Uncovering hidden flows in physical networks

Chengwei Wang¹, Celso Grebogi¹ and Murilo S. Baptista¹

¹ Institute for Complex Systems and Mathematical Biology, University of Aberdeen, King's College, AB24 3UE Aberdeen, United Kingdom. 11th September 2017

Example of Flow Tracing in a DC Network 1

We build up a MATLAB model to simulate a direct current (DC) network shown in Fig. 1 to illustrate the flow tracing process. The flow quantity f is given by the electric current I in this model. Nodes 1 and 2 are two nodes with current sources where $I_1^s = 3A$ and $I_2^s = 5A$, respectively. The resistances of resistors are randomly chosen within the set of integer numbers [1,10], shown in Tab. 1. The sink flow leaving from the sink nodes 9 and 10 are measured by the current scopes as $I_9^t = 4.51$ A and $I_{10}^t = 3.49$ A. The current directions are shown in Fig. 2. Next, we show how to calculate the sourceto-sink hidden currents from the current source I_1^s and I_2^s to the sink I_9^t and I_{10}^t by different methods.

Figure 1: The MATLAB/Simulink model for a DC network with 10 nodes.

Resistor	R_{1-2}	R_{3-6}					
Resistance/ Ω	7	9	7	4	6	5	
Resistor	R_{4-7}	R_{5-8}	R_{6-9}	R_{7-9}	R_{7-10}	R_{8-10}	
Resistance/ Ω	1	3	2	2	3	8	

Figure 2: The current directions in the DC network shown in Fig. 1.

1.1 Using the Downstream Flow Tracing Method

As shown in Fig. 2, there are two paths from node 1 to node 9, which are $P_1(1,9) = 1 \{1,3\} 3 \{3,6\} 6 \{6,9\} 9$, and $P_2(1,9) = 1 \{1,4\} 4 \{4,7\} 7 \{7,9\} 9$.

Using the downstream flow tracing method, we calculate the current from node 1 to node 9 through the path $P_1(1,9)$ by

$$I_{1\to9}^{(1)} = I_1^{in} \frac{I_{13}^{out}}{I_1^{out}} \frac{I_{36}^{out}}{I_3^{out}} \frac{I_{69}^{out}}{I_6^{out}} = I_1^{in} \kappa_{13}^d \kappa_{36}^d \kappa_{69}^d, \tag{1}$$

and through the path $P_2(1,9)$ by

$$I_{1\to9}^{(2)} = I_1^{in} \frac{I_{14}^{out}}{I_1^{out}} \frac{I_{47}^{out}}{I_4^{out}} \frac{I_{79}^{out}}{I_7^{out}} = I_1^{in} \kappa_{14}^d \kappa_{47}^d \kappa_{79}^d.$$
(2)

Thus, the total node-to-node hidden current from node 1 to node 9 is

$$I_{1\to9} = I_{1\to9}^{(1)} + I_{1\to9}^{(2)}.$$
(3)

The source-to-sink hidden current is calculated by

$$I_{s1\to t9} = \iota_1^s \cdot I_{1\to 9} \cdot \iota_9^t. \tag{4}$$

By doing this type of calculation, we obtain $I_{s1\to t9} = 2.35$, $I_{s1\to t10} = 0.65$, $I_{s2\to t9} = 2.16$ and $I_{s2\to t10} = 2.84$.

1.2 Using the Upstream Flow Tracing Method

Using the upstream flow tracing method, we have

$$I_{1\to9}^{(1)} = I_9^{out} \frac{I_{69}^{in}}{I_9^{in}} \frac{I_{36}^{in}}{I_6^{in}} \frac{I_{13}^{in}}{I_3^{in}} = I_9^{out} \kappa_{96}^u \kappa_{63}^u \kappa_{31}^u,$$
(5)

and

$$I_{1\to9}^{(2)} = I_9^{out} \frac{I_{79}^{in}}{I_9^{in}} \frac{I_{47}^{in}}{I_7^{in}} \frac{I_{14}^{in}}{I_4^{in}} = I_9^{out} \kappa_{97}^u \kappa_{74}^u \kappa_{41}^u.$$
(6)

The node-to-node hidden current from node 1 to 9 is calculated by Eq. (3), and source-to-sink hidden current is calculated by Eq. (4).

Table 2 illustrates the results of flow tracing using the downstream flow tracing method and the upstream flow tracing method. The numbers in the following table indicate source-to-sink hidden currents. As we can see, the two methods imply the same results.

Table 2: Flow tracing in the DC network shown in Fig. 1, where nodes 1 and 2 are source nodes, and nodes 9 and 10 are sink nodes. Numbers in the table shows source-to-sink hidden flows.

Dov	vnstrea	am	Upstream				
Node	9 10		Node	9	10		
1	2.35	0.65	1	2.35	0.65		
2	2.16	2.84	2	2.16	2.84		

1.3 Using the Downstream Extended Incidence Matrix

From the MATLAB simulation results of the DC network, the downstream extended incidence matrix, \mathbf{K} , is

	[1	-0.0378	0	0	0	0	0	0	0	[0	
	0	1	0	0	0	0	0	0	0	0	
	-0.4571	0	1	0	0	0	0	0	0	0	
	-0.5429	-0.6722	0	1	0	0	0	0	0	0	
V –	0	-0.2900	0	0	1	0	0	0	0	0	
$\mathbf{r} =$	0	0	-1	0	0	1	0	0	0	0	1
	0	0	0	-1	0	0	1	0	0	0	
	0	0	0	0	-1	0	0	1	0	0	
	0	0	0	0	0	-1	-0.6000	0	1	0	
	L 0	0	0	0	0	0	-0.4000	-1	0	1	

and the downstream contribution matrix, C, is

$$\mathbf{C} = \begin{bmatrix} 1 & 0.0378 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.4571 & 0.0173 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.5429 & 0.6927 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.2900 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0.4571 & 0.0173 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0.5429 & 0.6927 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0.2900 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0.2900 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0.7828 & 0.4329 & 1 & 0.6000 & 0 & 1 & 0.6000 & 0 & 1 & 0 \\ 0.2172 & 0.5671 & 0 & 0.4000 & 1 & 0 & 0.4000 & 1 & 0 & 1 \end{bmatrix}$$

We also obtain, from the experiments, that $f_1^{in} = 3.1891$, $f_2^{in} = 5$, $\iota_1^s = 0.9407$, $\iota_2^s = 1$, $\iota_9^t = 1$ and $\iota_{10}^t = 1$. Thus, we calculate $f_{sj \to ti}$ for j = 1, 2 and i = 9, 10 by $f_{s1 \to t9} = \iota_9^t \cdot C_{91} f_1^{in} \cdot \iota_1^s = 2.35$, $f_{s2 \to t9} = \iota_9^t \cdot C_{92} f_2^{in} \cdot \iota_2^s = 2.16$, $f_{s1 \to t10} = \iota_{10}^t \cdot C_{10} \cdot I_1^{fin} \cdot \iota_1^s = 0.65$, and $f_{s2 \to t10} = \iota_{10}^t \cdot C_{10} \cdot I_2^{fin} \cdot \iota_2^s = 2.84$. We note that all these numbers coincide with that in Tab. 2.

1.4 Using the Upstream Extended Incidence Matrix

Define the upstream extended incidence matrix, \mathbf{K}' , by

$$K'_{ij} = \begin{cases} -f_{ij}^{out}/f_j^{in} & \text{if } i \neq j, \text{ and } f_{ij} > 0, \\ 1 & \text{if } i = j, \\ 0 & \text{else.} \end{cases}$$
(7)

We know $f_i^{out} = \sum_{j=1}^N f_{ij}^{out} + f_i^t$, implying, $f_i^{out} - \sum_{j=1}^N f_{ij}^{out} / f_j^{in} \cdot f_j^{in} = f_i^t$. Since $f_i^{out} = f_i^{in}$, we have

$$f_{i}^{in} - \sum_{j=1}^{N} f_{ij}^{out} / f_{j}^{in} \cdot f_{j}^{in} = f_{i}^{t}.$$
(8)

Equations (7) and (8) imply

$$\mathbf{K}'\mathbf{F}^{\mathbf{in}} = \mathbf{F}^{\mathbf{t}},\tag{9}$$

where $\mathbf{F^{in}} = [f_1^{in}, f_2^{in}, \cdots, f_N^{in}]^T$ and $\mathbf{F^t} = [f_1^t, f_2^t, \cdots, f_N^t]^T$. From $\mathbf{F^{in}} = \mathbf{K'^{-1}F^t}$, we have

$$f_i^{in} = \sum_{j=1}^{N} \left[\mathbf{K}'^{-1} \right]_{ij} f_j^t$$

$$= \sum_{j=1}^{N} \left[\mathbf{K}'^{-1} \right]_{ij} f_j^{out} \cdot \iota_j^t.$$
(10)

Let $\mathbf{C}' = \mathbf{K}'^{-1}$ be the upstream contribution matrix whose element, $C_{ij} = [\mathbf{K}'^{-1}]_{ij}$, is a upstream contribution factor indicating how much proportion of the total outflow at node j is coming from node *i*, i.e., $f_{i \to j} = C'_{ij} f_j^{out}$. Then, $f_{si \to tj} = \iota_i^s \cdot C'_{ij} f_j^{out} \cdot \iota_j^t$. The upstream extended incidence matrix, **K**', of the DC network is

$$\mathbf{K} = \begin{bmatrix} 1 & 0 & -1 & -0.3400 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -0.0593 & 1 & 0 & -0.6600 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -0.3230 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -0.6770 & -0.5842 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -0.4158 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

and the upstream contribution matrix, \mathbf{C}' , is

	[1	0	1	0.3400	0	1	0.3400	0	0.5532	0.1986
$\mathbf{C}' =$	0.0593	1	0.0593	0.6802	1	0.0593	0.6802	1	0.4796	0.8132
	0	0	1	0	0	1	0	0	0.3230	0
	0	0	0	1	0	0	1	0	0.6770	0.5842
	0	0	0	0	1	0	0	1	0	0.4158
	0	0	0	0	0	1	0	0	0.3230	0
	0	0	0	0	0	0	1	0	0.6770	0.5842
	0	0	0	0	0	0	0	1	0	0.4158
	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	0	1

We also obtain $f_9^{out} = 4.5132$, $f_{10}^{out} = 3.4868$, $\iota_1^s = 0.9407$, $\iota_2^s = 1$, $\iota_9^t = 1$ and $\iota_{10}^t = 1$. Then, $f_{s1 \to t9} = \iota_1^s \cdot C'_{19} f_9^{out} \cdot \iota_9^t = 2.35$, $f_{s2 \to t9} = \iota_2^s \cdot C'_{29} f_9^{out} \cdot \iota_9^t = 2.16$, $f_{s1 \to t10} = \iota_1^s \cdot C'_{1\ 10} f_{10}^{out} \cdot \iota_{10}^t = 0.65$, and $f_{s2 \to t10} = \iota_2^s \cdot C'_{2\ 10} f_{10}^{out} \cdot \iota_{10}^t = 2.84$. The results are the same as that in Tab. 2.