Supplementary Material for

Uncovering hidden flows in physical networks

Chengwei Wang ${ }^{1}$, Celso Grebogi ${ }^{1}$ and Murilo S. Baptista ${ }^{1}$
${ }^{1}$ Institute for Complex Systems and Mathematical Biology, University of Aberdeen, King's College, AB24 3UE Aberdeen, United Kingdom.
11th September 2017

1 Example of Flow Tracing in a DC Network

We build up a MATLAB model to simulate a direct current (DC) network shown in Fig. 1 to illustrate the flow tracing process. The flow quantity f is given by the electric current I in this model. Nodes 1 and 2 are two nodes with current sources where $I_{1}^{s}=3 \mathrm{~A}$ and $I_{2}^{s}=5 \mathrm{~A}$, respectively. The resistances of resistors are randomly chosen within the set of integer numbers [1,10], shown in Tab. 1. The sink flow leaving from the sink nodes 9 and 10 are measured by the current scopes as $I_{9}^{t}=4.51 \mathrm{~A}$ and $I_{10}^{t}=3.49 \mathrm{~A}$. The current directions are shown in Fig. 2. Next, we show how to calculate the source-to-sink hidden currents from the current source I_{1}^{s} and I_{2}^{s} to the $\operatorname{sink} I_{9}^{t}$ and I_{10}^{t} by different methods.

Figure 1: The MATLAB/Simulink model for a DC network with 10 nodes.

Table 1: Resistances of the resistors in Fig. 1.

Resistor	R_{1-2}	R_{1-3}	R_{1-4}	R_{2-4}	R_{2-5}	R_{3-6}
Resistance $/ \Omega$	7	9	7	4	6	5
Resistor	R_{4-7}	R_{5-8}	R_{6-9}	R_{7-9}	R_{7-10}	R_{8-10}
Resistance $/ \Omega$	1	3	2	2	3	8

Figure 2: The current directions in the DC network shown in Fig. 1.

1.1 Using the Downstream Flow Tracing Method

As shown in Fig. 2, there are two paths from node 1 to node 9 , which are $P_{1}(1,9)=1\{1,3\} 3\{3,6\} 6\{6,9\} 9$, and $P_{2}(1,9)=1\{1,4\} 4\{4,7\} 7\{7,9\} 9$.

Using the downstream flow tracing method, we calculate the current from node 1 to node 9 through the path $P_{1}(1,9)$ by

$$
\begin{equation*}
I_{1 \rightarrow 9}^{(1)}=I_{1}^{\text {in }} \frac{I_{13}^{\text {out }}}{I_{1}^{\text {out }}} \frac{I_{36}^{o u t}}{I_{3}^{\text {out }}} \frac{I_{69}^{\text {out }}}{I_{6}^{\text {out }}}=I_{1}^{\text {in }} \kappa_{13}^{d} \kappa_{36}^{d} \kappa_{69}^{d} \tag{1}
\end{equation*}
$$

and through the path $P_{2}(1,9)$ by

$$
\begin{equation*}
I_{1 \rightarrow 9}^{(2)}=I_{1}^{\text {in }} \frac{I_{14}^{\text {out }}}{I_{1}^{\text {out }}} \frac{I_{47}^{\text {out }}}{I_{4}^{\text {out }}} \frac{I_{79}^{\text {out }}}{I_{7}^{\text {out }}}=I_{1}^{\text {in }} \kappa_{14}^{d} \kappa_{47}^{d} \kappa_{79}^{d} \tag{2}
\end{equation*}
$$

Thus, the total node-to-node hidden current from node 1 to node 9 is

$$
\begin{equation*}
I_{1 \rightarrow 9}=I_{1 \rightarrow 9}^{(1)}+I_{1 \rightarrow 9}^{(2)} \tag{3}
\end{equation*}
$$

The source-to-sink hidden current is calculated by

$$
\begin{equation*}
I_{s 1 \rightarrow t 9}=\iota_{1}^{s} \cdot I_{1 \rightarrow 9} \cdot \iota_{9}^{t} \tag{4}
\end{equation*}
$$

By doing this type of calculation, we obtain $I_{s 1 \rightarrow t 9}=2.35, I_{s 1 \rightarrow t 10}=0.65, I_{s 2 \rightarrow t 9}=2.16$ and $I_{s 2 \rightarrow t 10}=$ 2.84.

1.2 Using the Upstream Flow Tracing Method

Using the upstream flow tracing method, we have

$$
\begin{equation*}
I_{1 \rightarrow 9}^{(1)}=I_{9}^{\text {out }} \frac{I_{69}^{i n}}{I_{9}^{i n}} \frac{I_{36}^{i n}}{I_{6}^{i n}} \frac{I_{13}^{i n}}{I_{3}^{i n}}=I_{9}^{\text {out }} \kappa_{96}^{u} \kappa_{63}^{u} \kappa_{31}^{u} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{1 \rightarrow 9}^{(2)}=I_{9}^{o u t} \frac{I_{79}^{i n}}{I_{9}^{i n}} \frac{I_{47}^{i n}}{I_{7}^{i n}} \frac{I_{14}^{i n}}{I_{4}^{i n}}=I_{9}^{o u t} \kappa_{97}^{u} \kappa_{74}^{u} \kappa_{41}^{u} \tag{6}
\end{equation*}
$$

The node-to-node hidden current from node 1 to 9 is calculated by Eq. (3), and source-to-sink hidden current is calculated by Eq. (4).

Table 2 illustrates the results of flow tracing using the downstream flow tracing method and the upstream flow tracing method. The numbers in the following table indicate source-to-sink hidden currents. As we can see, the two methods imply the same results.

Table 2: Flow tracing in the DC network shown in Fig. 1, where nodes 1 and 2 are source nodes, and nodes 9 and 10 are sink nodes. Numbers in the table shows source-to-sink hidden flows.

Downstream			Upstream		
Node	9	10	Node	9	10
1	2.35	0.65	1	2.35	0.65
2	2.16	2.84	2	2.16	2.84

1.3 Using the Downstream Extended Incidence Matrix

From the MATLAB simulation results of the DC network, the downstream extended incidence matrix, \mathbf{K}, is

$$
\mathbf{K}=\left[\begin{array}{cccccccccc}
1 & -0.0378 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.4571 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.5429 & -0.6722 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.2900 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & -0.6000 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -0.4000 & -1 & 0 & 1
\end{array}\right]
$$

and the downstream contribution matrix, \mathbf{C}, is

$$
\mathbf{C}=\left[\begin{array}{cccccccccc}
1 & 0.0378 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.4571 & 0.0173 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.5429 & 0.6927 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.2900 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0.4571 & 0.0173 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0.5429 & 0.6927 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0.2900 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0.7828 & 0.4329 & 1 & 0.6000 & 0 & 1 & 0.6000 & 0 & 1 & 0 \\
0.2172 & 0.5671 & 0 & 0.4000 & 1 & 0 & 0.4000 & 1 & 0 & 1
\end{array}\right] .
$$

We also obtain, from the experiments, that $f_{1}^{i n}=3.1891, f_{2}^{i n}=5, \iota_{1}^{s}=0.9407, \iota_{2}^{s}=1, \iota_{9}^{t}=1$ and $\iota_{10}^{t}=1$. Thus, we calculate $f_{s j \rightarrow t i}$ for $j=1,2$ and $i=9,10$ by $f_{s 1 \rightarrow t 9}=\iota_{9}^{t} \cdot C_{91} f_{1}^{i n} \cdot \iota_{1}^{s}=2.35$, $f_{s 2 \rightarrow t 9}=\iota_{9}^{t} \cdot C_{92} f_{2}^{i n} \cdot \iota_{2}^{s}=2.16, f_{s 1 \rightarrow t 10}=\iota_{10}^{t} \cdot C_{10} f_{1}^{i n} \cdot \iota_{1}^{s}=0.65$, and $f_{s 2 \rightarrow t 10}=\iota_{10}^{t} \cdot C_{10} f_{2}^{i n} \cdot \iota_{2}^{s}=2.84$. We note that all these numbers coincide with that in Tab. 2.

1.4 Using the Upstream Extended Incidence Matrix

Define the upstream extended incidence matrix, \mathbf{K}^{\prime}, by

$$
K_{i j}^{\prime}= \begin{cases}-f_{i j}^{o u t} / f_{j}^{i n} & \text { if } i \neq j, \text { and } f_{i j}>0 \tag{7}\\ 1 & \text { if } i=j \\ 0 & \text { else }\end{cases}
$$

We know $f_{i}^{\text {out }}=\sum_{j=1}^{N} f_{i j}^{\text {out }}+f_{i}^{t}$, implying, $f_{i}^{\text {out }}-\sum_{j=1}^{N} f_{i j}^{\text {out }} / f_{j}^{\text {in }} \cdot f_{j}^{\text {in }}=f_{i}^{t}$. Since $f_{i}^{\text {out }}=f_{i}^{\text {in }}$, we have

$$
\begin{equation*}
f_{i}^{i n}-\sum_{j=1}^{N} f_{i j}^{o u t} / f_{j}^{i n} \cdot f_{j}^{i n}=f_{i}^{t} . \tag{8}
\end{equation*}
$$

Equations (7) and (8) imply

$$
\begin{equation*}
\mathbf{K}^{\prime} \mathbf{F}^{\mathbf{i n}}=\mathbf{F}^{\mathbf{t}} \tag{9}
\end{equation*}
$$

where $\mathbf{F}^{\text {in }}=\left[f_{1}^{i n}, f_{2}^{i n}, \cdots, f_{N}^{i n}\right]^{T}$ and $\mathbf{F}^{\mathbf{t}}=\left[f_{1}^{t}, f_{2}^{t}, \cdots, f_{N}^{t}\right]^{T}$. From $\mathbf{F}^{\text {in }}=\mathbf{K}^{\prime-1} \mathbf{F}^{\mathbf{t}}$, we have

$$
\begin{align*}
f_{i}^{i n} & =\sum_{j=1}^{N}\left[\mathbf{K}^{\prime-\mathbf{1}}\right]_{i j} f_{j}^{t} \\
& =\sum_{j=1}^{N}\left[\mathbf{K}^{\prime-\mathbf{1}}\right]_{i j} f_{j}^{\text {out }} \cdot \iota_{j}^{t} . \tag{10}
\end{align*}
$$

Let $\mathbf{C}^{\prime}=\mathbf{K}^{\prime-\mathbf{1}}$ be the upstream contribution matrix whose element, $C_{i j}=\left[\mathbf{K}^{\prime-1}\right]_{i j}$, is a upstream contribution factor indicating how much proportion of the total outflow at node j is coming from node i, i.e., $f_{i \rightarrow j}=C_{i j}^{\prime} f_{j}^{\text {out }}$. Then, $f_{s i \rightarrow t j}=\iota_{i}^{s} \cdot C_{i j}^{\prime} f_{j}^{\text {out }} \cdot \iota_{j}^{t}$.

The upstream extended incidence matrix, \mathbf{K}^{\prime}, of the DC network is

$$
\mathbf{K}=\left[\begin{array}{cccccccccc}
1 & 0 & -1 & -0.3400 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.0593 & 1 & 0 & -0.6600 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -0.3230 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -0.6770 & -0.5842 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -0.4158 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],
$$

and the upstream contribution matrix, \mathbf{C}^{\prime}, is

$$
\mathbf{C}^{\prime}=\left[\begin{array}{cccccccccc}
1 & 0 & 1 & 0.3400 & 0 & 1 & 0.3400 & 0 & 0.5532 & 0.1986 \\
0.0593 & 1 & 0.0593 & 0.6802 & 1 & 0.0593 & 0.6802 & 1 & 0.4796 & 0.8132 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0.3230 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0.6770 & 0.5842 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0.4158 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0.3230 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0.6770 & 0.5842 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0.4158 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

We also obtain $f_{9}^{\text {out }}=4.5132, f_{10}^{\text {out }}=3.4868, \iota_{1}^{s}=0.9407, \iota_{2}^{s}=1, \iota_{9}^{t}=1$ and $\iota_{10}^{t}=1$. Then, $f_{s 1 \rightarrow t 9}=\iota_{1}^{s} \cdot C_{19}^{\prime} f_{9}^{\text {out }} \cdot \iota_{9}^{t}=2.35, f_{s 2 \rightarrow t 9}=\iota_{2}^{s} \cdot C_{29}^{\prime} f_{9}^{\text {out }} \cdot \iota_{9}^{t}=2.16, f_{s 1 \rightarrow t 10}=\iota_{1}^{s} \cdot C_{10}^{\prime}{ }_{10} f_{10}^{\text {out }} \cdot \iota_{10}^{t}=0.65$, and $f_{s 2 \rightarrow t 10}=\iota_{2}^{s} \cdot C_{2}^{\prime}{ }_{10} f_{10}^{o u t} \cdot \iota_{10}^{t}=2.84$. The results are the same as that in Tab. 2.

