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Abstract. Positive Position Feedback (PPF) is a widely used control
technique for damping the lightly damped resonant modes of various
dynamic systems. Though PPF controller is easy to implement any rig-
orous mathematical optimization is not possible due to the controller
structure. Therefore, almost all PPF designs reported in literature use a
trial-and-error approach to push the closed-loop system poles adequately
into the left-half plane to achieve adequate damping. In this paper, a full
parametric study of the PPF controller based on the closed-loop DC
gain vs achievable damping relationship is carried out. It is shown that
the PPF controller best suited to only damp the resonance is not the
best if both damping and tracking control is required (as is the case in
most precision positioning systems). This leads to a more systematic and
goal-oriented selection of appropriate PPF controller for specific appli-
cations, hitherto unreported in literature. Experiments performed on a
piezoelectric-stack actuated nanopositioning platform are presented to
support this conclusion.
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1 Introduction

The PPF control design was first introduced in [1] for the vibration control of
the space structures. In [2] it shows that PPF is capable of controlling several
vibration modes. In [3] the Modal PPF (MPPF) controller is used to control the
independent modal space of an undamped flexible structure. [4] demonstrated
optimal control methods to design PPF controllers. Adaptive PPF (APPF) is
suggested for the vibration control of frequency-varying structures (multi-modal
control) in [5]. Further authors of [6] presented that PPF controller has global
stability and which is verified with the help of negative imaginary theory. It
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has since been successfully implemented in nanopositioning stages to damp the
dominant resonant mode of nanopositioner in conjunction with integral tracking
controller with suitable gain [7, 8, 9]. It is known that the tracking controller
changes the location of damped poles [8] and hence the characterized PPF con-
troller for damping tracking application is essential.

PPF controller is popular and show adequate robustness under parameter
uncertainties, its design is based on pole-placement via trial-and-error. As such,
a systematic design strategy of the controller design against certain application-
specific indices has remained elusive. Consequently, the selection of the closed-
loop pole-location that delivers best damping performance has proved difficult.
It is also noticed in several cases that increased damping comes at the cost of
increased closed-loop DC sensitivity. In positioning applications such as nanopo-
sitioning, increased DC sensitivity is undesirable, but inherently unavoidable if
positive-feedback damping controllers are incorporated [7].

In this work, the PPF controller is parametrically analyzed for closed-loop
damping versus closed-loop DC gain. A method for selecting PPF controllers
for best positioning performance is presented. It is shown that for a given open
loop system, infinitely many PPF controllers can be designed. Yet, there is only
one controller that delivers maximum closed-loop damping (ζmax). For any other
closed-loop damping value (ζcl), two controllers with different DC gains exist.
Simulation and experimental analysis shows that choosing the PPF controller
with a DC gain higher of the two possible controllers for the same closed-loop
damping (ζcl), results in best overall positioning performance.

Fig. 1. Typical closed-loop combined damping and tracking control implementation.
r(t) is the reference input, y(t) is the output.

1.1 Organization

The paper is organized as follows. In Sect. 2 , background theory for second-
order resonant systems is presented. In Sect. 3, the full parametric analysis of
the PPF damping controller is presented along with the parametric relationships
between the achievable closed-loop damping vs DC gain. In Sect. 4 and Sect. 5,
an experimental setup, method of identification of the experimental platform
is explained, further closed-loop combined damping and tracking experimental
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results for each of the controller implementations are presented and discussed.
Sect. 6 concludes the paper.

2 Background Theory

Structural dynamics of flexible structures are very intricate to model with accu-
racy and high precision because of boundary conditions. Hence, there will always
be uncertainty and unmodeled dynamics present in the models of flexible struc-
tures [6]. Such flexible structures are best described using a number of methods
viz: partial differential equations, ordinary differential equations, Finite Element
Method (FEM) or with hybrid models and hence they are infinite dimensional
systems [10].

The best suited mathematical model for analyzing the vibration suppression
problem in practical applications is the Finite Element Method (FEM) model
which is of the form:

Md̈+ Cḋ+Kd = Bu, (1)

where d is the vector of generalized displacements, M is the symmetric pos-
itive definite mass matrix, C is the symmetric positive semi-definite damping
matrix, K is the symmetric positive (semi-)definite matrix, u is the vector of
control variables, B is the input matrix, which transforms control variables of
the generalized actuator forces.

For the purpose of control design, however, one typically tends to include
only a small finite number of modes in the modeling of such systems, which
results in spillover unmodeled dynamics. Most techniques focus on damping the
first resonant mode of the system as it tends to dominate the overall system
dynamics at low frequencies and subsequently, controller designs are based on
a plant model consisting of a second-order transfer-function modeling the first
dominant resonant mode.

The single axis of a nanopositioning platform can be modeled as a mass-
spring-damper system, having equation of motion:

Mpd̈+ cf ḋ+ kd = Fa, (2)

whereMp is the mass of the platform, cf is the damping coefficient of the flexures,
k is the sum of the spring stiffness of the flexures, kf , and the actuator, ka, and
Fa is the force applied by the actuator.

Taking the Laplace transform of (2), and after rearrangement, the transfer
function measured from the applied force, Fa, to the displacement, d, is

GdFa
(s) =

d(s)

Fa(s)
=

γ2

s2 + 2ζpωps+ ω2
p

, (3)

where ζp is the damping ratio for the first mode and ωp is the resonant frequency.



4

The force generated by the actuator can be related to the unconstrained
piezoelectric expansion, δ, by

Fa(s) = Ka(s)δ, (4)

and δ can be related to the reference input voltage, r(s), by

δ = gδrr(s) = d33ngar(s), (5)

where gδr is a constant gain which is the product of the piezoelectric strain
constant, d33, the number of actuator layers, n, and and the amplifier gain, ga.
Likewise, the displacement, d, can be related to the measured voltage, y(s), by

d = gsy(s). (6)

where gs is the sensor gain. The transfer function from the reference input, r, to
the measured voltage, y, is then

G(s) =
y(s)

r(s)
=

kagδr
gs

Mps2 + cfs+ k
=

kagδr
gsMp

s2 +
cf
Mp

s+ k
Mp

. (7)

substituting standard variables, becomes

G(s) =
γ2

s2 + 2ζpωps+ ω2
p

. (8)

3 Positive Position Feedback Control Design

An important property of PPF controllers is that to suppress one dominant
resonant mode it requires only one second-order term. PPF controllers are im-
plemented in positive feedback as shown in Fig. 1 and their generic structure is
given by:

CPPF (s) =
κ

s2 + 2ζωs+ ω2
(9)

where ζ and ω are the damping ratio and natural frequency of the controller and
κ is a positive scalar gain. The underlying principle of the PPF control design
is to push the closed-loop system poles further in to LHP (Left Hand Plane),
thereby imparting additional damping.

3.1 Strategy and design

Using the plant model given by (8) and the controller transfer-function given
by (9), the overall transfer-function of the closed-loop damped system can be
computed as follows:

Gcl
damp(s) =

G(s)

1−G(s)CPPF (s)
(10)
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The characteristic polynomial of the closed-loop damped system is given by:

P (s) = s4 + [2ζpωp + 2ζω]s3 (11)

+ [ω2

p+2ζpωp(2ζω) + ω2]s2

+ [2ζpωpω
2 + ω2

p2ζω]s

+ ω2

pω
2
− γ2κ = 0

Further (11) can be written as:

P (s) = s4 +K ′

1
s3 +K ′

2
s2 +K ′

3
s+K ′

4
= 0 (12)

where the resulting coefficients K ′

i are:

K ′

1
= 2ζpωp + 2ζω (13)

K ′

2
= ω2

p + 2ζpωp2ζω + ω2

K ′

3
= 2ζpωpω

2 + 2ζωω2

p

K ′

4
= ω2ω2

p − γ2κ

In the following subsection, the ideal pole-placement technique is briefly revis-
ited. Then, using the closed-loop damping and the closed-loop DC gain as the
desired performance metrics, controller parameters K ′

i are computed in an iter-
ative fashion to identify best suited PPF controller designs for (i) Damping only
and (ii) Precision Positioning (combined damping and tracking) applications.

3.2 Ideal pole-placement

Let the ideal pole-placement for the 4th-order closed-loop damped system whose
characteristic equation is given by be given by (11) be given by:

P1, P2 = σc ± jωc P3, P4 = σc ± jωc (14)

Then, the desired characteristic polynomial, Pd(s), that has as its roots, the
poles as given in (14) is:

Pd(s) = s4 − 4σcs
3 + (6σ2

c + 2ω2

c )s
2
− 4σc(σ

2

c + ω2

c )s

+ (σ2

c + ω2

c )
2 = 0 (15)

The abbreviated form of this desired characteristic polynomial is:

Pd(s) = s4 +K ′

d1
s3 +K ′

d2
s2 +K ′

d3
s+K ′

d4
= 0 (16)

where

K ′

d1
= −4σc (17)

K ′

d2
= (6σ2

c + 2ω2

c )

K ′

d3
= −4σc(σ

2

c + ω2

c )

K ′

d4
= (σ2

c + ω2

c )
2
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In order to locate the closed-loop poles of the actual system (8) in the exact
location as desired (14) the following equality must be satisfied:

P (s) ≡ Pd(s) (18)

Combining (13) and (17) to satisfy (18) results in the following equalities:

K ′

1
= −4σc (19)

= 2ζpωp + 2ζω

K ′

2
= (6σ2

c + 2ω2

c )

= ω2

p + 2ζpωp2ζω + ω2

K ′

3
= −4σc(σ

2

c + ω2

c )

= 2ζpωpω
2 + 2ζωω2

p

K ′

4
= (σ2

c + ω2

c )
2

= ω2ω2

p − γ2κ

By setting the controller parameters κ = Γ1, 2ζω = Γ2 and ω2 = Γ3, (19) can be
restructured to result in (20). This set of equations will be utilized in identifying
the best choice of parameters for the PPF controller design. In (19) there are
more equations than unknowns and hence no exact solution exists in this.

Γ2 = (−2ζpωp +K ′

1
)

2ζpωpΓ2 + Γ3 = (K ′

2
− ω2

p)

ω2

pΓ2 + 2ζpωpΓ3 = K ′

3

−γ2Γ1 + ω2

pΓ3 = K ′

4
(20)









0 1 0 0
0 2ζpωp 1 0
0 ω2

p 2ζpωp 0
−γ2 0 ω2

p 0

















Γ1

Γ2

Γ3

Γ4









=









(K ′

1
− 2ζpωp)

(K ′

2
− ω2

p)
K ′

3

K ′

4









(21)

3.3 Family of PPF controllers for a second-order resonant system

As the system of equation (21) is over-determined, ideal pole-placement cannot
be achieved using the PPF control scheme. This is a well-known limitation of
the technique. Therefore, controller parameters are identified via a least-squares
approach by using the generalized inverse of the coefficient matrix. The details
of this procedure are as follows: Let (21) be written as:

AΓ = K ′, (22)
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where A =









0 1 0 0
0 2ζpωp 1 0
0 ω2

p 2ζpωp 0
−γ2 0 ω2

p 0









, Γ =









Γ1

Γ2

Γ3

Γ4









and K ′ =









(K ′

1
− 2ζpωp)

(K ′

2
− ω2

p)
K ′

3

K ′

4









.

Then,

Γ = AT (AAT )−1K ′ (23)

Using the parameters computed in (23) will result in a new set of coefficients
given by (24).









K ′′

1

K ′′

2

K ′′

3

K ′′

4









= AΓ +









2ζpωp

ω2

p

0
0









(24)

Therefore, the Pd(s) as given in (12) will change to:

P ′

d(s) = s4 +K ′′

1
s3 +K ′′

2
s2 +K ′′

3
s+K ′′

4
= 0 (25)

There are two combination of roots possible: (i) The desired polynomial has two
pairs of complex conjugate roots (ii) The desired polynomial has one pair of
complex conjugate roots and one pair of negative real roots. If the poles of the
closed-loop system are P1, P2 = σ′

c± jω′

c and P3, P4 = σ′

c± jω′

c. The closed-loop
damping can be approximated by:

ζcl ∼= cos

(

tan−1

(

ω′

c

σ′

c

))

(26)

A parametric search is carried out over a wide range of σ′

c and the closed-loop
damping approximation given by (26) is monitored. Due to the over-determined
nature of the system of equations, no control can be exerted over the closed-loop
DC gain of the system. The trajectory followed by the PPF controllers in the
closed-loop damping vs closed-loop DC gain space is plotted in Fig. 2.

Remarks: Once the second-order resonant system parameters are fixed, the
plot of the closed-loop DC gain vs closed-loop damping (ζcl) achieved using PPF
control demonstrates the following:

(i) Closed-loop DC gain is greater than the open-loop DC gain for any increase
in damping.

(ii) There exists only one unique controller that achieves maximum closed-loop
damping ζmax.

(iii) For any other value of achievable closed-loop damping (ζcl), two distinct
controllers exist. Each of the two controllers results in a different value for
closed-loop DC gain.
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Fig. 2. Plot of the DC gain of the damped closed-loop vs the damping achieved using
the PPF controller. Each point on the upward convex curve (green) and downward
convex curve (red) represents a unique PPF controller.

4 Experimental setup and system identification

In the following subsections, a brief description of the experimental setup is pro-
vided, followed by the details of the system identification carried out to model the
dynamics of one axis of the piezoelectric-stack actuated nanopositioner within
the bandwidth of interest.

4.1 Experimental setup

Fig. 3 shows the experimental setup used in this work. It consists of a two-axis
piezoelectric-stack actuated serial kinematic nanopositioner designed at the Ea-
syLab, University of Nevada, Reno, USA. It has an input range of ±100 V result-
ing in a displacement range of ±20 µm. Two low-noise, linear voltage amplifiers
(PDL200) from Piezodrive, each with an output range of 0-200 V, a variable bias
capability of 0-200 V and a fixed voltage gain of 20 are used to supply voltage
inputs to the piezoelectric-stack actuators. The displacement is measured by a
Microsense 4810 capacitive displacement sensor and a 2805 measurement probe
with a measurement range of ±50 µm for a corresponding voltage output of ±10
V. A PCI-6621 data acquisition card from National Instruments installed on a
PC running the real-time module from LabVIEW is used to interface between
the experimental platform and the control design.
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Fig. 3. A two-axis serial kinematic nanopositioner designed at the EasyLab, University
of Nevada, Reno, USA.

4.2 Identification of the experimental platform

To identify the linear model of the plant, small signal frequency response func-
tions (FRFs) were utilized. The FRFs are determined by applying a sinusoidal
chirp signal (from 10 to 2000 Hz) with an amplitude of 0.2 V as input to the
voltage amplifier of the x-axis and measuring the output signal in the same axis.
Subsequently, the FRFs are computed by taking the Fourier transform of the
recorded data. It should be noted that, using small amplitudes, the nonlinear
effects of the Piezo Electric Actuators (PEAs) such as hysteresis can be con-
sidered negligible. In Fig. 4 the magnitude and phase responses (FRF) of G(s)
are plotted for a sampling time of 50 µs. The x-axis of the platform is used to
conduct the experiments presented in this work. However, the y-axis was set to
0 V as input to mimic a realistic platform operation. The platform axis shows a
lightly-damped resonant mode at 716.2Hz and open-loop damping coefficient of
this resonant mode is ζol = 0.011. A second-order transfer-function that accu-
rately captures the dominant resonant dynamics of this axis was procured using
a least squares fit. The resulting transfer function is given by (27).

G(s) =
1.024× 107

s2 + 99s+ 2.035× 107
. (27)

The experimental system has a significant delay. Hence, the theoretical model
of the platform had to be modified in order to include the effects of the delay.
The resulting system model is given by the following transfer function:

G(s) =
1.024× 107 × e−τs

s2 + 99s+ 2.035× 107
. (28)

where the value of τ is determined by the following equation:

τ =
1

2
Ts + 90× 10−6. (29)
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where Ts is the sampling time. Both the sampling time Ts and the delay τ are
expressed in seconds.

5 Experimental results

5.1 Damping only

PPF controller is designed using the procedure detailed in Sect. 3 . The trajectory
in Fig. 2 represents DC gain vs achievable damping using PPF controller. Each
point on the convex curve represents a unique controller. It further shows that

(i) There is only one unique controller that achieves maximum damping ζmax

= 0.218 and DC gain = -1.456 dB.
(ii) For every other achievable closed-loop damping ratio, two distinct controllers

with different DC gains are possible.

Minimal change in DC gain is usually desired in most damping applications. Thus
for damping only application, It is advisable to choose the controller parameters
resulting in low closed-loop DC gain (downward convex curve). Ideally, the PPF
controller delivering the maximum closed-loop damping (ζmax) would be chosen.
However, if DC sensitivity or other implementations exist, for damping only
applications the controllers represented by points on the downward convex (red
curve) would be preferred over the upward convex (green curve) region for the
same closed-loop damping ratio.

5.2 Precision positioning ( combined Damping and Tracking)

In precision positioning applications, it is popular practice to impart maximum
damping to the resonant mode via a suitable damping controller first (in the
inner loop) and then implement a suitably gained tracking controller (in the
outer loop) to deliver precise positioning [7]. Tracking is usually effected by
utilizing an integrator (Ctrack(s) = Kt

s
) in feedback with the damped system

[11].
To check if PPF controllers in downward convex region or upward convex

region of the closed-loop DC gain vs closed loop damping curve result in better
positioning performance, two ζcl values were arbitrarily selected viz: ζcl = 0.15
and ζcl = 0.2. For achieving closed-loop damping of ζcl = 0.15, two distinct
controllers at points denoted by ζA1 and ζB1 with different closed-loop DC gains
can be designed. Similarly, for ζcl = 0.2, there exist two distinct controllers
denoted by ζA2 and ζB2 with different closed-loop DC gains respectively. For a
full comparative analysis, the PPF controller that delivers the maximum closed-
loop damping (ζcl) was also selected and the positioning performance of all
five controllers was evaluated both via simulations and experiments. The overall
block diagram for the combined damping and tracking scheme is shown in Fig. 1.

Both simulated and experimental results are in good agreement and show
that for precision positioning performance (combined damping and tracking),
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controllers from the upward convex region deliver a superior positioning per-
formance when compared with controllers from the downward convex region.
The PPF controller transfer functions for the five selected cases, the respective
closed-loop damping achieved and the corresponding closed-loop DC gains are
given in Table (1).

Table 1. Damping performance of selected controllers

Controller Transfer DC Gain Achievable
function damping

CPPFζA1

7.578×10
6

s2+4.244×103s+2.629×107
-4.572 dB 0.15

CPPFζA2

2.276×10
7

s2+8.104×103s+3.867×107
-2.855 dB 0.2

CPPFζmax

4.999×10
7

s2+1.446×104s+6.288×107
-1.456 dB 0.218

CPPFζB1

1.329×10
8

s2+4.751×104s+1.772×108
-1.779 dB 0.15

CPPFζB2

8.995×10
7

s2+2.59×104s+1.057×108
-1.038 dB 0.2

The suitable tracking gain for each damped system is determined via the
root-locus method. The respective tracking gains, maximum and RMS position-
ing errors for the five controllers are tabulated in Table (2). The closed-loop
frequency responses are shown in Fig. 4.

The overall combined closed-loop damping and tracking transfer function is
given by

Gcl(s) =
Ctrack(s)G

cl
damp(s)

1 + Ctrack(s)Gcl
damp(s)

(30)

where Ctrack = Kt

s
, Kt is tracking gain and Gcl

damp(s) is given by (10).

Table 2. Closed-loop positioning performance (combined damping and tracking)

Gcl
ζA1

Gcl
ζA2

Gcl
ζmax

Gcl
ζB1

Gcl
ζB2

Tracking Gain 1240 1590 1650 1435 1500
Maximum error (µm) 0.1407 0.3043 0.1314 0.1158 0.1133

RMS error (µm) 0.0398 0.1661 0.0834 0.0672 0.0373

A common input signal in nanopositioning is a triangle wave (used with a
ramp or pseudo-ramp signal to generate a typical raster scanning pattern). For
experimental validation, the nanopositioner axis was made to track a triangle
wave at 50Hz with an amplitude of 4µm. The recorded time domain output
trajectories as well as position errors are plotted in Fig. 5.
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6 Conclusion

In this paper, a systematic approach for selecting suitable PPF damping con-
trollers for damping only as well as precise positioning applications is proposed
and experimentally validated. Using the closed-loop DC gain vs closed-loop
damping curve as a guideline, the following conclusions can be drawn.

(i) Only one unique PPF controller delivers maximum closed-loop damping ζmax

= 0.218.
(ii) For all other ζcl < ζmax, two possible PPF controllers can be designed. Both

these controllers results in different DC gains.
(iii) For damping only applications, the best choice is the PPF controller results

in lower DC gain (of the 2 possible controllers) for the same ζcl.
(iv) For precision positioning application (combined damping and tracking) the

best choice is the PPF controller which results in higher DC gain (of the 2
possible controllers) for the same ζcl.
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