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Abstract

A Chebyshev collocation method is presented for the free vibration analysis of geometrically exact nonlinear

beams with fully intrinsic formulation. The intrinsic formulation of the governing equations of the beam

contains neither displacement nor rotation variables. The proposed collocation discretization technique is

based on the Chebyshev points as the collocation points and the orthogonal Chebyshev polynomials as the

trial functions. This method is successfully applied to the eigenvalue analysis of the linearized intrinsic

governing equations of a nonlinear beam. A number of test cases have been considered for either straight or

pretwisted beams and the obtained results are compared to the analytical, numerical as well as experimental

results. In order to show the applicability of current approach for real-life engineering problems, a composite

wind turbine rotor blade with non-uniform distribution of properties is also considered. In all test cases a

very good concordance has been observed. The proposed method bypasses the integrations common in finite

element based methods and difficulties associated with finite rotations interpolation and while exhibiting a

very good accuracy compared to the finite element results, it is computationally more efficient and simpler

to implement in a computer programming code.

Keywords: Chebyshev Collocation Method, Geometrically Exact Beam, Intrinsic Formulation, Free

Vibration, Pretwisted Beam, Composite Rotor Blade, Composite Beam

1. Introduction

In the context of the mathematical modeling of geometrically nonlinear beams the so called geometrically

exact theories have attracted a great deal of attentions so far. In the geometrically exact beam theories no

specific assumptions are made with regards to the displacement field of the beam and the finite rotations are

utilized for the kinematical description of the beam deformations which make these kinds of beam theories,

among other theories, the most versatile and the most loyal to the true nature of the beam problem. The

pioneering work of Reissner (1973) on the statics of geometrically exact beams has been the source of
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many future extensions and generalizations of geometrically exact beam theories. Simo (1985) has extended

the Reissner’s model to the dynamic case. Cardona and Géradin (1988) have presented a dynamic finite

element beam model considering large finite rotations and have used an updated Lagrangian approach for

the numerical analysis. Iura and Atluri (1988) have used similar assumptions to those made by Reissner

(1973) and Simo (1985) and have proposed a model for the dynamic analysis of space beams. Based on the

generalized strain concept represented by Reissner (1973), Hodges (1990) has presented a set of intrinsic

equations of motion for moving initially curved and twisted beams. Many authors have developed more

or less similar models for the dynamics of geometrically exact beams, e.g. see Simo and Vu-Quoc (1988,

1991), Pai and Nayfeh (1994), Petrov and Géradin (1998), Ibrahimbegović and Mikdad (1998), Jelenić and

Crisfield (1999), Romero and Armero (2002), Mäkinen (2007) and many others. However a full bibliography

in this context is out of the scope of the current work.

A vast majority of the numerical treatments of the geometrically exact beams has been devoted to

the finite element methods (FEM) which are mostly based on the interpolation of finite rotations. The

interpolation and parametrization of finite rotations generally involve important issues such as objectivity of

the strain field, singularities and orthogonality of the finite rotations field which cause difficulties in various

approaches that are used for the interpolation of finite rotations. In order to avoid the difficulties associated

with the interpolation of finite rotations, the formulations with no rotational degrees of freedom have been

emerged. For a more thorough review of various approaches with rotation free formulation the readers are

referred to Khaneh Masjedi and Ovesy (2015).

One approach that is free from rotational variables is to consider the intrinsic governing equations of

motion. The intrinsic equations of motion are the linear and angular momentum balances and in general

they are free from any displacement or rotational variables. The most attractive characteristic of intrinsic

formulation is the low order of nonlinearity which is quadratic at most and as a result makes it desirable for

numerical analysis.

Hegemier and Nair (1977) have presented an intrinsic formulation for the dynamics of anisotropic pre-

twisted beams but they did not present any numerical results. Hodges (2003) has introduced a set of

complete intrinsic equations for the dynamics of initially curved and twisted geometrically exact beams

and has shown the advantages of fully intrinsic formulation for a beam under non-conservative transverse

follower force. The latter approach which is based on a finite difference scheme has been later used by Chang

and Hodges (2009a) and Chang and Hodges (2009b) for the free vibration and stability analysis of curved

beams. Khouli et al. (2009) and Ghorashi and Nitzsche (2009) also have used finite difference schemes for

the spatial discretization of the intrinsic formulation presented by Hodges (2003) for the dynamic analysis of

helicopter rotor blades. Patil and Althoff (2011) have proposed a Galerkin’s method in which the Legendre

polynomials are used as trial functions for the dynamic and free vibration analysis of fully intrinsic beam

formulation. This approach has been extended further through the implementation of a variable order finite
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element by Patil and Hodges (2011).

Collocation methods exhibit superior computational efficiency and accuracy compared to Galerkin’s and

finite element methods. Schillinger et al. (2013) have shown that the collocation method significantly reduces

the computational cost in comparison to Galerkin’s and finite element methods and also can be orders of

magnitude faster than these methods to achieve a specified level of accuracy. Khaneh Masjedi and Ovesy

(2015) have introduced the Chebyshev collocation method to the static analysis of geometrically exact

beams with intrinsic formulation and have shown that this scheme while computationally efficient exhibits

comparable accuracy as distinct from other numerical schemes such as finite element method.

The main objectives of the current work have been to extend the approach presented by Khaneh Mas-

jedi and Ovesy (2015) for the first time to the free vibration analysis of geometrically exact beams with

intrinsic formulation and to show the accuracy and applicability of this scheme for the proper treatment

of eigenvalue analysis of geometrically exact beams with fully intrinsic formulation. Additionally the free

vibration problem for various boundary conditions in the context of geometrically exact beams with in-

trinsic formulation is considered which is addressed very rarely in the literature. It will be shown in this

paper that the proposed method of analysis is applicable to real life engineering problems with nonuniform

distribution of properties and spatial initial twist and curvature as well as classical benchmark problems.

The application of this method can be further extended to more complex cases, which require several beam

assemblage, by adopting hybrid approaches; for instance, with Strong Formulation Finite Element Method

(Tornabene et al. (2015)).

The content of the current paper is outlined as follows. In Section 2 a description of the intrinsic equations

of motion of a geometrically exact beam is given. These equations will be linearized about a steady state

position using perturbation method. It should be noted that for the current work in order to be self-sufficient

some parts in theoretical developments are borrowed from Khaneh Masjedi and Ovesy (2015). In Section

3 the Chebyshev collocation method is introduced into the linearized intrinsic formulation of the beam and

a general eigenvalue problem is constructed. In Section 4 illustrating examples are presented based on

the proposed approach and the obtained results are compared to the analytical as well as other numerical

results. It is shown that the current approach while computationally efficient and easy to implement, exhibits

comparable accuracy to the other numerical schemes such as Galerkin’s or finite element method. Finally

in Section 5 some concluding remarks are drawn.

2. Geometrically Exact Beam Governing Equations

2.1. Beam Kinematics

The geometry of an initially curved and twisted beam is depicted for the deformed and undeformed

configurations in Fig. 1. The base vectors I1, I2 and I3 are considered as the inertial reference frame; since
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all motions are measured and described relative to this frame, the base vectors e1, e2 and e3 are attached

to the reference line in the undeformed state such that e1 is always tangent to the beam reference line

(Beam longitudinal axis). At each position on the reference line the base vectors e2 and e3 comprise the

cross-sectional plane of the beam. The base vectors e˚1 , e˚2 and e˚3 which constitute an orthonormal set are

expressed in the deformed state of the beam and are considered as the deformed frame. The base vectors e˚2 ,

e˚3 could be considered as the rotated and translated base vectors e2 and e3 related to the cross-sectional

plane in the undeformed state and they are in the plane of the cross-section in the deformed state. It is

assumed that the cross-section of the beam can undergo shear deformations so generally speaking the base

vector e˚1 is not necessarily tangent to the longitudinal axis of the deformed beam.

The 1D generalized strain measures for an initially curved and twisted beam can be expressed as

(Khaneh Masjedi and Ovesy (2015)):

γ “ ΛT .R0,1 ´ r0,1 (2.1)

κ “ ΛT .K´ k (2.2)

in which; Λ is a linear transformation that relates the orthonormal base vectors ei and Ii and is only

function of the beam reference line (i.e. x1). The vectors k and K are the curvature vectors of the beam

in the undeformed and deformed state of the beam. In the matrix form we have; k “ rk1, k2, k3s
T and

K “ rK1,K2,K3s
T . When k is expressed in the undeformed frame (i.e. ei) and K is expressed in the

deformed frame (i.e. e˚i ), k1 is regarded as the initial twist and k2 and k3 are regarded as the initial

curvatures of the beam and K1 is the twist and K2 and K3 are the curvatures of the beam in the deformed

state, R0,1 “ BR0{Bx1 and r0,1 “ Br0{Bx1. r0 and R0 are the position vectors of the beam reference line

in the undeformed and deformed configurations respectively and we have; R0 “ r0 ` u0, where u0 is the

displacement vector of the beam reference line. It should be noted that the dot operator is used throughout

the paper for product between any two vectors and/or matrices.

The above strain measures are called force and moment strain (Reissner (1973); Hodges (1990)) since

they are conjugate to the cross-sectional forces and moments. These generalized strain measures can be

expressed in the matrix form as; γ “ rγ11, 2γ12, 2γ13s
T and κ “ rκ1, κ2, κ3s

T . Based on the Frenet-Serret

formula the derivative of the base vectors ei and e˚i with respect to the beam reference line (i.e. x1) can be

obtained as:

peiq,1 “
Bei
Bx1

“ rk.ei (2.3)

pe˚i q,1 “
Be˚i
Bx1

“ rK.e˚i (2.4)
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Figure 1: Initially Curved and Twisted Beam in the Undeformed and Deformed Configurations

Similarly one can write for the derivative of the base vectors e˚i with respect to time as follows;

9pe˚i q “
Be˚i
Bt

“ rΩ.e˚i (2.5)

In which Ω is considered as the angular velocity vector of the deformed base vectors e˚i . It should be noted

that (˜) is the cross-product operator.

2.2. Extended Hamilton’s Principle

Using the extended Hamilton’s principle the intrinsic equations of motion can be derived. The extended

Hamilton’s principle is expressed as:

ż t2

t1

ż L

0

rδT ´ δU ` δWextsdx1dt “ 0 (2.6)

where δU is the virtual internal work or strain energy, δT is the virtual kinetic energy and δWext is the

virtual work of external applied loads, per unit length of the beam.

The virtual strain energy per unit length of the beam can be expressed as (Khaneh Masjedi and Ovesy

(2015)):

δU “ F.δΓ`M.δK (2.7)

in which F and M are internal force and moment and are defined as:

F “
BU
BΓ

, M “
BU
BK (2.8)

5



where F “ Λ.f , M “ Λ.m, δΓ “ Λ.δγ and δK “ Λ.δκ. Herein Λ acts as a push-forward operator and

as a result if f , m, δγ and δκ are expressed in the undeformed frame, F, M, δΓ and δK are expressed in

the deformed frame. The virtual strain energy of the beam can be expressed as (Khaneh Masjedi and Ovesy

(2015)):
ż L

0

δUdx1 “

´

ż L

0

”´

F,1 ` rK.F
¯

.δR0 `

´

rR0,1.F`M,1 ` rK.M
¯

.δφ
ı

dx1`

F.δR0|
L
0 ` M.δφ|

L
0

(2.9)

The virtual kinetic energy per unit length of the beam can be expressed as:

δT “ L.δV ˚ `P.δΩ˚ (2.10)

in which L and P are linear and angular momentum and are defined as:

L “
BT
BV

, P “
BT
BΩ

(2.11)

In Eq. (2.10) δV ˚ and δΩ˚ are conjugate variation of linear and angular velocities to linear and angular

momentum respectively and we have; δV ˚ “ Λ.δv, δΩ˚ “ Λ.δω, L “ Λ.l and P “ Λ.p.

One can write:

δv “ ΛT .pĂδφ
T
. 9R0 ` δ 9R0q (2.12)

δω “ ΛT .δ 9φ (2.13)

From Eqs.(2.10), (2.12) and (2.13) the kinetic energy of the beam is expressed as:
ż t2

t1

δT dt “
ż t2

t1

”

pΛ.lq.
´

δ 9R0 `
9
rR0.δφ

¯

` pΛ.pq.δ 9φ
ı

dt “

´

ż t2

t1

”´

9Λ.l
¯

.δR0 `

´

9
rR0.pΛ.lq `

´

9Λ.p
¯¯

.δφ
ı

dt

` pΛ.lq .δR0|
t2
t1
` pΛ.pq .δφ|

t2
t1

(2.14)

further expanding
´

9Λ.l
¯

and
´

9Λ.p
¯

;

´

9Λ.l
¯

“ 9Λ.l`Λ.9l

“ 9Λ.
`

ΛT .Λ
˘

.l`Λ.9l

“ rΩ. pΛ.lq `Λ.9l

“ rΩ.L` 9L

(2.15)

6



similarly;
´

9Λ.p
¯

“ rΩ. pΛ.pq `Λ. 9p

“ rΩ.P` 9P

(2.16)

Introducing Eqs. (2.15) and (2.16) into Eq. (2.14) will lead to:

ż t2

t1

δT dt “

´

ż t2

t1

”´

rΩ.L` 9L
¯

.δR0 `

´

9
rR0.L` rΩ.P` 9P

¯

.δφ
ı

dt

` L.δR0|
t2
t1
` P.δφ|

t2
t1

(2.17)

The virtual work of the external applied forces i.e. f and applied moments i.e. m are given by;

ż t2

t1

ż L

0

δWextdx1 “

ż t2

t1

ż L

0

“

f .δR0 `m.δφ
‰

dx1 (2.18)

From Eqs. (2.6) (2.9), (2.17) and (2.18), the intrinsic equations of motion of a spatial beam are derived as

follows;

F,1 ` rK.F` f “ 9L` rΩ.L

M,1 ` rK.M` rR0,1.F`m “ 9P` rΩ.P` rV.L
(2.19)

where V “ 9R0. It is noted that the equations of motion presented in Eq.(2.19) are identical to those of

Hodges (1990, 2003).

In order to close the formulation a set of kinematical relations are required. These kinematical relations are

presented by Hodges (2003) and are expressed as:

9γ “ V,1 ` rK.V ` rR0,1.Ω

9κ “ Ω,1 ` rK.Ω
(2.20)

It is noted that R0,1 and κ are given by Khaneh Masjedi and Ovesy (2015) as:

R0,1 “ p1` γ11q e
˚
1 ` 2γ1αe˚α

κie
˚
i “ pKi´kiq e

˚
i

(2.21)

where α “ 2, 3 and i “ 1, 2, 3.

Introducing the linear constitutive equation and the generalized momentum-velocity relations;

$

&

%

γ

κ

,

.

-

“

»

–

R S

ST T

fi

fl

$

&

%

F

M

,

.

-

(2.22)

$

&

%

L

P

,

.

-

“

»

–

µ∆ ´µ˜̄x

µ˜̄x I

fi

fl

$

&

%

V

Ω

,

.

-

(2.23)
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one can eliminate γ, κ, L and P and only F, M, V and Ω will remain as unknowns.

In Eq. (2.22) R, S and T are the matrices of cross-sectional flexibility and in Eq. (2.23) µ is mass per unit

length of the beam, ∆ is the identity matrix, x̄ is the offset from the reference line of the cross-sectional

mass centroid and x̄ “ r0, x̄2, x̄3s
T and I is the beam cross-section mass moment of inertia per unit length of

the beam. Since the presented method is not limited by constitutive equations, beams made of anisotropic

materials with arbitrary cross-sectional shapes can be also modelled and analysed using this method. In

order to obtain the stiffness matrix of composite beams with arbitrary complex cross-sections a number of

finite element based discretization tools have been developed, e.g. see Morandini et al. (2010), Yu et al.

(2012) and Genoese et al. (2014) in which Saint-Venant effect (including in-plane and out-of-plane sectional

warping deformation) are incorporated. The stiffness matrix obtained from any of such tools can be directly

used as the constitutive equation in current beam model. It is also possible to further extend governing

equations (2.19) to incorporate the end effect associated with the torsional deformation well-known as Vlasov

effect, e.g. see Khouli et al. (2010) for the static case. However it is required to obtain appropriate cross-

sectional stiffness matrix in which Vlasov effect is included such as works by Yu et al. (2005), Kim et al.

(2008) and Kim and Kim (2013). For the case of an isotropic beam in which the beam reference line coincides

with the locus of both cross-sectional shear and area centroids, the constitutive equations (Eq. 2.22) are

expressed as:

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

γ11

2γ12

2γ13

κ1

κ2

κ3

,

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

-

“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1
EA 0 0 0 0 0

0 1
GA2

0 0 0 0

0 0 1
GA3

0 0 0

0 0 0 1
GJ 0 0

0 0 0 0 1
EI2

0

0 0 0 0 0 1
EI3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

F1

F2

F3

M1

M2

M3

,

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/
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/

-

(2.24)

where, E is the elastic modulus, G is the shear modulus defined as G “ E{2p1` νq where ν is the Poisson’s

ratio, A is the cross-sectional area, A2 “ c2A and A3 “ c3A in which c2 and c3 are the shear correction

factors, I2 and I3 are the cross-sectional moments of inertia and J is the polar moment of inertia. It is

noted that the analytical formulations for c2 and c3 for rectangular cross-sections that is used throughout

this work is taken from Hodges (2006), as follows;

c2 “

«

6

5
`

ˆ

ν

1` ν

˙2
´a

b

¯´4
˜

1

5
´

18
`

a
b

˘

π5

¸

8
ÿ

m“1

˜

tanh
`

mπ
`

a
b

˘˘

m5

¸ff´1

(2.25a)

c3 “

»

–

6

5
`

ˆ

ν

1` ν

˙2
´a

b

¯4
˜

1

5
´

18
`

a
b

˘´1
π5

¸

8
ÿ

n“1

¨

˝

tanh
´

nπ
`

a
b

˘´1
¯

n5

˛

‚

fi

fl

´1

(2.25b)
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b x2
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Figure 2: Rectangular beam cross-section dimensions

in which a and b are the beam rectangular cross-section dimensions (see Fig. 2).

Eqs. (2.19), (2.20), (2.22) and (2.23) in conjunction with the boundary conditions constitute a com-

plete set of equations.The boundary conditions for the free vibration analysis of a non-rotating beam are

represented in Table (A.14).

2.3. Linearization

In order to cast the governing equations into an eigenvalue problem, a linearization about the steady

state solution is performed at first. For this purpose the unknown variables are expressed as:

Ψpx1, tq “ Ψ0px1q ` pΨpx1, tq (2.26)

in which Ψpx1, tq is the state of the desired unknown variable, Ψ0px1q is a steady state solution and pΨpx1, tq

is a small perturbation about the steady state position. The application of this linearization to Eqs. (2.19)

and (2.20) will lead to the following equations:

pF,1 ` rK0.pF`
r

pK.F0 ` f “
9
pL` rΩ0.pL`

r

pΩ.L0

xM,1 ` rK0.xM`
r

pK.M0 ` pre1 ` rγ0q .pF` r

pγ.F0 `m “
9
pP` rΩ0.pP`

r

pΩ.P0 ` rV0.pL`
r

pV.L0

pV,1 ` rK0.pV `
r

pK.V0 ` pre1 ` rγ0q .pΩ` r

pγ.Ω0 “
9
pγ

pΩ,1 ` rK0.pΩ`
r

pK.Ω0 “
9
pκ

(2.27)

where, e1 “ r1 0 0sT .
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2.4. Eigenvalue Problem

For obtaining the eigenvalue problem, external forces and moments i.e. f and m are eliminated and

unknown variables in Eq. (2.27) are discretized as:

pF “ φF px1q.qF ptq

xM “ φM px1q.qM ptq

pV “ φV px1q.qV ptq

pΩ “ φΩpx1q.qΩptq

(2.28)

Based on the discretization given in Eq. (2.28) the free vibration equations can be written as:

A.q “ B. 9q (2.29)

in which q “ rqF qM qV qΩs
T and A and B are given as:

A =

»

—

—

—

—

—

—

–

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 r0s A44

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B =

»

—

—

—

—

—

—

–

r0s r0s B13 B14

r0s r0s B23 B24

B31 B32 r0s r0s

B41 B42 r0s r0s

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.30)

The entries of A and B are given in AppendixB.

3. Chebyshev Collocation Discretization

For the purpose of numerical discretization of the eigenvalue problem presented the Chebeyshev collo-

cation method is utilized. In order to discretize the eigenvalue problem represented in Eq.(2.29) Chebyshev

polynomials (See AppendixC) are adopted as the spatial trial functions and Chebyshev points are employed

as the collocation points. Chebyshev points are the roots of the Chebyshev polynomials of the first kind

and in the interval ´1 ď x ď `1 are:

xi “ cos

ˆ

2i´ 1

2N
π

˙

, i “ 1, 2, . . . , N (3.1)

in which N is the highest degree of the Chebyshev polynomials used as the trial functions. For an arbitrary

interval a ď x ď b the transformed Chebyshev points are:

xi “
1

2
pa` bq ´

1

2
pb´ aq cos

ˆ

2i´ 1

2N
π

˙

, i “ 1, 2, . . . , N (3.2)
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Utilizing the Chebyshev polynomials as the trial functions in Eq. (2.29) and Eq. (2.30) , we have:

φF px1q “ φM px1q “ φV px1q “ φΩ px1q “

»

—

—

—

–

ψ px1q r0s r0s

r0s ψ px1q r0s

r0s r0s ψ px1q

fi

ffi

ffi

ffi

fl

(3.3)

where

ψ px1q “ rT0 px1q T1 px1q T2 px1q . . . TN px1qs (3.4)

Setting the residuals of Eq. (2.29) at N Chebyshev points equal to zero in conjunction with 12 boundary

conditions, constitute 12pN ` 1q equations, which can be expressed as:

A.X “ B. 9X (3.5)

in which A and B are 12pN ` 1q ˆ 12pN ` 1q coefficient matrices with real numeric entries and X is the

generalizied coordinates vector. A and B matrices have unsymmetrical structures and they are relatively

sparse. If one assumes a harmonic solution; X “ Xeλt, the generalized form of the eigenvalue problem is

derived as:

A.X “ B.λX (3.6)

where λ is the eigenvalue or the natural frequency of the problem.

4. Numerical Results

In order to show the applicability, validity and accuracy of the proposed collocation scheme, illustrative

examples are presented in this section and the obtained results are compared to the analytical, experimental

as well as other numerical schemes.

4.1. Numerical Results for Straight Beams

Comparison to Galerkin’s and FEM Methods. Traugott et al. (2006) and Patil and Althoff (2011) based

on Galerkin’s and finite element method discretization of the intrinsic formulation of geometrically exact

beams have considered a cantilever beam and have presented numerical results for natural frequencies. The

structural and inertial properties of the cantilever beam are presented in Table(1). In order to show the

convergence of the Chebyshev collocation method the first few natural frequencies of the cantilever beam

are presented in Table(2) in which N is the highest degree of Chebyshev polynomials used in the analysis.
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Table 1: Cantilever Beam Properties

Span 16 m

Chord 1 m

Mass per Unit Length 0.75 kg{m

Mass Moment of Inertia per Unit Length 0.1 kg.m

Spanwise Elastic Axis 50% Chord

Center of Gravity 50% Chord

Flapwise Bending Rigidity 2ˆ 104 N.m2

Torsional Rigidity 1ˆ 104 N.m2

Chordwise Bending Rigidity 4ˆ 106 N.m2

Shear/Extensional Rigidity 8

As it is seen a fast rate of convergence is observed at fairly low degree of polynomials.

In Table(3) the natural frequencies obtained based on the current approach are compared with those of

Traugott et al. (2006) that is based on a finite element (FEM) scheme and Patil and Althoff (2011) which is

based on a Galerkin’s method, as well as the exact solution. As it is seen a very good accuracy is exhibited

by the current approach compared to the exact frequencies. The accuracy of the results based on the current

approach is obviously superior to those of Traugott et al. (2006) but Patil and Althoff (2011) have predicted

the natural frequencies of the bending modes more accurately compared to the current approach. One

may seek the reason in the fact that the collocation methods generally lead to unsymmetric matrices while

Galerkin’s methods lead to symmetric ones.

Yeo et al. (2014) have considered a comparison of free vibration analysis based on 3D finite element and

1D beam elements. The 3D finite element analysis has been performed using a commercial code MSC/Marc

and the 1D beam analysis is performed using rotorcraft comprehensive analysis code RCAS. Two versions of

nonlinear beam element namely NLB and GCB have been used in the analysis. RCAS NLB beam element

is based on a moderately large deflection beam theory and RCAS GCB is based on a geometrically exact

beam theory. An aluminum beam with three different aspect ratios with length of L “ 20 ˆ c, L “ 10 ˆ c

and L “ 5ˆ c has been considered. The beam properties used in the analysis are as follows;

E “ 1.0ˆ 107 lb

in2
, ν “ 0.3, ρ “ 0.098

lb

in3
, c “ 3.4 in, t “

c

4
where c and t are the beam cross-sectional chord and thickness. Tables (4) and (5) show the first torsion

frequency and the third flapwise frequency, respectively. As it is seen the results based on the current

approach are in a very good agreement with 3D as well as 1D finite elements.

12



Table 2: Convergence of the Chebyshev Collocation Method

N (Highest Degree of Polynomials)

4 6 8 10

1st Bending 2.241 2.242 2.242 2.242

2nd Bending 14.71 14.00 14.00 14.00

3rd Bending 65.32 39.46 38.97 38.96

1st Torsion 31.69 31.05 31.05 31.05

2nd Torsion 95.25 93.13 93.14 93.14

Comparison to Experimental Results. Dowell and Traybar (1975) have conducted a series of experiments for

large deflections and natural frequencies of two cantilever beams. The straight aluminium (T 7075) beams

are of 20 in and 30 in length respectively with uniform rectangular cross-sections of 0.5 inˆ 0.125 in. The

properties of these two beams are listed as follows;

E “ 10.576ˆ 106 lb

in2
, G “ 4.0383ˆ 106 lb

in2
, ν “ 0.31, ρ “ 0.1014

lb

in3

Table (6) shows the 1st flapwise and 1st chordwise natural frequencies based on the current approach and the

experimental results of Dowell and Traybar (1975). It is seen a very good agreement between experimental

and numerical results. It is noted that the experimental results given in Table (6) are averaged of a series

of test values represented by Dowell and Traybar (1975).

Results for Various Boundary Conditions. Free vibration of beams with various boundary conditions com-

mon in the engineering and science problems introduced in Section 2.2 (see Table (A.14)) are considered

herein. The beam properties used here are those from Table (1). Tables (7) through (10) show the obtained

10 first natural frequencies using present approach and they are compared to the exact analytical results

(Meirovitch (1997)). A very good correlation is observed for all boundary conditions.

Large Deflected Cantilever. The nonlinear free vibration behavior of a cantilever beam deflected under a

follower end load is considered. This problem has been introduced by Patil et al. (1999) and also considered

by Patil and Althoff (2011). Under the action of the tip load the beam will undergo large deflections. The

large deflected position is considered as the steady state position of the beam and the natural frequencies

are obtained for various levels of the tip load. It is noted that the calculations of the steady state (here

static) position of a cantilever beam under static loads using Chebyshev collocation method are thoroughly

considered in Khaneh Masjedi and Ovesy (2015). Large deflections of the beam cause a coupling between

chordwise bending and torsion modes. Fig. (3) depicts the first few natural frequencies of the large deflected

13
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Table 4: 1st Torsion Frequency of Aluminum Beam (Hz)

L “ 20ˆ c L “ 10ˆ c L “ 5ˆ c

Yeo et al. (2014) RCAS NLB 201.54 403.08 806.17

Yeo et al. (2014) RCAS GCB 201.54 403.08 806.17

Yeo et al. (2014) MSC/Marc 201.41 412.93 842.36

Present 201.45 402.89 805.79

Table 5: 3rd Flapwise Frequency of Aluminum Beam (Hz)

L “ 20ˆ c L “ 10ˆ c L “ 5ˆ c

Yeo et al. (2014) RCAS NLB 103.36 412.94 1641.87

Yeo et al. (2014) RCAS GCB 103.20 410.28 1603.10

Yeo et al. (2014) MSC/Marc 104.00 413.94 1623.61

Present 103.29 411.59 1621.88

Table 6: Princeton Beam Natural Frequencies (Hz)

Experiment Present % Difference

L “ 20 in

Flapwise Bending 10.150 10.153 -0.030

Chordwise Bending 41.143 40.553 1.434

L “ 30 in

Flapwise Bending 4.509 4.406 -2.284

Chordwise Bending 17.207 18.001 4.614
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Table 7: First 10 Natural Frequencies for C-C Boundary Conditions (rad{sec)

# Mode Exact Present

1 1st Flapwise Bending 14.27 14.25

2 2nd Flapwise Bending 39.34 39.11

3 1st Torsion 62.09 62.09

4 3rd Flapwise Bending 77.12 76.16

5 1st Chordwise Bending 100.91 100.75

6 2nd Torsion 124.18 124.18

7 4th Flapwise Bending 127.49 125.28

8 3rd Torsion 186.27 186.27

9 5th Flapwise Bending 190.44 191.82

10 4th Torsion 248.36 248.5

Table 8: First 10 Natural Frequencies for S-S Boundary Conditions (rad{sec)

# Mode Exact Present

1 1st Flapwise Bending 6.29 6.29

2 2nd Flapwise Bending 25.18 25.05

3 1st Chordwise Bending 44.52 44.46

4 3rd Flapwise Bending 56.66 56.02

5 1st Torsion 62.09 62.09

6 4th Flapwise Bending 100.73 98.83

7 2nd Torsion 124.18 124.18

8 5th Flapwise Bending 157.39 154.75

9 2nd Chordwise Bending 178.07 177.16

10 3rd Torsion 186.27 186.27
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Table 9: First 10 Natural Frequencies for S-C Boundary Conditions (rad{sec)

# Mode Exact Present

1 1st Flapwise Bending 9.83 9.82

2 1st Torsion 31.04 31.04

3 2nd Flapwise Bending 31.87 31.69

4 3rd Flapwise Bending 66.50 65.70

5 1st Chordwise Bending 69.54 69.44

6 2nd Torsion 93.13 93.13

7 4th Flapwise Bending 113.72 111.60

8 3rd Torsion 155.22 155.23

9 5th Flapwise Bending 173.52 172.19

10 4th Torsion 217.31 217.34

Table 10: First 10 Natural Frequencies (Excluding Rigid Body Mode) for F-F Boundary Conditions (rad{sec)

# Mode Exact Present

1 1st Flapwise Bending 14.87 14.18

2 2nd Flapwise Bending 39.34 38.79

3 1st Torsion 62.09 62.09

4 3rd Flapwise Bending 77.12 75.32

5 1st Chordwise Bending 100.91 100.27

6 4th Flapwise Bending 127.49 123.5

7 2nd Torsion 124.18 124.18

8 3rd Torsion 186.27 186.27

9 5th Flapwise Bending 190.44 187.88

10 4th Torsion 248.36 248.50
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Table 11: Coupled Flap/Chord-Wise Natural Frequencies (Hz) for 45˝ Pretwisted Beam

Mode # Experiment Carnegie (1959) Present % Difference

1 59.0 62.1 5.25

2 290.0 305.3 5.28

3 920.0 943.8 2.59

4 1110.0 1200.0 8.12

beam. The beam properties used in the analysis are given in Table(1). As it is seen while the flapwise bending

modes are not as much sensitive to the tip deflections, coupled torsion-chordwise bending modes are quite

dependent on the beam tip deflections. It is noted that the current behavior is in a very good agreement

with those presented by Patil et al. (1999) or Patil and Althoff (2011).

4.2. Numerical Results for Pre-Twisted Beams

Comparison to Experimental Results. Coupled flap/chord-wise bending vibration of a pretwisted Timo-

shenko beam with a total twist of 45˝ has been experimentally considered by Carnegie (1959). The problem

is devised in such a way to decouple torsional vibration from flap/chord-wise bending vibration by choosing

a very high magnitude of torsional stiffness (i.e. GJ “ 8). The properties of this pretwisted cantilever is

listed as follows;

L “ 0.1524m, EI2 “ 2.26N.m2, EI3 “ 487.9N.m2, GA2 “ GA3 “ 3.076 ˆ 106, µ “ 0.3447kg{m.

Table (11) depicts a comparison of current approach with experimental results of Carnegie (1959) for the

first four natural coupled bending frequencies. A it is observed, there is a very good agreement between two

sets of results.

Non-Rotating Blade. A twisted cantilever blade sample, introduced by Rosen et al. (1987) is considered.

The blade has a zero twist at root and 40˝ twist at tip, other properties are as follows;

L “ 3.048m, E “ 70ˆ 109N{m, G “ 27ˆ 109N{m, ρ “ 2700kg{m3, A “ 0.0127667m2,

EI2 “ 2869.7N.m2, EI3 “ 57393N.m2, c2 “
2
3 , c3 “

5
8 , µ “ 34.47kg{m.

A comparison of Euler-Bernoulli theory and Timoshenko theory is carried out in Table (12) and also

compared to the numerical results of Banerjee (2004) which are obtained by the method of exact dynamic

stiffness matrix. The results based on the two numerical sets are in a very good concordance. For the present

case a very slight difference is seen between Timoshenko and Euler-Bernoulli theories and as expected Tim-

oshenko theory has predicted the natural frequencies slightly lower compared to the Euler-Bernoulli theory.

This negligible difference between two theories is attributed to the fact that the cross-sectional dimensions
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Table 12: Non-Rotating Twisted Blade Natural Frequencies (rad{sec)

Euler-Bernoulli Theory Timoshenko Theory

Mode # Banerjee (2004) Present Banerjee (2004) Present

1 3.4717 3.4719 3.4715 3.4718

2 13.3465 13.3413 13.340 13.3408

3 25.1707 25.1666 25.615 25.1653

4 56.3716 56.3673 56.363 56.3634

5 103.263 103.2529 103.20 103.2111

of this particular beam is considerably lower compared to the beam span which makes this sample blade

extremely slender and as a result the shear deformation does not have a significant impact on the natural

frequencies.

The Effects of Pretwist Angle and Shear Deformation. In order to show the effects of the overall twist and

shear deformations on the natural frequencies of pretwisted beams, the following example is introduced. A

cantilever beam with zero twist at root and a range of tip twist from zero to 180˝ is considered. The natural

frequencies are obtained based on either Timoshenko or Euler-Bernoulli theories. The properties used for

this example are as follows;

L “ 1m, E “ 9ˆ 1010N{m, G “ 3.46ˆ 1010N{m, ρ “ 7850kg{m3, a “ 0.2m, b “ 0.1m.

Based on the Eqs.(2.25) the shear correction values are obtained as; c2 “ 0.832942 and c3 “ 0.784442.

The first seven natural frequencies are depicted in Fig.(4). For the case of torsional modes the values for both

theories are very close while for bending dominant modes (either flapwise or chordwise) the predicted results

based on Timoshenko theory are lower compared to the Euler-Bernoulli theory and the difference between

two theories becomes more remarkable by increasing the frequency of the bending dominant modes. The

natural frequencies for both theories, qualitatively follow very similar trends with the increase of pretwist.

The 1st flapwise and chordwise bending frequencies as well as either 1st or 2nd torsional frequencies remains

relatively constant with the increase of the pretwist while the 2nd flapwise bending frequency is increasing

and the 2nd chordwise bending frequency is decreasing. The 3rd flapwise bending has an increasing trend

up to around 150˝ tip twist and then it starts to decrease slightly.

NREL 5 MW Reference Wind Turbine Rotor Blade. In order to show the applicability and versatility of

current approach the free vibration problem of a 5 MW baseline wind turbine rotor blade, introduced by
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Figure 5: Representative Airfoil Cross Section with Two Shear Webs (from Griffith and Ashwill (2011))

Jonkman et al. (2009) is studied. A basic structural concept of the design of NREL 5 MW blades is presented

by Resor (2013) (See Fig.(5)). The rotor blade has a non-uniform distribution of twist, mass, inertial and

stiffness properties along its span. Figs. (6) through (8) show rotor blade twist, mass and stiffness properties

respectively. These spanwise distributed properties which are obtained from Jonkman et al. (2009) are used

as the input for the beam cross-sectional stiffness (EA, GJ , EI3 and EI2) and inertial properties as well

as its twist value needed in every collocation points. Since no shear stiffness properties are reported in

Jonkman et al. (2009), an Euler-Bernoulli theory is used in this sample.

The first lowest 6 modes are calculated for the case of non-rotating (i.e. Ω “ 0 rpm) as well as rotating

(i.e. Ω “ 12.1 rpm) blade. It should be noted that the boundary conditions for a C-F rotating beam

are presented as; V |x1“0 “ 0; Ω |x1“0 “ Ω0; F |x1“L “ 0; M |x1“L “ 0. Current results which

are obtained using Chebyshev polynomials of maximum degree of 14 are compared in Table (13) to those

presented by Jeong et al. (2014) based on simulation with BModes, FAST and their in-house FEM code

with 17 four-noded cubic elements. A very good agreement is observed between current approach and other

numerical results. The beauty of present paradigm lies in the fact that by using continuous polynomials

with a relatively low degree, results with comparable accuracy as distinct from those of an FEM is obtained

for a real life engineering sample problem with non-uniform properties. Campbell diagram which shows the

variation of the first 6 modes with rotor blade rotational speed is depicted for this problem in Fig. (9) for

a range of rotational speed; Ω “ 0 „ 15 rad{s.

5. Conclusions

A Chebyshev collocation method for the eigenvalue analysis of the fully intrinsic equations of geomet-

rically exact beams has been presented. The intrinsic formulation which is free from any rotational or dis-

placement variables is desirable for numerical analysis due to its low order of nonlinearity which is quadratic

at most. The Chebyshev collocation method which is based on the Chebyshev points as the collocation
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Table 13: NREL 5 MW reference wind turbine blade natural frequencies (Hz)

Ω “ 0 rpm Ω “ 12.1 rpm

Mode # BModes˚ FAST˚ Jeong et al. (2014) Present BModes˚ FAST˚ Jeong et al. (2014) Present

1 0.68 0.69 0.694 0.692 0.73 0.74 0.744 0.741

2 1.10 1.12 1.085 1.098 1.11 1.12 1.095 1.104

3 1.94 2.00 1.997 2.001 2.00 2.06 2.036 2.057

4 4.00 4.12 4.019 4.099 4.02 4.14 4.036 4.117

5 4.43 4.64 4.479 4.672 4.48 4.69 4.535 4.723

6 5.77 5.61 5.610 5.609 5.78 5.61 5.613 5.611

˚ Taken from Jeong et al. (2014)
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points and the Chebyshev polynomials as the trial functions, contains no integration which is common in

the Galerkin’s and finite element methods. This make the Chebyshev collocation method computationally

efficient in comparison to the finite element-based methods. It is very simple to implement and exhibits a

very good rate of convergence in a relatively low order of polynomials. The accuracy and applicability of

the proposed method for the free vibration analysis is shown for a number of straight and pretwisted beam

samples and the obtained results are compared to the analytical, experimental as well as other numerical re-

sults. The versatility of the current approach has been shown by successfully tackling a real-life engineering

problem of a composite wind turbine rotor blade with non-uniformly distributed properties. The capabil-

ity of current approach to capture complicated engineering problems with comparable accuracy as distinct

from FEM, introduces a promising paradigm having the advantages such as; simplicity, good accuracy and

computational efficiency. All these desiring characteristics are obtained by merely employing continuous

functions of polynomial type with fairly low order which even adds more to the beauty and merits of the

presented approach. In summary, the characteristics that support the versatility of current approach are as

follows:

1) There are no simplifying assumptions in the kinematical description (hence the name Geometrically Ex-

act) and as a result 3D arbitrarily large deflections can be captured by this model.

3) Initial twist and curvatures are easily incorporated in this model without the need for any further theo-

retical developments.

4) The beam model is not restricted by constitutive equations and it is applicable to beam-like structures

made from either isotropic or anisotropic materials with arbitrary cross-sectional shapes.

5) It is suitable for applications with non-uniform distribution of properties.

6) It can be further extended for hybrid schemes such as Strong Formulation Finite Element Method for

more complex situations which require several beam assemblage.

Based on the above characteristics, current model can be directly applied in many real life engineering prob-

lems including aircraft wings, helicopter rotor blades, wind turbine rotor blades, space booms, moored and

towed cables, etc. Additionally, the potential of current model in adopting hybrid numerical schemes such

as Strong Formulation Finite Element Method makes it suitable for tackling more complicated problems in

which several beam assemblage are required.
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AppendixA. Boundary Conditions

Various boundary conditions associated with the free vibration of a non-rotating beam are depicted in

Table(A.14).

Table A.14: Various Boundary Conditions for Non-Rotating Beams

Type of Boundary Condition Figure Boundary Conditions Equations

Clamped-Free (C-F)
L V |x1“0 “ 0; Ω |x1“0 “ 0

F
ˇ

ˇ

x1“L “ 0; M
ˇ

ˇ

x1“L “ 0

Clamped-Clamped (C-C)
L V |x1“0 “ 0, Ω |x1“0 “ 0

V
ˇ

ˇ

x1“L “ 0, Ω
ˇ

ˇ

x1“L “ 0

Simply Supported-Simply Supported (S-S)
L V |x1“0 “ 0, M |x1“0 “ 0

V
ˇ

ˇ

x1“L “ 0, M
ˇ

ˇ

x1“L “ 0

Simply Supported-Clamped (S-C)
L V |x1“0 “ 0, Ω |x1“0 “ 0

V
ˇ

ˇ

x1“L “ 0, M
ˇ

ˇ

x1“L “ 0

Free-Free (F-F)
L F |x1“0 “ 0, M |x1“0 “ 0

F
ˇ

ˇ

x1“L “ 0, M
ˇ

ˇ

x1“L “ 0

AppendixB. Entries of A and B Matrices

A11 “ φF,1 ` rK0.φF ´ rF0.Z
T .φF

A12 “ ´rF0.T.φM

A13 “ ´rΩ0.µ∆.φV

A14 “ rΩ0.µrx̄.φΩ ` rL0.φΩ

A21 “ pre1 ` rγ0q .φF ´ĂM0.Z
T .φF ´ rF0.R.φF
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A22 “ φM,1 ` rK0.φM ´ĂM0.T.φM ´ rF0.Z.φM

A23 “ rL0.φV ´ rΩ0.µrx̄.φV ´ rV0.µ∆.φV

A24 “ rP0.φΩ ` rV0.µrx̄.φΩ ´ rΩ0.I.φΩ

A31 “ ´rV0.Z
T .φF ´ rΩ0.R.φF

A32 “ ´rV0.T.φM ´ rΩ0.Z.φM

A33 “ φV,1 ` rK0.φV

A34 “ pre1 ` rγ0q .φΩ

A41 “ ´rΩ0.Z
T .φF

A42 “ ´rΩ0.T.φM

A44 “ φΩ,1 ` rK0.φΩ

B13 “ µ∆.φV

B14 “ ´µrx̄.φΩ

B23 “ µrx̄.φV

B24 “ I.φΩ

B31 “ R.φF

B32 “ Z.φM

B41 “ ZT .φF

B42 “ T.φM

AppendixC. Chebyshev Polynomials

The Chebyshev polynomials are a sequence of orthogonal polynomials. The Chebyshev polynomial Tnpxq

of the first kind is a polynomial in x of degree n and is defined as (Mason and Handscomb (2003)):

Tnpxq “ cospnθq when x “ cos θ, ´1 ď x ď `1 (C.1)

Combining the trigonometric identity;

cospnθq ` cosppn´ 2qθq “ 2 cos θ cospn´ 1qθ (C.2)

with Eq.(C.1), the recurrence relation can be obtained as:

Tnpxq “ 2xTn´1pxq ´ Tn´2pxq, n “ 2, 3, . . . ,

where

T0pxq “ 1, T1pxq “ x

(C.3)
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The first few Chebyshev polynomials of the first kind are:

T2pxq “ 2x2 ´ 1

T3pxq “ 4x3 ´ 3x

T4pxq “ 8x4 ´ 8x2 ` 1

T5pxq “ 16x5 ´ 20x3 ` 5x

...

(C.4)

Using the weight function w “
`

1´ x2
˘´ 1

2 one can find that the Chebyshev polynomials of the first kind

satisfy the orthogonality condition:

ż 1

´1

TipxqTjpxq
?

1´ x2
“

$

’

’

’

’

&

’

’

’

’

%

0, i ‰ j

π

2
, i “ j ‰ 0

π, i “ j “ 0

(C.5)

It is noted that for any arbitrary range a ď x ď b the Chebyshev polynomials can be shifted by replacing

the independent variable x in Eq.(C.4) by:

x “
2

b´ a
x´

b` a

b´ a
(C.6)
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