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Abstract. Control schemes for nanopositioners typically combine damping and
tracking. Due to the positioning performance requirements of the nanoposition-
ing system, it is desirable for the closed-loop frequency response of the nanoposi-
tioner to mimic ripple-free pass-band low-pass characteristics. Earlier reports are
available on simultaneous damping and tracking control emulating a Butterworth
filter design, but this technique only incorporates a single integrator for tracking,
which is inadequate for error-free tracking of the triangular and ramp-like sig-
nals typically used as input to nanopositioning systems. Double integral tracking
guarantees error-free tracking, but is difficult to implement due to phase-related
stability issues. In this work, a dual-loop integral tracking algorithm is proposed.
Using simulation, it is shown that in the presence of hysteresis, the proposed
dual-loop scheme delivers a more accurate positioning performance than the tra-
ditional single-loop integral tracking strategy.
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1 Introduction

A nanopositioner is a mechatronic system designed to deliver precise positioning with
nano scale accuracy. In precise position control, there aremany desired control ob-
jectives that aim to obtain a fast response with no overshootand accurate set-point
tracking, a very high travel range and a high bandwidth. All of these objectives can
be improved by using a feedback controller; however, the complexity of the controller
varies depending on which control objective is most important [6].

For systems that undergo parameter changes, such as a changein damping and
resonance frequency due to loading, control designs offering good gain and phase mar-
gins are most suited. Nanopositioning systems exhibit various types of uncertainty due
to a change in sample mass, mechanical ageing, sensors and actuator drifts. Further-
more, many control schemes have a tendency to exacerbate thehigh frequency out-
of-bandwidth unmodelled dynamics [13]. In order to overcome these issues, control
schemes have been employed to improve the performance of nanopositioners, which
must be robust under the presence of parameter uncertainties. In addition to resonance
and parameter uncertainty, nanopositioners are also marred by nonlinear effects such as
hysteresis and creep due to the piezoelectric actuators that are popularly employed in
these systems. Therefore, along with robust damping controllers and high gain, high-
bandwidth tracking control is an essential component of theoverall control scheme.
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For quite some time, damping and tracking controllers have been designed sequentially
(damping first, tracking later) and implemented in an inner-outer loop fashion. It has
been shown that the sequential design is sub-optimal in terms of obtainable positioning
performance and simultaneous damping and therefore tracking control design has been
proposed [8]. Using the Butterworth filter, which has the desirable properties of a flat,
ripple-free passband and a quick roll-off at high frequencies as a motivation, simultane-
ous damping and tracking schemes that emulate a Butterworthfilter have been proposed
in [9].

In nanopositioning applications, the typical scanning pattern is a raster, generated
by employing a slow ramp along one axis and a fast triangle wave along the other.
Both the input signals therefore have non-zero velocity andit is impossible to track
them error-free with a single integral tracking control. This paper provides a strategy to
simultaneously design the damping and the multi-loop tracking controllers in order to
mimic the Butterworth filter pattern. Simulations are presented to support the proposed
theory.

The paper is organised as follows: section II presents the linear model for axes on
the nanopositioning platform, as well as the nonlinear Bouc-Wen model for the hystere-
sis exhibited by the actuator on this axis. The Butterworth filter pattern for the proposed
multi-loop control strategy is presented in section III. Simulated open- and closed-loop,
time-domain and frequency-domain results are given in Section IV, where the theoreti-
cal error analysis for the proposed control scheme is also presented. Robustness of the
control scheme in the presence of resonance frequency shiftis also examined in this
section. Section V concludes the paper.

2 System Modelling

The dynamics of the nano axis has linear and nonlinear components; thus, the axis is
modelled as a linear second-order transfer function and a Bouc Wen model for hystere-
sis.

2.1 Linear Dynamics Model

The mechanical system of the nanopositioning platform is shown in Fig. 1 (a) [1], which
can be characterised and simplified by a spring-damper system, as shown in Fig. 1
(b) [10]. The axis of the nanopositioning platform is equipped with a capacitive sensor
for position measurement. The equation of motion for this system is given by:

Mpd̈ + c f ḋ + (Ka + k f )d = Fa (1)

The system dynamics is regulated by the piezoelectric actuator force that moves the
nanopositioning stage. The movement of the piezo actuatorsis manifested by expansion
and contraction in response to an input voltage stimulus. Thus, (Fs) is the measured
force acting between the actuator and the mass of the platform (Mp) in the vertical
direction. The stiffness of the actuator is denoted by (Ka) and the force by (Fa). A force
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sensor is collocated with the actuator and measures the loadforce Fs. Equation 1 can
now be rewritten as follows:

Mpd̈ + c f ḋ + k = Fa (2)

The relationship between the applied force (Fa) and the displacementd is described as

(a) (b)

Fig. 1.a- A simple schematic of a piezo-stack actuated two-axis nanopositioner; b- The equivalent
mass-spring-damper model for one axis of the nanopositioner

in the following transfer function:

GdFa (s) =
d
Fa
=

1
Mps2 + c f s + k

(3)

This can be described in the frequency domain as a second-order system and the transfer
function can be written in the form (4):

G(s) =
σ2

s2 + 2ζωps + ω2
p
, (4)

whereζ is the damping ratio,ωp is the natural frequency andσ2 is the DC gain of
the platform. The investigated system is represented by thelinear dynamics transfer
function below; this is characterised by its first resonant mode and given by:

G(s) =
4.746∗ 108

s2 + 910.1s + 2.927∗ 108
, (5)

where the value of the damping ratio (ζ ) is 0.0266 and the natural frequencyfn =
2π ∗ ωp, where the value of theω2

p is 2.927∗ 108 andσ2 is 4.746∗ 108.
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Figure 2 shows that the modelled-based frequency response and the measurement-
based, which have been superimposed, are almost identical.
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Fig. 2. Comparison between the measured- and model-based magnitude response for the x-axis
of the system in. The slight mismatch in the width of the resonant mode is due tothe sensor
and amplifier dynamics, along with the nanopositioner axis dynamics included in the measured
response

2.2 Hysteresis Model

Nonlinear effects are usually unmodelled and tracking is enforced to minimise the effect
of nonlinearities on the actual trace. Hysteresis is a dynamic characteristic present in
many physical systems such as piezo actuators. Hysteresis in piezo actuators can lead
to problems such as an increase in undesirable inaccuracy oroscillation and instability
[14]. Therefore, any control strategy must be designed to accommodate uncertain time-
varying nonlinear systems.

The hysteresis in this work has been described by the Bouc Wenmodel [3, 11, 12].
The Bouc Wen describes the equation of motion for the nanopositioning platform using
its nonlinear differential equations, as in equation (6):

{

mẍ + bẋ + kx = k(du − h)
ḣ = αdu̇ − β |u̇| h − γu̇ |h|

}

(6)

where h represents the nonlinear relation between the lag force (applied voltage) u and
the displacement x. The coefficients m, b, k and d denote the effective mass, damping
coefficient, mechanical stiffness and effective piezoelectric coefficients respectively. It is
noted that hysteresis for the proposed system is rate-independent, hence Bouc Wen has
been selected as opposed to other models because it is rate-independent and simple. Its
parameters,α, β, d andγ, have been realised in MATLAB Simulink and determined so
the hysteresis loop produced by Bouc Wen can accurately match the experimental data
on the nanopositioning platform. The parameters of Bouc Wenare selected as follows
in (7):

{

α = 0.26, β = 0.005, γ = 0.00068,d=2 µm per volt
}

(7)
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The proposed hysteresis model is investigated by applying a50 volt peak amplitude
sinusoidal signal of 10 Hz to the platform and the hysteresiscycle is thereby generated.
Figure 3 illustrates the generated hysteresis in the open-loop, which is associated with
a single axis of the nanopositioning platform. In Fig. 3, a comparison can be seen
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Fig. 3. Measured and modelled hysteresis loops show that the hysteresis modelaccurately cap-
tures the hysteresis of the piezo actuator

between the experimental and the modelling result, where the x-axis represents the
input voltage and the y axis is the generated displacement. It can be seen from Fig.
3 that the open-loop exhibits strong nonlinearity. A systemexhibiting such hysteresis
is severely limited in its performance. The hysteresis loopprovides a rate-independent
relationship between the applied voltage and the generateddisplacement.

3 Control Strategy

Nanopositioning systems are lightly damped and highly likely to exhibit mechanical
resonance when there is any sudden change in the voltage applied to the platform. Thus,
the use of damping controllers is necessary, the damping to damp resonance and the
tracking controllers to treat nonlinearity. Consequently, minimising the error is consid-
ered the most important control object in the nanopositioning application. This section
will explain the traditional approach and the proposed control strategy to control the
nanopositioning platform.

3.1 Traditional Control Strategy

The traditional single-loop feedback scheme is shown in Fig. 4. In traditional track-
ing, nanopositioning tracking is achieved through the use of single-loop feedback. The
tracking controller commonly used in this scheme is either afirst-order integral (I), or
a proportional integral (PI). Figure 4 also illustrates themethod by which the tracking
(Ct1) and damping controllers (Cd) are combined and used together. This traditional ap-
proach can improve the positioning accuracy of the nanopositioning platform to some
extent. However, feedback control law is limited in compensating for hysteresis. Due to
stability issues, second-order controller in a single-loop is not directly applicable.
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Fig. 4.Schematic of the traditional damping+tracking control scheme

3.2 Proposed Control Strategy

An attempt to apply second-order integral tracking to the nanopositioning platform has
been proposed that will not affect the stability of the platform. In order to draw a com-
parison with a single-loop feedback controller, the multi-loop feedback control system
is described by the scheme shown in Fig. 5. The overall control algorithm in Fig. 5
consists of two controllers for tracking: the outer-loop feedback uses a first-order in-
tegral tracking (Ct1) with a transfer function of{KT2(s)

s }, and the inner-loop feedback
uses a first-order integral tracking (Ct2) with a transfer function of{KT1(s)

s }. The damped
system (GIRCdamped (s)) using the IRC controller has the following transfer function [2]:

GIRCdamped =
Kd ∗G

1− Kd ∗ (G + d)
(8)
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Fig. 5. Schematic of the proposed control scheme with dual-loop tracking+damping

The overall transfer function for the multi-loop scheme is given by:

Y(s)
R(s)

=
KT2KT1kdG

KT2KT1kdG + 1− dkd −Gkd + KT1kdG
(9)



7

The transfer functions forKT1(s), KT2(s) andKd(s) are listed in (10):
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(10)

The characteristics equation for the proposed multi-loop feedback scheme is specified
by:

s5 + (2ζωp − dKd)s4 + (ω2
p − 2ζωpdkd)s3+

(−dKdω
2
p − Kdσ

2)s2 + KT1Kdσ
2s + KT2KT1Kdσ

2 = 0
(11)

The transfer function of the normalised fifth-order Butterworth filter is given by:

1
s5 + 3.236s4 + 5.236s3 + 5.236s2 + 3.236s + 1

(12)

Equation (12) can be rewritten for any given frequency by substituting s with s
ωc

and
this is given by:

ω5
c

s5

ω5
c
+ 3.236s4

ω4
c
+ 5.236s3

ω3
c
+ 5.236s2

ω2
c
+ 3.236 s

ωc
+ 1

(13)

The characteristics equation for the Butterworth filter at any given frequency is specified
by:

s5 + 3.236ωcs4 + 5.236ω2
c s3 + 5.236ω3

c s2 + 3.236ω4
c s+

ω5
c

(14)

In order to emulate the Butterworth pattern, the characteristics equation for the
multi-loop control strategy must be equated to the characteristics equation for the But-
terworth filter; this will determine the values for the feed-through term, damping gain
and tracking gains. Thus, (11) must be similar to (14). The following quantities are
obtained as a result of linking the two characteristics equations:
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KT1Kdσ
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Substituting the above quantities, the value ofωc can be estimated by solving the fol-
lowing equation using the quadratics polynomial formula:

ω2
c − 1.23605806ζωpωc + (

ω2
p(4ζ2 − 1)

5.236
) (16)

The value of the damping gain can be evaluated using the following formula:

kd =
3.236∗ ωc ∗ ω

2
p − 2 ∗ ζ ∗ ω3

p − 5.236∗ ω3
c

σ2
(17)

The value of the feed-through term can be calculated using the following equation:

d =
2 ∗ ζ ∗ ωp − 3.236∗ ωc

kd
(18)

The tracking gains can be valued as follows:

kT1 =
3.236∗ ω4

c

kd ∗ σ
2
, KT2 =

ω5
c

kT1 ∗ kd ∗ σ
2

(19)

Using (5), (16) can now be solved and the damped natural frequencyωc can be deter-
mined as 7.7527∗ 103 Hz. Having calculated the damped natural frequency, all other
variables can now be determined. Table 1 shows the values of the proposed scheme
parameters required to achieve the Butterworth pattern.

Table 1.Controller parameters for the simultaneous damping and tracking strategy

Parameter Value
d -2.4746
kd 9770.2
kT1 2521.1
kT2 2395.8

Further analysis to test the tracking performance of the proposed control strategy
has been conducted, as will be clear in the following sections.

4 Simulation Results

In this section, the results are presented related to both the frequency and time domains,
and error analysis is also conducted. Robustness of the proposed control strategy is also
tested in this section.

4.1 Closed-loop Positioning Performance

The simulated frequency response of the proposed multi-loop technique is presented in
Fig. 6 and it can be seen that the Butterworth-based filter pattern has been obtained. The
pattern is achieved as a result of the tuning method used in Table 1 based on the fifth-
order Butterworth filter. The gain margin GM=6.4 dB and phase margin PM=600◦ are
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of optimal values for a robust stable system. An encouragingfrequency response has
been achieved with regards to better tracking performance as no ripple is exhibited in the
passband or stopband and the closed-loop Butterworth-based bandwidth is observed at
1230 Hz. This bandwidth is of a sufficient level to cover the major harmonics that form
the triangle wave, resulting in accurate tracking performance and reduced sensitivity to
sensor noise.
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Fig. 6.Open-loop and closed-loop frequency response of the proposed multi-loop control strategy

Bandwidth in nanopositioning is defined as the point at whichthe closed-loop mag-
nitude response of a given system is exhibiting (at any givenpoint in the passband) a 0
dB gain, and this should not increase or decrease by±1 dB [7]. The Butterworth-based
magnitude response in Fig. 6 does not exceed 0 dB at any passband point; therefore,
this is a useful characteristic in achieving accurate tracking performance of the nanopo-
sitioning platform.

The root locus has been investigated; it is shown that the poles of the system are at
a significant distance from the imaginary axis. The Butterworth pattern is achieved as
the tracking gain reaches its design value where the pole at origin with a 0◦ angle will
be shifted further to the left of the imaginary axis. At this point, the distribution of the
poles of the fifth-order Butterworth is achieved and the angles of the poles are 0◦, ±36◦

and±72◦.
It is noted that stability is a critical concern when applying, for example, a double-

integral tracking controller; applying a second-order integral without the use of the
multi-loop feedback scheme causes instability. Hence, theproposed method preserves
stability while applying two first-order integral controllers to avoid phase profile. It
could be argued that adding another integrator would affect the bandwidth and increase
the order of the system unnecessarily however, due to highlynonlinear hysteresis and
sensitivity to noise, double integration is warranted. There are two common types of
tuning method that provide compensation procedures, either to widen the bandwidth or
reduce tracking error; this has been satisfied in this work. For the reasons given above,
the multi-loop feedback controller scheme is therefore preferred.

In order to demonstrate the effectiveness of the proposed multi-path feedback con-
troller, a 30 and 40 Hz triangles have been chosen to be tracked with a 20µm peak, and
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simulations performed in MATLAB Simulink. Results for the open- and closed-loop
are presented in Fig. 7 (a, b). It can be seen that in the open-loop the tracked signal
deviates from the linear because of the presence of hysteresis. As is also clear from
Fig. 7(a, b), in the open-loop the tracked signal is experiencing oscillatory behaviour
because no damping controller is used. Neither resonance nor hysteretic behaviour is
observed in the linear part of the tracked signal, as is shownin Fig. 7 (a, b). The error
plot is drawn to illustrate the linear part of the tracked signal, as is shown below. The
error signal is directly proportional to the frequency of the tracked signal in a trade-
off relationship. Therefore, as the frequency increases, there is a reduction in the linear
part, which is an undesirable characteristics. Tracking ofthe high frequency signal is
preferable in nanopositioning due to high speed scanning.
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Fig. 7.The tracking performance of the platform for a triangle signal in the open- and closed-loop:
a- 30; Hz b- 40 Hz

For the proposed dual-loop control strategy depicted in Fig. 4 (b), the error is derived
as in the following transfer function:

E1(s) =
R(s)(1− dkd(s) −G(s)kd(s) + KT1(s)kd(s)G(s))

1− dkd(s) −G(s)kd(s) + KT1(s)kd(s)G(s) + KT2(s)KT1(s)Kd(s)G(s)
(20)

For the system under consideration, the multi-loop controlstrategy is type 1; in order to
ensure that the steady-state error is acceptable, steady-state error analysis is proposed.
For the proposed system, the Butterworth-based controllerdesign is considered; R(s) is
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for a ramp and the transfer functions are given by:























































































































R(s) = 1
s2

Kd(s) = kd
s

KT1(s) = KT1
s

KT2(s) = KT2
s

G(s) = σ2

s2+2ζωp s+ω2
p

d























































































































(21)

In order to find the steady-state error, the final value theorem is applied as in (22):

e(∞) = lim
s→0

sE(s) (22)

For any given second-order system, the steady-state error to track a ramp using the
multi-loop scheme is given by:

e1(steady−state) =
−σ2 + σ2KT1 − dω2

p

−σ2 + σ2KT1 + KT2KT1σ
2

(23)

Equation (23) can be minimised as in (24) below:

e1(steady−state) =
−dω2

p

KT2KT1σ
2
≡

dω2
p

KT2KT1σ
2

(24)

In order to achieve accurate tracking,∀G(s)|s=0 = 1, it is assumedσ2 = wp
2 and then

(24) can be approximated as in the equation below:

e1(steady−state) =
d

KT2KT1
(25)

In solving (25), zero steady-state error is almost achieved. For the system under con-
sideration, after substantiating the quantities as in Table 1 and when the values of
σ2 = 4.746∗ 108 andω2

n = 2.927∗ 108 are known, the error at steady-state can now be
estimated as e(∞)=0.041735.

In nanopositioning, the raster scan trajectory is achievedby applying triangle wave
in the x-axis and a ramp in the y-axis. The transient error occurs at the turn-around area
of the triangular waveform at the end of each scan line, thereby promoting scanning
speed (frequency) and amplitude of the driven signal. The error at the turn-around is
relatively large due to the high frequency components of thetriangle wave and hystere-
sis nonlinearity. The appearance of the transient error is due to system behaviour when
encountering disturbance on attempting to track the triangle wave. The transient error
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can, however, be reduced by increasing the gain of the controller. Due to the fact that
the controller design is simultaneously tuned for damping and tracking gains, chang-
ing the gain to reduce the transient error is difficult. Although the transient error at the
turn-around adds some distortion to the raster scan image, its effect on the raster scan is
limited because only the linear part is taken into account.

In order to demonstrate the strength and effectiveness of the proposed control strat-
egy, a comparative error analysis of the multi-loop and single-loop feedback schemes,
presented in [9], is examined in the following part.

In a single-loop feedback controller, the controller takesthe tracking error (r(t)-y(t))
as input; this is called output feedback. In this case, the calculation of the control signal
is based on the plant output and is subject to large control actions when the set-point
undergoes a sudden change. On the other hand, in the multi-loop feedback control, the
controller takes the error as input where the outer-loop defines the set point for the
inner-loop; this is called error feedback.

Tracking a triangle wave (high frequency components) in nanopositioning gener-
ates significant positioning error at high frequencies, andthe effect of hysteresis is also
significantly more common at high frequencies. The RMS errorplot is plotted across
various frequency changes, as is clear in Fig. 8.
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Fig. 8. A comparison of RMS error across various frequency changes

The positioning error is substantially improved by using the multi-loop feedback
scheme in the presence of hysteresis; thus the use of this scheme in nanopositioning ap-
plications is preferred. To conclude, the performance of the multi-loop feedback scheme
is better than that of the single-loop feedback scheme.

Further analysis to test the robustness of the proposed control strategy has been
conducted, as will be clear in the following section.

4.2 Robustness to Resonance Frequency Variation and Disturbance Rejection
Profiles

Robustness refers to the ability of the closed-loop system to be insensitive to parameter
variation. Disturbance rejection is another important performance index in nanoposi-
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tioning applications that needs to be evaluated. This refers to the ability of a system to
be insensitive to exogenous disturbances. In this section,both robustness to resonance
frequency changes and the disturbance rejection profiles atthese changed resonance fre-
quencies are evaluated. Developing an accurate dynamic model in a positioning system
is a difficult task because of the complex mechanical structure of thenanopositioning
stage. In order to account for these uncertainties, designing a control algorithm capable
of dealing with uncertainties is essential [4,5].

In order to test the capability of the proposed scheme to accommodate resonant
frequency variation, a 5% and 10% reduction in the resonant frequency is considered.
Resonance frequency changes can occur due to loading of the nanopositioners with dif-
ferent samples. The open-loop and closed-loop frequency response for all these changes
is plotted in Fig. 9 (a).
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Fig. 9.a- Open-loop and closed-loop magnitude response for resonant frequency changes b- Dis-
turbance rejection across various resonant frequency changes

The sensitivity of the proposed method is reflected in Fig. 9 (a). It can be seen that a
5% or 10% reduction in resonance frequency does not have a significant influence on the
closed-loop; therefore, the proposed control scheme is robust to resonance frequency
changes.

The disturbance rejection transfer function for the proposed system is given by:

Y(s)
N(s)

=
G(s)(1− Kd(s)d)

1− Kd(s)d +G(s)Kd(s) +G(s)KT1(s)Kd(s) +G(s)KT2(s)KT2(s)Kd(s)
(26)

In order to test the ability of the controller to attenuate external disturbances, the bode
plot for the transfer function in (26) is depicted in Fig. 9 (b). From the figure, it can be
seen that changing the resonant frequency by a 5% or 10% reduction does not have a
significant influence on the disturbance rejection profile. Significant disturbance rejec-
tion is provided at a relatively low frequency up to 1000 Hz; nonetheless, the multi-loop
feedback scheme does not exhibit significant disturbance rejection near the resonant
frequency. Due to multiple integrals in the multi-loop feedback controller scheme, the
steady-estate error is almost zero.
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5 Conclusion

In this paper, a hybrid damping and tracking strategy with dual-loop tracking is pro-
posed and its performance tested via simulation. The developed control strategy em-
ulates the Butterworth pattern for maximally flat in-bandwidth response. Simulation
results confirm the effectiveness of the proposed method in terms of high tracking ac-
curacy in the presence of hysteresis and robust stability inthe presence of resonance
frequency changes.
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