Multi-loop Damping and Tracking Strategy Emulating a
Butterworth Pattern for Accurate Nanopositioning

Mohammed Altahérand Sumeet S. Aphdle

1 University of Aberdeen, Aberdeen, United Kingdotmohammed . altaher@abdn.ac.uk>
2 University of Aberdeen, Aberdeen, United Kingdots,. aphale@abdn. ac.uk>

Abstract. Control schemes for nanopositioners typically combine damping and
tracking. Due to the positioning performance requirements of the naitapo

ing system, it is desirable for the closed-loop frequency response ofttoposi-
tioner to mimic ripple-free pass-band low-pass characteristics. Eagferts are
available on simultaneous damping and tracking control emulating a Butterwo
filter design, but this technique only incorporates a single integrator fockitrg,
which is inadequate for error-free tracking of the triangular and rbkepsig-
nals typically used as input to nanopositioning systems. Double integrkirtgac
guarantees error-free tracking, but igfidult to implement due to phase-related
stability issues. In this work, a dual-loop integral tracking algorithm is psedo
Using simulation, it is shown that in the presence of hysteresis, the rdpos
dual-loop scheme delivers a more accurate positioning performaacetta tra-
ditional single-loop integral tracking strategy.
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1 Introduction

A nanopositioner is a mechatronic system designed to dednexise positioning with
nano scale accuracy. In precise position control, theraramey desired control ob-
jectives that aim to obtain a fast response with no overshodtaccurate set-point
tracking, a very high travel range and a high bandwidth. Althese objectives can
be improved by using a feedback controller; however, theptexity of the controller
varies depending on which control objective is most impurfé].

For systems that undergo parameter changes, such as a dhatgmping and
resonance frequency due to loading, control desidfesing good gain and phase mar-
gins are most suited. Nanopositioning systems exhibibuartypes of uncertainty due
to a change in sample mass, mechanical ageing, sensors taatbadrifts. Further-
more, many control schemes have a tendency to exacerbatégthdrequency out-
of-bandwidth unmodelled dynamics [13]. In order to overeothese issues, control
schemes have been employed to improve the performance opasitioners, which
must be robust under the presence of parameter uncersailmiaddition to resonance
and parameter uncertainty, nanopositioners are also dilayreonlinear &ects such as
hysteresis and creep due to the piezoelectric actuatarsutbgopularly employed in
these systems. Therefore, along with robust damping dtersaand high gain, high-
bandwidth tracking control is an essential component ofaberall control scheme.



For quite some time, damping and tracking controllers hasnlilesigned sequentially
(damping first, tracking later) and implemented in an inogter loop fashion. It has
been shown that the sequential design is sub-optimal instefrabtainable positioning
performance and simultaneous damping and therefore trgckintrol design has been
proposed [8]. Using the Butterworth filter, which has theiddde properties of a flat,
ripple-free passband and a quick roft-at high frequencies as a motivation, simultane-
ous damping and tracking schemes that emulate a Butterfiltetthave been proposed
in [9].

In nanopositioning applications, the typical scanningepatis a raster, generated
by employing a slow ramp along one axis and a fast triangleevadong the other.
Both the input signals therefore have non-zero velocity iargl impossible to track
them error-free with a single integral tracking controlisTpaper provides a strategy to
simultaneously design the damping and the multi-loop irackontrollers in order to
mimic the Butterworth filter pattern. Simulations are prese to support the proposed
theory.

The paper is organised as follows: section Il presents tieatimodel for axes on
the nanopositioning platform, as well as the nonlinear Bdlan model for the hystere-
sis exhibited by the actuator on this axis. The Butterwoltrfpattern for the proposed
multi-loop control strategy is presented in section IIim8lated open- and closed-loop,
time-domain and frequency-domain results are given ini@et¥, where the theoreti-
cal error analysis for the proposed control scheme is alssgmted. Robustness of the
control scheme in the presence of resonance frequencyishifso examined in this
section. Section V concludes the paper.

2 System Modelling

The dynamics of the nano axis has linear and nonlinear coemisnthus, the axis is
modelled as a linear second-order transfer function andue Béen model for hystere-
sis.

2.1 Linear Dynamics Model

The mechanical system of the nanopositioning platformaswshin Fig. 1 (a) [1], which
can be characterised and simplified by a spring-dampermyste shown in Fig. 1
(b) [10]. The axis of the nanopositioning platform is equagwith a capacitive sensor
for position measurement. The equation of motion for thieaw is given by:

Mpd + crd + (Ko + ke)d = Fu 1)

The system dynamics is regulated by the piezoelectric tmtdarce that moves the
nanopositioning stage. The movement of the piezo actustaranifested by expansion
and contraction in response to an input voltage stimulusisTlfrs) is the measured
force acting between the actuator and the mass of the piatfbt,) in the vertical
direction. The sttness of the actuator is denoted I{g) and the force byK,). A force



sensor is collocated with the actuator and measures thefdoeelFs. Equation 1 can
now be rewritten as follows:

Mpd + crd + k= Fu 2)

The relationship between the applied forég)(and the displacemedntis described as
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Fig. 1.a- A simple schematic of a piezo-stack actuated two-axis nanopositieridrelequivalent
mass-spring-damper model for one axis of the nanopositioner

in the following transfer function:
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This can be described in the frequency domain as a secord-system and the transfer
function can be written in the form (4):
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(4)

where( is the damping ratiow,, is the natural frequency ane? is the DC gain of
the platform. The investigated system is represented byirtbar dynamics transfer
function below; this is characterised by its first resonaatimand given by:

4.746x% 1C°
2 +9101s+ 2927+ 108’

where the value of the damping rati¢ Y is 0.0266 and the natural frequeny =
27 + wp, Where the value of thej is 2927« 10° ando? is 4.746x 1CP.
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Figure 2 shows that the modelled-based frequency respostha measurement-
based, which have been superimposed, are almost identical.
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Fig. 2. Comparison between the measured- and model-based magnitudeses$pothe x-axis
of the system in. The slight mismatch in the width of the resonant mode is dilne teensor
and amplifier dynamics, along with the nanopositioner axis dynamics intlinddne measured
response

2.2 Hysteresis Model

Nonlinear éfects are usually unmodelled and tracking is enforced tomigd the &ect
of nonlinearities on the actual trace. Hysteresis is a dyoamaracteristic present in
many physical systems such as piezo actuators. Hystenegiezo actuators can lead
to problems such as an increase in undesirable inaccurazscilation and instability
[14]. Therefore, any control strategy must be designed tcormmodate uncertain time-
varying nonlinear systems.

The hysteresis in this work has been described by the Boucridetel [3,11, 12].
The Bouc Wen describes the equation of motion for the nantpoisig platform using
its nonlinear diferential equations, as in equation (6):

{mx+b>'<+kx:k(du—h)} )

h = adlu-g|uh-yulh|
where h represents the nonlinear relation between the tag fapplied voltage) u and
the displacement x. The cfigients m, b, k and d denote th&ective mass, damping
codficient, mechanical dfhess andféective piezoelectric cdicients respectively. Itis
noted that hysteresis for the proposed system is rate-émdigmt, hence Bouc Wen has
been selected as opposed to other models because it indagendent and simple. Its
parametersy, 8, d andy, have been realised in MATLAB Simulink and determined so
the hysteresis loop produced by Bouc Wen can accuratelyhntfaécexperimental data
on the nanopositioning platform. The parameters of Bouc Werselected as follows
in (7):

{@=026,8=0005y = 0.00068d=2 um per volt} 7)



The proposed hysteresis model is investigated by applys@lt peak amplitude
sinusoidal signal of 10 Hz to the platform and the hysteregite is thereby generated.
Figure 3 illustrates the generated hysteresis in the opem-which is associated with
a single axis of the nanopositioning platform. In Fig. 3, anparison can be seen
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Fig. 3. Measured and modelled hysteresis loops show that the hysteresis acodehtely cap-
tures the hysteresis of the piezo actuator

between the experimental and the modelling result, whezexthxis represents the
input voltage and the y axis is the generated displacemenan be seen from Fig.

3 that the open-loop exhibits strong nonlinearity. A sysihibiting such hysteresis

is severely limited in its performance. The hysteresis Ipogvides a rate-independent
relationship between the applied voltage and the genedidpthcement.

3 Control Strategy

Nanopositioning systems are lightly damped and highlylyike exhibit mechanical
resonance when there is any sudden change in the voltagedapthe platform. Thus,
the use of damping controllers is necessary, the dampingngpdesonance and the
tracking controllers to treat nonlinearity. Consequentiinimising the error is consid-
ered the most important control object in the nanopositigr@ipplication. This section
will explain the traditional approach and the proposed i@drstrategy to control the
nanopositioning platform.

3.1 Traditional Control Strategy

The traditional single-loop feedback scheme is shown in &ign traditional track-
ing, nanopositioning tracking is achieved through the dssrgle-loop feedback. The
tracking controller commonly used in this scheme is eithfirst-order integral (1), or

a proportional integral (PI). Figure 4 also illustrates thethod by which the tracking
(Cty) and damping controller€g) are combined and used together. This traditional ap-
proach can improve the positioning accuracy of the nantiposig platform to some
extent. However, feedback control law is limited in comzimg) for hysteresis. Due to
stability issues, second-order controller in a singlepl@onot directly applicable.



Fig. 4. Schematic of the traditional dampiagacking control scheme

3.2 Proposed Control Strategy

An attempt to apply second-order integral tracking to theop@sitioning platform has
been proposed that will notfact the stability of the platform. In order to draw a com-
parison with a single-loop feedback controller, the midtp feedback control system
is described by the scheme shown in Fig. 5. The overall cbatgorithm in Fig. 5
consists of two controllers for tracking: the outer-loopdback uses a first-order in-
tegral tracking Ct;) with a transfer function of%(s)}, and the inner-loop feedback
uses a first-order integral trackingtg) with a transfer function o{%(s)}. The damped
SYStem GiRrc . (S)) using the IRC controller has the following transfer fuoot[2]:

G _ Kd*G
IRCsamped = 7K % (G + d)

(8)

Fig. 5. Schematic of the proposed control scheme with dual-loop traekiamping

The overall transfer function for the multi-loop schemeiiseg by:

Y@ _ Kr2Kr1kiG
R(s) Kr2KrikgG + 1 - dky — Gky + Kt1kgG

(9)



The transfer functions fakr1(s), Kr2(S) andKq(s) are listed in (10):

Kra() = 2

10
Kra(s) = 2 (10)
Ka(s) = &

The characteristics equation for the proposed multi-l@gziback scheme is specified
by:

S + (2wp — dKg)s" + (W5 — AL wpdky) S+

11
(—dew% - Kd0'2)32 + KTleO'25+ K'|'2K-|-:|_KdO'2 =0 ( )
The transfer function of the normalised fifth-order Butterth filter is given by:
1
12)

s + 3.2365" + 5.2365% + 5.23687 + 3.2365+ 1

Equation (12) can be rewritten for any given frequency byssititing s withm—sc and
this is given by:

5
We

= +3236% +5.236% + 52365 + 32365 +1

(13)

The characteristics equation for the Butterworth filterat given frequency is specified
by:

S + 3.236w.s" + 5.236w2S% + 5.236w3s + 3.236ws+

5
wC

(14)

In order to emulate the Butterworth pattern, the charasttesi equation for the
multi-loop control strategy must be equated to the charaties equation for the But-
terworth filter; this will determine the values for the fegtough term, damping gain
and tracking gains. Thus, (11) must be similar to (14). THeiong quantities are
obtained as a result of linking the two characteristics &qos:

24w — dKg = 3.236w;
a),z) - 2 wpdky = 5.236w2
—dKgw? — Kgo? = 52360 (19)

K'|';|_KdO'2 = 32364)21

2_,5
KTzKTleO' = W¢



Substituting the above quantities, the valuesgfcan be estimated by solving the fol-
lowing equation using the quadratics polynomial formula:

wp(4% - 1)
5.236

The value of the damping gain can be evaluated using theafiigpformula:

w? - 1.23605806wpwe + ( ) (16)

3.236% we * w2 — 2% ¢ * w3 — 5.236% w?
ka = — : (17)

The value of the feed-through term can be calculated usimépifowing equation:

2% wp— 3236 we

d= K (18)
The tracking gains can be valued as follows:
3.236% wd w32
le - W, T2 = W (19)

Using (5), (16) can now be solved and the damped natural érexyuv. can be deter-
mined as 77527+ 10° Hz. Having calculated the damped natural frequency, atmoth
variables can now be determined. Table 1 shows the valudsegbroposed scheme
parameters required to achieve the Butterworth pattern.

Table 1.Controller parameters for the simultaneous damping and tracking strategy

Parameter Value
d -2.4744
Ky 9770.2
kr1 2521.1
kro 2395.8

Further analysis to test the tracking performance of th@gsed control strategy
has been conducted, as will be clear in the following sestion

4 Simulation Results

In this section, the results are presented related to betfrélquency and time domains,
and error analysis is also conducted. Robustness of thegedontrol strategy is also
tested in this section.

4.1 Closed-loop Positioning Performance

The simulated frequency response of the proposed mulpidechnique is presented in
Fig. 6 and it can be seen that the Butterworth-based filtéepaihas been obtained. The
pattern is achieved as a result of the tuning method usedhle Tabased on the fifth-
order Butterworth filter. The gain margin GM6.4 dB and phase margin PN6OO® are



of optimal values for a robust stable system. An encouraffieguency response has
been achieved with regards to better tracking performasioe aipple is exhibited in the
passband or stopband and the closed-loop Butterwortrdtmsedwidth is observed at
1230 Hz. This bandwidth is of a fiicient level to cover the major harmonics that form
the triangle wave, resulting in accurate tracking perfarogeand reduced sensitivity to
Sensor noise.
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Fig. 6.Open-loop and closed-loop frequency response of the propodéeaop control strategy

Bandwidth in nanopositioning is defined as the point at whiehclosed-loop mag-
nitude response of a given system is exhibiting (at any gp@nt in the passband) a 0
dB gain, and this should not increase or decreaselbgB [7]. The Butterworth-based
magnitude response in Fig. 6 does not exceed 0 dB at any pakpbant; therefore,
this is a useful characteristic in achieving accurate iragkerformance of the nanopo-
sitioning platform.

The root locus has been investigated,; it is shown that thespafi the system are at
a significant distance from the imaginary axis. The Buttetivpattern is achieved as
the tracking gain reaches its design value where the polggihavith a @ angle will
be shifted further to the left of the imaginary axis. At thi@nt, the distribution of the
poles of the fifth-order Butterworth is achieved and the esglf the poles are’0+36°
and+72.

It is noted that stability is a critical concern when apptyifor example, a double-
integral tracking controller; applying a second-ordeegral without the use of the
multi-loop feedback scheme causes instability. Henceptbposed method preserves
stability while applying two first-order integral contreis to avoid phase profile. It
could be argued that adding another integrator woffletathe bandwidth and increase
the order of the system unnecessarily however, due to highlyinear hysteresis and
sensitivity to noise, double integration is warranted. rEnare two common types of
tuning method that provide compensation procedures,rditheiden the bandwidth or
reduce tracking error; this has been satisfied in this waok tire reasons given above,
the multi-loop feedback controller scheme is therefordgured.

In order to demonstrate théfectiveness of the proposed multi-path feedback con-
troller, a 30 and 40 Hz triangles have been chosen to be wlagitk a 20um peak, and
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simulations performed in MATLAB Simulink. Results for th@pen- and closed-loop
are presented in Fig. 7 (a, b). It can be seen that in the augmthe tracked signal
deviates from the linear because of the presence of hysedesis also clear from
Fig. 7(a, b), in the open-loop the tracked signal is expeirenoscillatory behaviour
because no damping controller is used. Neither resonanckysteretic behaviour is
observed in the linear part of the tracked signal, as is shiovig. 7 (a, b). The error
plot is drawn to illustrate the linear part of the trackednsily as is shown below. The
error signal is directly proportional to the frequency oé tihacked signal in a trade-
off relationship. Therefore, as the frequency increasese ikex reduction in the linear
part, which is an undesirable characteristics. Trackinthefhigh frequency signal is
preferable in nanopositioning due to high speed scanning.
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Fig. 7. The tracking performance of the platform for a triangle signal in the oped closed-loop:
a- 30; Hz b- 40 Hz

For the proposed dual-loop control strategy depicted in4~(b), the error is derived
as in the following transfer function:

R()(1 — dka(s) — G(s)ka(s) + Kr1(5)ka(5)G(s))
1 - dky(s) — G(9)ku(s) + Kr1(9)ka(5)G(8) + Kra(8)Kr1(5)Ka(8)G(S)

Ea(s) = (20)

For the system under consideration, the multi-loop comstiraltegy is type 1; in order to
ensure that the steady-state error is acceptable, stéatdyesror analysis is proposed.
For the proposed system, the Butterworth-based contridigign is considered; R(s) is
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for a ramp and the transfer functions are given by:

R(9 =3

Ka(s) =

wlE

Kri(s) = =3 21)

Kra(s) = €22

G(9) = ===

S+ wpStw}

d

In order to find the steady-state error, the final value theaseapplied as in (22):

€(c0) = lim sE(9) (22)
s—0

For any given second-order system, the steady-state @rrpatk a ramp using the
multi-loop scheme is given by:

—0’2 + O'ZKT]_ - dw%

_ = 23
el(steady state) o2+ 0’2KT1 n KTZKT10'2 ( )
Equation (23) can be minimised as in (24) below:
—dw% dw%J
€1 (steady-state) = = (24)

KroKr10? — KroKrpo?

In order to achieve accurate trackirdf3(s)|s-o = 1, it is assumead? = wp2 and then
(24) can be approximated as in the equation below:

d
€1 (steady-state) = KroKte (25)

In solving (25), zero steady-state error is almost achieed the system under con-
sideration, after substantiating the quantities as in &dbland when the values of
02 = 4.746x% 10° andw? = 2.927+ 10 are known, the error at steady-state can now be
estimated as e§)=0.041735.

In nanopositioning, the raster scan trajectory is achiéyedpplying triangle wave
in the x-axis and a ramp in the y-axis. The transient errourscat the turn-around area
of the triangular waveform at the end of each scan line, thepromoting scanning
speed (frequency) and amplitude of the driven signal. Ther ext the turn-around is
relatively large due to the high frequency components ofriaaegle wave and hystere-
sis nonlinearity. The appearance of the transient erronéstd system behaviour when
encountering disturbance on attempting to track the tteangve. The transient error
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can, however, be reduced by increasing the gain of the dirtrbue to the fact that
the controller design is simultaneously tuned for dampind &acking gains, chang-
ing the gain to reduce the transient error iffidult. Although the transient error at the
turn-around adds some distortion to the raster scan imaggiact on the raster scan is
limited because only the linear part is taken into account.

In order to demonstrate the strength aftéetiveness of the proposed control strat-
egy, a comparative error analysis of the multi-loop andlsithgop feedback schemes,
presented in [9], is examined in the following part.

In a single-loop feedback controller, the controller tatkestracking error (r(t)-y(t))
as input; this is called output feedback. In this case, thautaion of the control signal
is based on the plant output and is subject to large conttarecwhen the set-point
undergoes a sudden change. On the other hand, in the nuytféedback control, the
controller takes the error as input where the outer-loopndsfihe set point for the
inner-loop; this is called error feedback.

Tracking a triangle wave (high frequency components) inopasitioning gener-
ates significant positioning error at high frequencies, theddfect of hysteresis is also
significantly more common at high frequencies. The RMS epfot is plotted across
various frequency changes, as is clear in Fig. 8.
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Fig. 8. A comparison of RMS error across various frequency changes

The positioning error is substantially improved by using thulti-loop feedback
scheme in the presence of hysteresis; thus the use of tlamgdin nanopositioning ap-
plications is preferred. To conclude, the performance®fthilti-loop feedback scheme
is better than that of the single-loop feedback scheme.

Further analysis to test the robustness of the proposedat@ttategy has been
conducted, as will be clear in the following section.

4.2 Robustness to Resonance Frequency Variation and Distosince Rejection
Profiles

Robustness refers to the ability of the closed-loop systebetinsensitive to parameter
variation. Disturbance rejection is another importanffgrenance index in nanoposi-
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tioning applications that needs to be evaluated. This sefethe ability of a system to
be insensitive to exogenous disturbances. In this sedtimth, robustness to resonance
frequency changes and the disturbance rejection profitbese changed resonance fre-
quencies are evaluated. Developing an accurate dynamielrimoa positioning system
is a difficult task because of the complex mechanical structure ofidm@positioning
stage. In order to account for these uncertainties, degigmcontrol algorithm capable
of dealing with uncertainties is essential [4, 5].

In order to test the capability of the proposed scheme toranmadate resonant
frequency variation, a 5% and 10% reduction in the resonmanuency is considered.
Resonance frequency changes can occur due to loading dditiogositioners with dif-
ferent samples. The open-loop and closed-loop frequespprese for all these changes
is plotted in Fig. 9 (a).
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Fig. 9.a- Open-loop and closed-loop magnitude response for resonguoefrey changes b- Dis-
turbance rejection across various resonant frequency changes

The sensitivity of the proposed method is reflected in Fig)9I{ can be seen that a
5% or 10% reduction in resonance frequency does not haveifisant influence on the
closed-loop; therefore, the proposed control scheme igstaid resonance frequency
changes.

The disturbance rejection transfer function for the preglosystem is given by:

Y(S) _ G(9)(1 - Kqy(s)d)
N(s) 1-Ku(s)d+G(s)Ka(s) + G(5)Kr1()Kq(s) + G(s)Kr2(5)Kr2(S)Ka(9)

In order to test the ability of the controller to attenuatéeemal disturbances, the bode
plot for the transfer function in (26) is depicted in Fig. 9.(Brom the figure, it can be

seen that changing the resonant frequency by a 5% or 10%tieduloes not have a

significant influence on the disturbance rejection profilgn&icant disturbance rejec-

tion is provided at a relatively low frequency up to 1000 Hanatheless, the multi-loop

feedback scheme does not exhibit significant disturbarjeetien near the resonant
frequency. Due to multiple integrals in the multi-loop feadk controller scheme, the
steady-estate error is almost zero.

(26)
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5 Conclusion

In this paper, a hybrid damping and tracking strategy withaldoop tracking is pro-
posed and its performance tested via simulation. The dpegdlaontrol strategy em-
ulates the Butterworth pattern for maximally flat in-bandthi response. Simulation
results confirm theféectiveness of the proposed method in terms of high tracking a
curacy in the presence of hysteresis and robust stabilitiiérpresence of resonance
frequency changes.
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