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Abstract

Understanding the interactions among nodes in a complex network is
of great importance, since they disclose how these nodes are cooperatively
supporting the functioning of the network. Scientists have developed nu-
merous methods to uncover the underlying adjacent physical connectivity
based on measurements of functional quantities of the nodes states. Often,
the physical connectivity, the adjacency matrix, is available. Yet, little
is known about how this adjacent connectivity impacts on the “hidden”
flows being exchanged between any two arbitrary nodes, after travelling
longer non-adjacent paths. In this Letter, we show that hidden physical
flows in conservative flow networks, a quantity that is usually inaccessible
to measurements, can be determined by the interchange of physical flows
between any pair of adjacent nodes. Our approach applies to steady or
dynamic state of either linear or non-linear complex networks that can
be modelled by conservative flow networks, such as gas supply networks,
water supply networks and power grids.

1 Introduction

Research on complex networks [9, 8, 43, 7, 37, 35, 11, 32, 24, 17, 29, 5, 40,
39, 13, 28, 42] and their applications to real world problems [36, 29] have been
attracting the attention of many scientists. To understand large-scale behaviour
of complex networks, it is imperative to calculate the amount of physical flow
going from one node to another one, a quantity that we refer to in this work as
“hidden” flow, since this quantity is usually inaccessible to measurements.
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In this Letter, we avail from the flow tracing method, known in electrical en-
gineering [16, 31, 18, 19, 4, 15, 44, 2, 27, 30], to calculate the hidden flow between
any two nodes, by only requiring information about the adjacent flows between
any two connected nodes. This work provides a rigorous way to calculate hidden
flows, which in turn enables one to gauge the non-adjacent interactions among
nodes in a network, for networks whose non-adjacent nodes are far apart. The
applicability of the method is enormous since flow networks can be used as sim-
ple models of flow behaviour to many complex networks, such as transportation
networks, water supply networks and power grids. We extend the method to
provide an immediate picture of how nodes interact non–adjacently in non-linear
networks by constructing linear equivalent models to these networks.

Flow networks describe a system that exchanges physical flows. Physical
flows are usually recognised as the transference of a physical entity (such as the
electric charge, a liquid, a solid, a gas volume, cars, airplanes, air, etc) from one
node to another in a giving unit of time. But they can also be, in a more gen-
eral sense, probabilities or the information rate (in bits/s). In a flow network,
there are source nodes that input physical flows (a generator in a power grid,
for example) and sink nodes from which the physical flows leave the network (a
consumer in a power grid, for example). Flow networks can have several config-
urations, and for each configuration there are several scientific challenges. This
work deals with flow networks that are conservative (i.e., total inflow arriving
at a node is equal to total outflow leaving it) and whose rule of flow exchange
is linear, such as is the case of a direct current electric network. Moreover, the
edges carrying the flows are uncapacitated, allowing any arbitrary flow inten-
sity. A remarkable challenge in the area of flow networks is to trace the flow
between two non-adjacent nodes (or edges). In lieu of studying flows provided
by adjacent connections, tracing methods enable one to calculate the amount of
flow exchanged from one node (or edge) to another node (or edge), after travel-
ling through several different paths in the network, a quantity being referred in
this work as the “hidden” flow. This computationally doable complex task in
small flow networks becomes impractical in larger complex flow networks. The
present work reduces this complicated tracing mathematical process into a triv-
ial manipulation of the so called extended incidence matrix K that can be easily
calculated from information on the flows along the edges. We then demonstrate
that the hidden flows between any arbitrary pair of nodes can be calculated by
our result condensed in Eq. (14). This result, rigorously derived for directed
flow networks (preferential direction of flows) and to networks without closed
looping flows (where flows circle around a closed path loop) was also extended to
the treatment of networks whose flows are undirected and networks that present
closed loops. Finally, we also show how to extend this result to understand the
non-adjacent interactions between any pair of nodes in more general dynami-
cal networks, such as phase oscillator networks, whose behaviour can be well
represented by a conservative flow network.
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2 Flow Networks

A flow network is a digraph, G(V, E), where V and E are the sets of nodes and
edges, respectively. A flow network normally contains three types of nodes: (i)
the source node [e.g., node 1 or 2 in Fig. 1 (a)], which has a source injecting
flow into the network; (ii) the sink node [e.g., node 3 or 4 in Fig. 1 (a)], which
has a sink taking flow away from the network; (iii) the junction node [e.g., node
5 in Fig. 1 (a)], which distributes the flow. We define fij to be the adjacent
flow, or simply the flow which is the measurable flow coming from nodes i to j
through edge {i, j} ∈ E . fij = 0 if nodes i and j are not physically connected.
We begin our analysis with the conservative flow networks [1] satisfying: (i)
fij = −fji; (ii)

∑
j∈V fij = 0, where node i is a junction node; (iii) there

is no loop flow representing a closed path in a flow network, where a loop
flow is shown in Fig. 1 (b); (iv) every node must be connected to at least one
other node in the network. A path in a digraph G from node i to node j,
P (i, j) = i {i, i′} i′ {i′, i′′} · · · {j′, j} j, is an alternating sequence of distinct
nodes and edges in which the directions of all edges must coincide with their
original directions in G. The hidden flow, fi→j , is defined to be the summation
of the flows going from node i to j through all possible paths from node i to j.
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Figure 1: (colour online) (a) A flow network without loop flow. (b) A flow
network with loop flow. The black numbers in square brackets are labels of
nodes, the red numbers are adjacent flows, the blue lines with double filled
arrows are flow sources, the green lines with unfilled arrows are flow sinks, and
the black lines with single filled arrows are directed adjacent flows between
nodes.

Normally, we can measure or calculate the adjacent flows in a flow network,
but it is not easy to obtain the hidden flows, a quantity typically not accessi-
ble through measurements. We find the calculation of hidden flows based on
the information of adjacent flows, in a conservative flow network, by the “flow
tracing” method.
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Define the node-net exchanging flow at node i by

fi =

N∑
j=1

fij . (1)

If node i is a source node, we have fi > 0; we denote fi by fsi as the amount
of the source flow being injected into the network from a source at node i. We
set fsi = 0 if node i is a sink node or a junction node. If node i is a sink node
we have fi < 0; we denote f ti = −fi > 0 to indicate the amount of the sink flow
leaving the network from the sink at node i. We set f ti = 0 if node i is a source
node or a junction node.

Assume there is a positive flow from node i to node j, denoted by fij > 0.
We use foutij to indicate fij as an outflow from node i arriving at node j, and

f inij to represent fij as an inflow at node j coming from node i. Thus, fij =

foutij = f inij > 0. fij can be positive, negative or zero in a flow network. However,
we restrict any outflow or inflow at a node to be a non-negative number. This
means that, if fij < 0, we force foutij and f inij to be zeros. Analogously, fij < 0
means fji > 0, we have foutji > 0 to denote the outflow from node j to node i

and f inji > 0 to be the inflow at node i from node j.
Define the total inflow at node i by

f ini = fsi +
∑
fji>0

fji = fsi +

N∑
j=1

f inji , (2)

and the total outflow at node i by

fouti = f ti +
∑
fij>0

fij = f ti +

N∑
j=1

foutij . (3)

In a conservative flow network, the total inflow of a node is equal to its total
outflow, i.e., fouti = f ini . We assume fouti = f ini > 0, ∀i, meaning that each
node in a flow network must exchange flow with other nodes, i.e., no node is
isolated.

3 Flow tracing by proportional sharing principle

The proportional sharing principle (PSP) [25, 15] states that for an arbitrary
node, a, with m inflows and n outflows (Fig. 2) in a conservative flow network,
(i) the outflow on each outflow edge is proportionally fed by all inflows, and (ii)
by assuming that node i injects a flow f inia to node a, and node j takes a flow
foutaj out of node a, we have that the node-to-node hidden flow from node i to
node j via node a is calculated by

fi→j = f inia
foutaj

fouta

, (4)
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or by

fi→j = foutaj

f inia
f ina

. (5)

Equations (4) and (5) result in the same value of fi→j , since fouta = f ina .
Equation (4) represents the downstream flow tracing method, where we start
tracing the hidden flow from a source node i to a sink node j, by using the
percentage, foutaj /f

out
a , to indicate the percentage of f inia that goes to j. Equa-

tion (5) denotes the upstream flow tracing method, where we trace the flow from
a sink node j to a source node i, by knowing the proportion of foutaj is provided

by f inia .
The percentage foutaj /f

out
a in Eq. (4) and f inia /f

in
a in Eq. (5) are related to

the flows on edges. They are similar to the probability of jumping from a node
to one of its neighbours in a biased random walk process [33, 12, 23], where a
similar percentage is related to the weight of edges.

We only deal with the downstream flow tracing in the Letter and explain
the upstream flow tracing in the Supplementary Material.
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Figure 2: A node a with m inflows and n outflows.

Define the downstream coefficient at node a for the outflow foutaj by

κdaj =
foutaj

fouta

, (6)

to indicate the proportion of the outflow at edge {a, j} to the total outflow at
node a. Define the upstream coefficient at node a for the inflow f inia by

κuai =
f inia
f ina

, (7)

denoting the proportion of the inflow at edge {i, a} to the total inflow at node
a. Then the calculation of fi→j can be simply expressed by fi→j = f inia κ

d
aj or

fi→j = foutaj κ
u
ai.
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Define the sink proportion and source proportion at node a by

ιta =
f ta
fouta

and ιsa =
fsa
f ina

, (8)

respectively, where the sink proportion, ιta, indicates the proportion of the sink
flow to the total outflow at node a, and the source proportion, ιsa, indicates
the proportion of the source flow to the total inflow at node a. By defining
the sink proportion and source proportion, we are now able to calculate the
source-to-sink hidden flow from a source at node i to a sink at node j denoted
by fsi→tj . From Eq. (2), we know that fsi is a part of f ini , where fsi is the
source flow at node i. From Eq. (8), we know the proportion of fsi to f ini .
According to the PSP, we can then calculate the source-to-sink hidden flow by

fsi→tj =
fs
i

fin
i
fi→j

ft
j

fout
j

= ιsifi→jι
t
j .

It is possible to trace (calculate) the hidden flows from any arbitrary pair of
nodes in a flow network using either the downstream or the upstream approach.
However, all the paths connecting a pair of nodes must be considered. In partic-
ular, the hidden flow from two adjacent nodes will include the flow exchanged
along the adjacent connection and all the flows travelling along other longer
paths connecting these two adjacent nodes. Suppose one wants to calculate the
hidden flow fi→j from two non-adjacent nodes i and j, and there are two pos-
sible paths, P1(i, j) = i{i, k}{k, j}j and P2(i, j) = i{i, l}{l, g}{g, j}j, P1 with

length 2 and P2 with length 3. Each path produces a hidden flow, f
(1)
i→j and

f
(2)
i→j , respectively. The total hidden flow from i to j is thus calculated using

that fi→j = f
(1)
i→j + f

(2)
i→j , where f

(1)
i→j = f ini κdikκ

d
kj and f

(2)
i→j = f ini κdilκ

d
lgκ

d
gj .

This process is feasible when dealing with small flow networks, as illustrated in
the Supplementary Material, where we show how to trace hidden electric cur-
rent flows in a direct current (DC) electric network. But it becomes impractical
when dealing with large networks, for which the number of paths carrying flows
can grow exponentially fast with the size of the network. To circumvent this
challenging calculation, the use of the extended incidence matrix, K, proposed
in Refs. [44, 2, 27], is taken forward.

4 Flow tracing by extended incidence matrix

The downstream extended incidence matrix, K, in a flow network with N nodes
is an N ×N dimensional matrix, defined by

Kij =


−f inji /foutj if i 6= j, and fji > 0,

1 if i = j,

0 else.

(9)

Transform Eq (2) to f ini −
∑N

j=1 f
in
ji /f

out
j ·foutj = fsi . Considering f ini = fouti ,
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we have

fouti −
N∑
j=1

f inji /f
out
j · foutj = fsi . (10)

From Eqs. (9) and (10), we have

KFout = Fs, (11)

where Fout = [fout1 , fout2 , · · · , foutN ]T , and Fs = [fs1 , f
s
2 , · · · , fsN ]T . K is an

N × N square invertible matrix [44, 27, 30], thus, Fout = K−1Fs, implying
that,

fouti =

N∑
j=1

[
K−1

]
ij
fsj , (12)

[
K−1

]
ij

being an entry (ith row, jth column) of the matrix K−1. Equation (12)

indicates that the outflow of node i, fouti , is fed by every source fsj . More

specifically, K−1ij represents the proportion of the source inflow in the source
node j that goes to node i.

Let C = K−1 be the downstream contribution matrix. Considering ιsj =

fsj /f
in
j , we have

fouti =

N∑
j=1

Cijf
in
j ιsj . (13)

Knowing that the source-to-node hidden flow from source node j to node i is
given by fsj→i = ιsjfj→i, Eq. (13) thus implies that for a source node j with

ιsj 6= 0, Cijf
in
j represents the node-to-node hidden flow from node j to node i,

i.e., fj→i = Cijf
in
j . The tracing of flows from source to nodes, previously known

in the literature, only applied to source nodes. To extend it to any other general
situation, including the tracing of flows from and to edges, sinks and junction
nodes, we introduce an equivalence principle. We treat any sink or junction node
as a hypothetical source node, without altering the original network topology
and flows. If node j is a sink or junction node with a total inflow f inj > 0 and

ιsj = 0, we treat node j as a hypothetical source node with fsj = f inj > 0, where
the hypothetical source takes the place of all the edges injecting flows into j.
By this treatment, we can hypothetically treat node j as a source node with
ιsj = fsj /f

in
j = 1, in Eq. (13), such that the node-to-node hidden flow from node

j to node i can also be calculated by

fj→i = Cijf
in
j . (14)

Thus, from our analysis, Cij =
[
K−1

]
ij

is a donwstream contribution factor

indicating how much hidden flow goes from node j to i, i.e., fj→i = Cijf
in
j for

any pair of nodes.
Now, we show how non-adjacent hidden flows can be traced in conservative

flow networks. Notice for networks whose non-adjacency nodes are far apart
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from each other, the hidden flows can gauge how non-adjacent interactions
emerge in the studied system. Let i, j, m, n, p, q be different nodes in a conser-
vative flow network, where node i has a source, node j has a sink, nodes m, n are
connected by edge {m,n} with fmn > 0, and nodes p, q are connected by edge
{p, q} with fpq > 0. The non-adjacent interaction includes: (i) the node-to-node
hidden flow from node i to j is fi→j = Cjif

in
i ; (ii) the source-to-node hidden flow

from source node i to node j is fsi→j = ιsifi→j ; (iii) the node-to-sink hidden flow
from source node i to sink node j is fi→tj = fi→jι

t
j ; (iv) the source-to-sink hid-

den flow from node i to j is fsi→tj = ιsifi→jι
t
j ; (v) the node-to-edge hidden flow

from node i to edge {m,n} is fi→{m,n} = fi→m ·κdmn; (vi) the edge-to-node hid-
den flow from edge {m,n} to node j is f{m,n}→j = κunm·fn→j ; and (vii) the edge-

to-edge hidden flow from edge {p, q} to {m,n} is f{p,q}→{m,n} = κuqp ·fq→m ·κdmn.
To illustrate the calculation of these hidden flows, as well as the calculation of

the matrices involved in it, in the Supplementary Material we trace the flows in
an electric network using our downstream extended incidence matrix approach.

5 Extension to flow networks with closed loops
and with undirected flows

Loops: If the closed loop (or loops) is inside a larger network, one needs first
to identify the existence of a loop. A closed loop at the node i with a length
P exists in a network if [AP ]ii > 0, where [AP ]ii represents the term ii in the
power to P of the adjacency matrix of the network. The source node of the loop
is any node receiving input flow, and the sink node is the one containing an
edge with an outflow, and whose path length connecting it to the source node
is the longest.

We consider a network with 4 nodes, with a loop flow as in Fig. 1(b). Let us
call it network N . Denote the input flow as fs1 (N), the output flows as f t4(N)
and f t3(N), and the adjacent flows as f14(N), f43(N), f32(N), and f21(N). A
loop in a flow network is broken down into subnetworks in which the flows
are directed. Merging the flows of all subnetworks must preserve edge, source
and sink flows of the original network N . In Fig. 1(b), the loop is formed by
1{1, 4}{4, 3}{3, 2}{2, 1}1. To break up the loop, one firstly choose a source and
a sink node, where flows enter and leave the closed loop, respectively. Node 1 is
the only source node. The sink node to be chosen must be the one whose length
of a direct path connecting it to the source node is the longest one. We choose
node 3 as the sink node. Then, one needs to determine all the directed paths
connecting the source node (node 1) and to the sink node (node 3), and all the
directed paths connecting the sink to the source nodes. Among all paths, one
takes only the paths that have the same flow directions as the original network
N . These directed paths form the subnetworks whose net flow represents the
original network flow and from which the hidden flows are calculated.

We show, in Fig. 3, the subnetworks of the network in Fig. 1(b). Panel
(a1) represents a directed path and its flows from node 1 to node 3. Panels
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(a2) and (a3), with the same directed path subnetwork, show the directed paths
connecting nodes 3 to 1 . Notice that a negative source and sink, in nodes 1
and 3, respectively, in panel (a2), is equivalent to a positive sink and source
nodes, respectively, as represented in panel (a3). In panels (b1)-(b3), we show
another practical way to determine the break up of the network with a closed
loop. Once a loop, and a source and a sink nodes, are identified, we remove it
from the network. Panel (b1) is the subnetwork after the loop removal. The
closed loop is formed by merging the flows represented in panels (b2) and (b3),
and it has a constant flow of 1 unit. One restores the original network by adding
the subnetworks in panel (a1) and (a3), or by adding the subnetworks in panels
(b1), (b2), and (b3). Calculating hidden flows of the original network needs
to take into consideration of hidden flows in all subnetworks. One subnetwork
[panel (a1)], let us call it N1, is formed by the nodes 1, 3, and 4. Node 2 is
absent and, therefore, to preserve edge flows one is required to make fs1 (N1) =
fs1 +f21(N) and f t3(N1) = f t3 +f32(N). From this network, f1→4 = 5, fs1→t4 =
3, fs1→t3 = 2. The other network [panel (a2)], let us call it N2, is formed
by the nodes 1, 2, and 3, so node 4 is now absent and therefore, to preserve
edge flows we are required to make fs1 (N2) = fs1 + f41(N) = fs1 − f14(N) and
f t3(N2) = f t3 + f34(N) = f t3 − f43(N). These equations lead to fs1 (N2) < 0 and
f t3(N2) < 0, whose flows are indicated in panel (a2). The hidden flow from node
2 and 4 is zero, since no subnetworks contribute to a hidden flow from node 2
to 4.

Undirected flow networks: Similarly, our method can also be applied
to an undirected flow network if the network can be split into two independent
unidirectional networks. For example, under the assumption that all traffic
roads are bidirectional, we can separate the transportation network of a city
into two networks. One network includes all the left-hand roads and the other
one contains all the right-hand roads. Thus, both separated networks become
unidirectional networks.

Figure 3: (colour online) Illustrations of two approaches to break up a flow
network with a closed loop flow into smaller subnetworks with only directed
flows.
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6 Non-adjacent interaction in non-linear networks

Next, we extend our tracing hidden flow approach to study non-linear systems
by constructing linear model analogous to the non-linear networks. Let the
equation

ẋi = S(xi)−
N∑
j=1

Lij ·H(xi, xj) (15)

indicate a dynamic scheme describing the behaviour of N coupled nodes, where
xi is the dynamical variable of each node, S(xi) is the isolated dynamic function,
Lij is the element of the Laplacian matrix, and H(xi, xj) is an arbitrary coupled
dynamic function. We treat the system as a flow network by interpreting fi(t) =
S(xi) − ẋi as the node-net exchanging flow at node i. The value and sign of
fi(t) may change over time. If fi(t) > 0 (or fi(t) < 0), we treat node i as a
source (or sink) node at time t and the source (or sink) flow is fsi (t) = fi(t) (or
f ti (t) = −fi(t)). If fi(t) = 0, we treat node i as a junction node at time t. Let
fij(t) = LijH(xi, xj) be the adjacent flow from node i to node j. If fij(t) > 0,
we have foutij (t) > 0 as the outflow from node i and f inij (t) > 0 as the inflow at
node j at time t. If fij(t) < 0, we have foutji (t) > 0 as the outflow from node j

and f inji (t) > 0 as the inflow at node i at time t. By doing this interpretation, we
are constructing an equivalent linear conservative flow network that behaves in
the same way as the non-linear network described by Eq. (15). This enables us
to calculate the non-adjacent interactions in the equivalent linear flow network
which informs us about the non-adjacent interactions in the original non-linear
network.

We consider a revised Kuramoto model [20, 21, 22] as an example, which is
given by

θ̇i = ωi −K
N∑
j=1

Lij sin(θi − θj), (16)

where K is the coupling strength, Lij is the entry of the Laplacian matrix,
θi and ωi indicate the phase angle and natural frequency in a rotating frame,
respectively. In this rotating frame, θ̇i = θ̇j = 0, ∀i 6= j, when the oscillators
emerge into frequency synchronisation (FS) for a large enough K [34]. In the FS
state, all the node-net exchanging flows fi = ωi − θ̇i = ωi and all the adjacent
flows fij = KLij sin(θi − θj) are constants, since sin(θi − θj) are constants.

Let αij = |fij |/max{|fij | : ∀i, j} be a normalised variable in [0,1] in-
dicating the adjacent interaction strength between oscillator i and j, where
max{|fij | : ∀i, j} is the maximum of all absolute values of adjacent flows. Since
fij = −fji, we have αji = αij . Every hidden flow is traced by considering
that flows are directed. This implies that all the calculated hidden flows are
non-negative and at least one of fi→j and fj→i is 0. We let βij = βji =
max{fi→j , fj→i}/max{fi→j : ∀i, j} be the non-adjacent interaction strength
between oscillator i and j, where max{fi→j , fj→i} is the non-zero one between
fi→j and fj→i, and max{fi→j : ∀i, j} is the maximum of all hidden flows. This
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definition of the non-adjacent interaction strength allows us to compare αij and
βij for the same pair of nodes in a network.

Figure 4: (colour online) Comparison of adjacent interactions and non-adjacent
interactions in different networks described by the Kuramoto model after the
occurrence of frequency synchronisation. (a), (b) and (c) demonstrate the ad-
jacent interactions in ER network, WS network and BA network, respectively,
compared with the non-adjacent interactions shown in (d), (e) and (f) for these
networks. The numbers on axes are labels of nodes. The colours on maps
indicate the interacting strength between nodes.

We construct three types of networks with 25 nodes, namely the Erdös-Rényi
(ER) [9, 10], Watts-Strogatz (WS) [41] and Barabási-Albert (BA) models [3].
The dynamic behaviour of the nodes in these networks follows Eq. (16). Fig-
ure 4 shows the comparison of the adjacent interactions and the non-adjacent
interactions when the oscillators emerge into FS with a large enough K. Fig-
ures 4 (a), (b) and (c) show the adjacent interaction strengths, αij , for ER, WS
and BA networks, respectively. Figures 4 (d), (e) and (f) demonstrate the non-
adjacent interaction strengths, βij , for ER, WS and BA networks, respectively.
Figure 4 (d) exposes some hidden interactions that Fig. 4 (a) does not show to
exist in an ER network. By comparing Figs. 4 (b) and (e), we see that a ran-
domly rewired edge in a WS network not only produces interaction between the
two adjacent nodes connected by this edge, but also creates functional clusters
among nodes close to the two adjacent nodes. So, complex systems can in fact
be better connected than previously thought. We constructed the BA network
by assigning smaller labels to nodes with larger degrees. Both Figs. 4 (c) and
(f) illustrate the strong interactions among the nodes with large degrees (small
labels). Figure 4 (c) shows that the interactions between unconnected nodes
with small degrees (large labels) are weak or inexistent, though, such interac-
tions are revealed in Fig. 4 (f). Through this comparison, we understand that
two nodes in a network may strongly interact with each other even if they are
not connected by an edge.

Figure 5 shows the simulations results of the adjacent interaction strength
and non-adjacent interaction strength for these networks when FS is not present.
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Final results are taken by averaging the results of 100 time-points that are
uniformly chosen in the time scale [10,20], i.e., αij =

∑100
k αij(tk)/100 and

βij =
∑100

k βij(tk)/100, where αij(tk) and βij(tk) are the values of αij and
βij at the kth time-point. The dynamic behaviour of the oscillators in these
networks is described by the Kuramoto model by assigning a small coupling
strength, such that the oscillators are in an incoherent state.

Figure 5: (colour online) Comparison of adjacency interactions and non-
adjacency interactions in different types of networks described by the Kuramoto
model when frequency synchronisation is inexistent. (a), (b) and (c) demon-
strate the adjacent interaction strength in ER network, WS network and BA net-
work, respectively. (d), (e) and (f) show the non-adjacent interaction strength
for these networks. The numbers on axes are labels of nodes. The colour on
map indicates the interacting strength between nodes.

Comparing the results in Fig. 5 with that when FS is present, we find that
those pairs of nodes which are not interacting through hidden flows when FS
is not present, also present no evident non-adjacency interactions when FS is
present. This suggests that the existence of non-adjacent interaction between
a pair of nodes strongly depends on the network topological features of the
network rather than the coupling strength.

7 Conclusion

In this Letter, we introduced the proportional sharing principle and the extended
incidence matrix to calculate the hidden flows in flow networks, and further
extended this approach to trace the non-adjacent hidden flows in non-linear
complex systems which can analogously be represented by linear flow networks.
This allows us to understand the non-adjacency interactions among nodes either
under a steady state (e.g., when FS is present in the Kuramoto model) or a
dynamic state (e.g., when FS is not present in the Kuramoto model) in such
a complex system. Our study illustrated that the nodes in a network not only
interacts with their neighbours, but can also strongly influence those who are not
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directly connected to them. By comparing the results of the non-adjacent study
for the Kuramoto model when FS is present and that when FS is not present for
different topological networks, we concluded that the emergence of non-adjacent
interaction between a pair of nodes strongly depends on the topological features
of the networks rather than the coupling strength between nodes.

We have extended our analysis to flow networks that present closed loops
and for those that present undirected flows. The solution for these challenging
problems is to break the network into subnetworks that only contain directed
flows. The method can also be applied to weighted networks, as long as the
weighted network can be modelled as a conservative flow network.

This work opens up a new area of research into non-adjacent interactions in
complex networks, facilitating and enabling research that aims at unravelling
complex behaviour as a function of the network topology. There is also great
potential to link this work to other works in the area of complex networks, such
as the link prediction problem [26], and to the study of information and energy
transmission in complex networks [6, 14, 38]. These potential extentions will
further widen the applicability of the method in the real world. It is worth
mentioning that our work assumed at the outset that the adjacency matrix of
the system as well as the adjacency physical flows is known a priori. Therefore,
works such as those in Ref. [26] predicting the existence of a physical link should
be used prior to our method.
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