isotopes and 

flow most effectively, with the best performance statistics as the full range of catchment 

responses were used. However, focusing on the overall results, and not specific sub-

periods, can obscure poor model performance (Guse et al., 2014; Andréassian et al., 

2012). For runoff simulations, the one year parameter set performed better during wet 

periods, than dry periods, as it was less well-able to capture the marked non-linearities 

(lower k and α) that occurred during the smaller summer events and after dry periods. 

This weakness was identified in previous versions of the model (Birkel et al., 2014) and 

likely reflects the spatial heterogeneity of the saturation areas being not fully represented. 

Field observations have shown that in small events with dry antecedent conditions, 

connectivity increases to link isolated small pools in the riparian peatland (Lessels et al., 

2016). The conceptualisation of this spatial dynamic into a lumped runoff model would 

require additional parameters and thus, likely increase uncertainty (Birkel et al., 2014).  

 

In addition, the model lacks the skill to capture the summer isotopic enrichment in the 

stream, due to evaporative fractionation, despite its conceptualisation. This has been 

identified as a major weakness of the model (Birkel et al., 2011; Soulsby et al., 2015) and 

the implementation of a new time variable fractionation scheme in the hillslope and 

saturation area here resulted in only limited improvement. Again, field data imply the 

fractionation also occurs intensely in small localised areas that connect and disconnect in 

a non-linear way and more detailed data on the microclimate of these areas may be needed 
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to improve the modelling (Lessels et al., 2016; Sprenger et al.,2017). Such spatially 

explicit processes can be incorporated in the recent development of a semi-distributed 

model structure, which captures smaller scale dynamics in connectivity (Van Huijgevoort 

et al., 2016).  Nevertheless, mean streamwater age estimates from the one year calibration 

were younger (~ 1 year) compared to estimates by Van Huijgevoort et al. (2016) and 

Soulsby et al. (2015) who reported ages of ~ 1.6 years and 1.8 years, respectively. These 

estimates were based on multiyear datasets encompassing some extreme wet and dry 

periods. The younger ages reported here were likely related to it being a wet year, 

particularly in the first 6 months.  

 

Recent approaches for identifying how the dominant hydrological processes vary 

temporally include analysing the temporal dynamics of parameter sensitivity (TEDPAS) 

(Sieber and Uhlenbrook, 2005; Reusser et al., 2009; Guse et al., 2014). Using the much 

more highly parameterised SWAT model, Guse et al. (2016) related TEDPAS to specific 

discharge magnitudes to show, for example, whether high sensitives were related to 

certain discharge magnitudes and, in turn, demonstrated how the dominant hydrological 

processes vary depending on discharge. Future work should focus on incorporating these 

more sophisticated techniques in the search for calibration methods that make better use 

of the information content of the available data (Wagener et al., 2003). However, here, 

we have focused on showing how a relatively simple test can provide insights to both 

model performance of a low parameter model and catchment behaviour.  

 

5.3 Model transferability between spatial scales   
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Potential difficulties with downscaling models due to the possible change in dominant 

processes with scale have been highlighted previously (Beven et al., 2001). However, 

calibrating the model to the smaller HW1 had only very subtle impacts on model 

parameterisation and performance. The slightly better performance of the BB parameter 

set on HW1 during Jul was possibly due to the greater area of peatland in HW1 and 

therefore a more marked non-linearity in flow response which is better captured in the 

BB calibration. Field observations in both HW1 and BB have shown subtle discrepancies 

in hydrological responses caused by differences in percentage riparian peatland (Tunaley 

et al., 2017), GW influence (Blumstock et al., 2015) and solar radiation (Dick et al., 

2015). One difference evident from the isotope measurements was the more enriched 

isotope values during summer in HW1 compared to the BB, likely due to enhanced 

evaporation fractionation in the peatland pools. However, considering that the model 

failed to capture this fractionation well at either scale, this more subtle difference between 

the catchments was missed. Nonetheless, the dominant hydrological processes occurring 

in HW1 were adequately captured by the processes within the model developed for the 

BB, and calibrated parameters could be transferred between the catchments with similar 

performance.  

 

6. Conclusion 

We examined the use of models as learning tools to improve our understanding of both 

hydrological processes and model behaviour across non-stationary conditions. The 

learning framework was split into three objectives: (1) testing the model on high-

frequency data; (2) testing the effect of different calibration strategies; and (3) testing 

model transferability downscale. The main outcomes of this study were as follows:  
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(1) The 6-hourly data were successfully incorporated into the model, improving the 

temporal resolution of the modelling, making it more relevant to the time dynamics of 

the isotopic and hydrometric response of the catchments. However, in the peat-

influenced wet environment of the BB, the increased periodicity of isotope samples 

provided limited new process insights, but provided confirmatory evidence of the 

dominant role of mixing within the riparian area.  

(2) By incorporating a calibration approach based on splitting the full data set into sub-

periods, we were able to link the time variance of parameter values to different 

hydrological conditions, providing insights into the non-stationary nature of the 

dominant runoff processes. During wet periods, increased saturation results in a 

decrease in the storage actively involved in mixing, which causes younger water ages 

as more precipitation is routed laterally to the stream channel. Events with dry 

antecedent conditions result in a switch from groundwater domination, with associated 

older water ages, to a high contribution of non-linear surface water generating quick, 

runoff from the saturation area, resulting in young water ages. Model diagnostics on 

the full study period revealed poorer performance during wetting up periods, and a 

failure to capture the summer fractionation, due to connectivity being non-linear and 

spatially explicit. Hence, future work should focus on incorporating these processes 

into a spatially distributed model.  

(3) Downscaling of the model to a < 1 km2 catchment produced very similar parameter 

values and model performances, which showed the consistency of the model when 

applied to smaller scales and highlighted the similarity in dominant hydrological 

processes between the two scales.  
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Overall, the study highlights that by incorporating models into an integrated learning 

framework, with dual calibration on discharge and tracer data, we are able to extract an 

increased amount of information from the data and model results, and can evaluate 

models more rigorously than in the past.  
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Table 1: Hydrological (total rainfall 30 days prior to calibration period [P30], maximum, 
mean and sum of precipitation [P] during the calibration period, and maximum and mean 
discharge [Q] recorded during calibration period) and isotope (maximum, mean, 
minimum, coefficient of variation [CV] of δ2H in P and Q) characteristics of the three 
calibration periods.  

 

 

 

 

 

 

 

 

 BB (3.2 km2) HW1 (0.65 km2) 

 Calibration period Calibration period 

 1 year Nov Jul 1 year Nov Jul 
Hydrology       

P30 (mm) 73.6 117.2 25.8 68.8 108.8 28.2 

Pmax (mm 6h-1) 27.8 19 14.4 22.8 17 14.4 

Pmean (mm 6h-1) 0.7 1.7 1.3 0.6 1.6 1.3 

Psum (mm) 957 168 95.6 913 162 93.6 

Qmax (mm 6h-1) 6.24 5.66 2.84 7.07 6.55 2.54 

Qmean (mm 6h-1) 0.46 1.47 0.23 0.39 1.33 0.23 
Isotopes        

δ2H Pmax (‰) -13.9 -21.4 -17.4    
δ2H Pmean (‰) -57.3 -63.0 -43.5    
δ2H Pmin (‰) -145.9 -141.0 -87.1    
δ2H P CV (%)  44.7 41.7 42.1    
δ2H Qmax (‰) -51.2 -57.5 -51.2 -49.3 -58.0 -50.3 

δ2H Qmean (‰) -58.7 -62.1 -55.4 -57.7 -62.2 -54.1 

δ2H Qmin (‰) -72.2 -65.2 -58.5 -70.3 -65.8 -57.2 
δ2H Q CV (%)  5.3 2.3 2.9 6.2 2.7 3.1 
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Table 2: Mean model parameter and performance (KGE) values and ranges, expressed 
as minimum and maximum values (in parentheses), in the Bruntland Burn and HW1 for 
the one year calibration, Nov 2014 calibration and Jul 2015 calibration 

 

 

 

 

 

   BB HW1 

   1 year  Nov 2014 July 2015 1 year  Nov 2014 July 2015 

Para
mete

r 

U
ni
ts 

Initia
l 

rang
e  

Mean 
[min, 
max] 

Mean 
[min, 
max] 

Mean [min, 
max] 

Mean 
[min, 
max] 

Mean 
[min, 
max] 

Mean [min, 
max] 

Hydr
ology         

a 

6 
hr-

1 
[0.1, 
0.8] 

0.35 
[0.24, 
0.57] 

0.16 
[0.10, 
0.40] 

0.18 [0.10, 
0.25] 

0.35 
[0.25, 
0.66] 

0.23 
[0.10, 
0.46] 

0.23 [0.10, 
0.36] 

b 

6 
hr-

1 

[0.00
01, 
0.1] 

0.002 
[0.001, 
0.018] 

0.036 
[0.005, 
0.100] 

0.0002 
[0.0001, 
0.0002] 

0.002 
[0.001, 
0.006] 

0.004 
[0.001, 
0.006] 

0.0006 
[0.0001, 
0.0016] 

r 

6 
hr-

1 
[0.1, 
0.8] 

0.54 
[0.30, 
0.90] 

0.74 
[0.24, 
0.90] 

0.85 [0.57, 
0.90] 

0.51 
[0.25, 
0.89] 

0.41 
[0.10, 
0.83] 

0.85 [0.55, 
0.90] 

k 

6 
hr-

1 

[0.00
01, 
0.1] 

0.02 
[0.01, 
0.06] 

0.09 
[0.05, 
0.10] 

0.09 [0.07, 
0.10] 

0.02 
[0.01, 
0.04] 

0.08 
[0.02, 
0.10] 

0.07 [0.03, 
0.10] 

α - 
[0.05
, 0.9] 

0.61 
[0.06, 
0.88] 

0.80 
[0.42, 
0.90] 

0.89 [0.57, 
0.90] 

0.63 
[0.05, 
0.90] 

0.70 
[0.36, 
0.90] 

0.90 [0.89, 
0.90] 

KGE_
Q - - 

0.72 
[0.30, 
0.92] 

0.64 
[0.38, 
0.94] 

0.60 [-0.03, 
0.84] 

0.72 
[0.30, 
0.88] 

0.70 
[0.40, 
0.93] 

0.51 [0.17, 
0.95] 

Isoto
pes         

upSp 
m
m 

[0, 
500] 

291 [241, 
328] 

432 [307, 
500] 

189 [16, 
500] 

334 [303, 
499] 

499 [ 486, 
500] 

259 [67, 
500] 

satSp 
m
m 

[0, 
1000

] 
84 [54, 

134] 0.2 [0, 11] 97 [0, 100] 
99 [93, 

100] 1.5 [0, 6] 
100 [99.5, 

100] 

lowS
p 

m
m 

[0, 
1000

] 
990 [953, 

1000] 
71 [20, 

135] 
996 [871, 

1000] 

987 
[839,1000

] 34 [4, 78] 
996[917, 

1000] 

KGE_
δ2H - - 

0.75 
[0.51, 
0.78] 

0.64 
[0.21, 
0.70] 

0.58 [-
37.25, 0.82] 

0.77 
[0.61, 
0.81] 

0.64 
[0.32, 
0.75] 

0.56 [0.34, 
0.61] 
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Table 3: Total storage (mm) and age (days) for both the BB and HW1 for the 1 year 
period (1 August 2014 – 1 August 2015) based on means of simulations from different 
calibration periods. Minimum and maximum values are given in parentheses, along with 
standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calibration period Storage Age 

 (mm) (days) 
BB   

1 year 1400 [1280, 1462] (sd = 41) 321 [6, 870] (sd = 239) 
Nov 2014 512 [416, 572] (sd = 27) 150 [4,319] (sd = 69) 
Jul 2015 1492 [1232, 1597] (sd = 111) 353 [1.4, 941] (sd = 263) 

HW1   
1 year 1417 [1313, 1477] (sd = 35) 322.7 [7, 841] (sd = 229) 
Nov 2014 552 [426, 614] (sd = 32) 143 [4, 284] (sd = 64) 
Jul 2015 1472 [1277, 1553] (sd = 74) 359 [2, 938] (sd = 261) 
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Table 4: Cross basin test performances (KGE) between BB and HW1 for the 3 calibration 
periods for discharge and isotopes. 

 

 

Calibration 
site Period 

Evaluation site 
Discharge  Isotopes 

BB HW1 BB HW1 

BB 
1 year  0.78 0.78 0.76 0.79 
Nov 0.57 0.56 0.66 0.65 
Jul 0.58 0.67 0.78 0.79 

HW1 
1 year  0.79 0.8 0.78 0.75 
Nov 0.68 0.69 0.57 0.64 
Jul 0.38 0.44 0.73 0.69 
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Figure 1: (a) Outlines of the nested catchments, contour lines and sampling sites; (b) dominant soil types in 
each of the catchments. 
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Figure 2: Schematic model structure showing the three reservoirs with associated dynamic storage (Sup, Slow 
and Ssat) and additional passive storage for time-variable mixing volumes (upSp, lowSp and satSp), which 
have been converted from the storage parameters according to the antecedent wetness (dSAT). The linear 
rate parameter a (6 hr -1) controls the hillslope water flux to the saturated area; r (6 hr -1) controls the 
groundwater recharge rate; b (6 hr -1) controls the rate of groundwater discharge to streamflow; k (6 hr -1) 
and α conceptualises saturation overland flow and controls the nonlinear runoff from the saturation area to 
streamflow. Calibrated parameters are displayed in red. AET and PET are actual and potential 
evapotranspiration, respectively.
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Figure 4: Time series of: (a) precipitation (blue bars) and δ2H signatures of precipitation (red 
circles); (b) δ2H of streamwater for the Bruntland Burn (BB) and HW1; (c) discharge for the BB and 
HW1. Shaded areas are the periods of higher frequency (6 hourly) isotope sampling (I is Nov 2014 
and II is Jul 2015).
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Figure 5: High frequency sampling period Nov (27 October – 20 November 2014). Time series of: 
(a) precipitation (blue bars) and δ2H signatures of precipitation (red circles); (b) 6 hourly and daily
δ2H of streamwater for the Bruntland Burn (BB) and HW1; (c) discharge for the BB and HW1.
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Figure 6: High frequency sampling period Jul (2 – 20 July 2015). Time series of: (a) precipitation 
(blue bars) and δ2H signatures of precipitation (red circles); (b) 6 hourly and daily δ2H of streamwater 
for the Bruntland Burn (BB) and HW1; (c) discharge for the BB and HW1. 
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Figure 7: Comparison of model performance (KGE) between median simulations for each calibration period 
over different periods of evaluation. Top left: BB discharge simulations. Top right: HW1 discharge simulation. 
Bottom left: BB δ2H simulations. Bottom right: HW1 δ2H simulations. KGE less than 0 are not included on 
the plots.
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Figure 8: Comparison of the different calibration periods in the Bruntland Burn. 6- hourly data: (a) 
precipitation; (b) measured and simulated discharge from 1 year calibration; (c) measured and simulated 
discharge from Nov calibration; (d) measured and simulated discharge from Jul calibration. Uncertainty 
bands represent the 5th and 95th percentiles derived from the 500 best parameter sets. Shaded areas 
highlight the Nov (I) and Jul (II) calibration periods. 
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Figure 9: Comparison of the different calibration periods in the Bruntland Burn. 6 hourly data isotope 
data: (a) precipitation; (b) measured and simulated δ2H from 1 year calibration; (c) measured and 
simulated δ2H from the Nov calibration; (d) measured and simulated δ2H from the Jul calibration. 
Uncertainty bands represent the 5th and 95th percentiles derived from the 500 best parameter sets. There 
are no uncertainty bands for the November calibration due to instability in some of the parameter sets. 
Shaded areas highlight the Nov (I) and Jul (II) calibration periods.



0

10

20

30

40

50 0

5

10

15

Q
 (m

m
/6

hr
)

P 
(m

m
/6

hr
)

400

800

1200

To
ta

l s
to

ra
ge

 (m
m

)

0

250

500

750

Oct 2014 Jan 2015 Apr 2015 Jul 2015
Date

Ag
e 

(d
ay

s)

CAL 1 year CAL Nov CAL Jul

CAL 1 year
CAL Nov
CAL Jul

(a)

(b)

(c)

Figure 10: Comparison of the different calibration periods on total storage and age estimates in the 
Bruntland Burn. 6 hourly (a) precipitation and discharge; (b) total storage estimates for the 3 different 
calibration periods; (c) age estimates for the 3 different calibration  periods. Median simulations are 
plotted. 


	Manuscript_Tunaley
	All_figures



