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Abstract 

The contact demersal towed fishing gears make with the seabed can lead to penetration of the 

substrate, lateral displacement of the sediment and a pressure field transmitted through the 

sediment. It will also contribute to the overall drag of the fishing gear. Consequently, there 

can be environmental effects such as habitat alteration and benthic mortality, and impacts to 

the fuel efficiency of the fishing operation which will affect emissions of nitrogen oxides, 

sulphur oxides and greenhouse gases such as CO2. Here we present the results of 

experimental trials that measure the contact drag of a range of elements that represent some 

of the components of towed demersal gears that are in contact with the seabed.  

We show that the contact drag of the gear components depends on their weight, geometry, the 

type of sediment on which they are towed and whether they are rolling or not. As expected, 

the contact drag of each gear component increases as its weight increases and the drag of 

fixed elements is greater than that of the rolling ones. The dependence on aspect ratio is more 

complex and the drag (per unit area) of narrow cylinders is less than that of wider ones  when 

they roll on the finer sediment or are fixed (not permitted to roll) on the coarser sediment. 

When they roll on the coarse sediment there is no dependence on aspect ratio. Our results 

also suggest that fixed components may penetrate the seabed to a lesser depth when they are 

towed at higher speeds but when they roll there is no such relationship.  

 

keywords: trawl fishing gears; environmental impact of fishing; contact drag; benthic impact of 

fishing 
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highlights:  

we measure the contact drag of a range of fishing gear components  

the contact drag depends on the weight and geometry of a component 

the contact drag depends on sediment type and whether the components roll or are fixed 

the contact drag of rolling components does not seem to be dependent on towing speed 
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1 Introduction 

 

Mobile bottom-contacting fishing gears, which capture fish and crustacean species that live 

close to or on the seabed, account for about 23% of global fisheries yield (FAO, 2009). As 

they are dragged or towed across the seabed these gear have physical impacts on the benthic 

environment which have been classified as being either geotechnical or hydrodynamic 

(O’Neill and Ivanović, 2016; O’Neill and Summerbell, 2011). The geotechnical effects refer 

to the contact drag, the penetration and piercing of the substrate, lateral displacement of 

sediment and the influence of the pressure field transmitted through the sediment; whereas 

the hydrodynamic effects refer to the hydrodynamic drag and the mobilisation of sediment 

into the water column.  

 

Eigaard et al. (2016) categorise the most common mobile bottom-contacting fishing gears as 

being otter trawls, demersal seines, beam trawls or dredges (Figure 1). They are made of a 

range of components, some of which, such as otter doors, sweeps, seine ropes, beam trawl 

shoes, groundgear, tickler chains, dredge teeth etc., physically impact the seabed (Figures 1 

and 2). Many studies have shown that these impacts can damage habitats, cause benthic 

mortality, release nutrients and resuspend phytoplankton cysts and copepod eggs (Kaiser et 

al., 2006; Dounas et al., 2007; Gilkinson et al., 1998; Brown et al., 2013; Drillet et al., 2014; 

O’Neill et al., 2013a; Oberle et al., 2016). Hence, in order to manage fisheries in a sustainable 

manner and develop more environmentally friendly fishing techniques, we must understand 

the underpinning hydrodynamic and geotechnical processes associated with towing these gear 

components across the seabed. 
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O’Neill and Summerbell (2016) examine the hydrodynamic effects of these components and 

here we focus on the geotechnical effects and investigate the contact drag of cylindrical and 

rectangular shaped objects that are in contact with the seabed. 

There have been many observations of the alteration of the seabed following the passage of 

towed fishing gears using both acoustic methods (Lucchetti and Sala, 2012; O’Neill et al., 

2013b; Palanques et al., 2014; Humborstad et al., 2014; Depestele et al., 2016) and optical 

methods  (O’Neill et al., 2009; Puig et al., 2012; Boulcott et al., 2014).  

More focused geotechnical studies have taken place under laboratory conditions in sand 

channels and have concentrated on developing a better understanding of the fundamental 

processes and developing small scale modeling rules so results from channel experiments can 

be transferred to the full scale (Paschen et al., 2002; Enerhaug et al., 2012, Ivanović and 

Casanovas Revilla, 2013; Esmaeili and Ivanović, 2014). Numerical models of the 

geotechnical interaction of fishing gears with the seabed have also been developed, the more 

recent of which predict the contact forces and penetration into the seabed of individual gear 

components (Ivanović et al., 2011; Ivanović and O’Neill, 2015; Esmaeili and Ivanović, 

2014). While these studies have all contributed to our understanding of the interaction of 

fishing gears on the benthic environment, they are often gear and sediment specific. There is 

a need to generalise results and improve our capacity to predict impacts of different gear 

components on a range of sediment types.  

Here, we address some of these issues by making quantitative full-scale measurements of the 

geotechnical impacts of well-defined gear components on the seabed. We examine a range of 

rigid cylindrical and rectangular shaped objects and examine how their contact drag varies 

with speed, weight, geometry (aspect ratio), sediment type and for the cylindrical 

components, whether they are rolling or are fixed. 
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2 Materials and Methods 

 

2.1 Towed sledge and instrumentation 

Experimental sea trials were carried out on the RV Alba na Mara during October 2013 and 

May 2015 in the inner Moray Firth, Scotland using the same towed sledge as O’Neill and 

Summerbell (2016). The sledge was 0.9m high, 2.1m wide, 3.0m long and weighed 530kg 

and towed 14 different types of cylindrical, disk and rectangular elements supported on an 

axle that is 1.3m long and 63mm in diameter (Figure 3). The full range of these elements is 

presented in Figure 4, the dimensions of which are presented in Table 1. The elements were 

chosen to simulate a range of gear components that are in contact with the seabed (roller 

clumps, groundgears, otter doors, etc) (Figure 2). The cylindrical and disk elements span the 

aspect ratio categories of Godwin and O’Dogherty (2007) who classify the aspect ratio of 

their objects as being wide (d/b  < 0.5), narrow (1 < d/b < 6) and very narrow (d/b > 6) where 

d and b are the diameter and breadth of the cylinder/disk respectively (Table 1). In addition, 

we classify objects in the range 0.5 < d/b < 1 as being intermediate. 

Strainstall 500kg X-Y load cells were fitted at each end of the axle to measure the force in the 

horizontal plane at a rate of 10Hz, where the X-axis is along the axle and the Y-axis in along 

the towing direction. This force comprises the hydrodynamic drag forces acting on the gear 

component and on the supporting axle as they are towed through the water and the contact 

drag force acting on the component as it is pulled across the seabed. Hence the contact drag is 

estimated by subtracting the hydrodynamic drags from the forces measured by the load cells. 

The axle was attached to a framework (via the load cells) that was free to move in the vertical 

direction (Figure 5). Thus, the vertical forces that the gear elements exerted on the sea bed 

were the gravitational forces associated with the gear element and that part of the supporting 
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framework that was free to move. It was also possible to increase the applied vertical forces 

by attaching weights to the framework and each of the configurations was tested having total 

vertical forces (in water) of approximately 588, 1176 and 1764 N. The speed at which the 

sledge was towed was increased incrementally over a thirty minute period during each 

deployment from 1 to 2 m/s. The vessels GPS recorded the speed of the sledge over the 

ground at a rate of 1Hz. The drag and speed data were time-averaged into 10s intervals and it 

is these data that are examined in the following analyses. 

The 2013 trials took place on a sandy sediment in the Dornach Firth where all fourteen gear 

elements were examined: eight different cylinder designs; three configurations of separated 

disks; and three of rectangular doors (Figure 4). The cylindrical and disk designs were tested 

both when they were free to roll and when they were fixed. The 2015 trials took place 

approximately 8 miles north east of Tarbat Ness on a finer sediment where eight elements 

were tested: six of the cylindrical and two of the separated disk designs, all of which were 

free to roll. 

To classify the sediment on which the trials took place, 15 grab samples were taken with a 

modified Day grab and the top 2.5 cm sampled and frozen, at each of the experimental sites. 

Subsequently these were defrosted and dried and the particle size distribution of each sample 

was analysed using a Malvern Instruments Mastersizer E Particle Size Analyser. An average 

was then taken to characterise the particle size distribution at each site.  

 

2.2 Data analysis 

The hydrodynamic drag of the gear components were calculated using the results of O’Neill 

and Summerbell (2016) who assume an expression of the following form  
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axleaxledelem cUAcUAD 22 5.05.0  
 

where Aaxle is the exposed frontal area of the axle, caxle is its hydrodynamic drag coefficient, 

Aelem is the frontal area of the gear element and cd represents ccyl, cdisk or cdoor, the 

hydrodynamic drag coefficients of the cylinders, the circular disks and the rectangular doors 

respectively. Aaxle is calculated by multiplying the axle diameter by that part of the axle 

exposed to the oncoming flow and Aelem by multiplying the corresponding frontal dimensions 

of the gear elements (Figure 4 and Table 1). O’Neill and Summerbell (2016) show that when 

ccyl = cdisk = 0.64,  cdoor = 1.13 and caxle = 0.93, the above expression is a good fit to the 

hydrodynamic drag  measurements they make for the gear elements used here. In order to 

compare results between gear elements, we standardise the resulting contact drag estimates 

and weight forces in relation to the area on which they act. We assume that for the cylinders 

the contact area scale is bd and for the elements with six disks it is 6bd. For the rectangular 

doors it is bt, where b is the breadth or width of the door, t is the door thickness and h is the 

vertical height (Table 1). Figure 6 contains the hydrodynamic drag per unit area estimates of 

O’Neill and Summerbell (2016) where the estimates are scaled per unit contact area which 

allows direct comparison with the scaled contract drag estimates. 

We investigate the dependence of the contact drag forces on towing speed by fitting linear 

regressions to the data collected for each gear component for a given weight. We also explore 

the relationship between the contact drag per unit area and weight per unit area. Hambleton 

and Drescher (2009) have shown that for cylinders on the cohesive sediments there was a 

dependency on their aspect ratio (d/b), hence for this analysis we segregate the data 

accordingly and regress quadratic curves to the contact drag per unit area for each d/b value 

data set. 
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3 Results 

The analysis of the Day grab sediment samples found the sediment at the 2013 site to have a 

silt and clay component (% of sediment < 63 μm) of 12% and a d50 of 100 μm. The sediment 

at the 2015 site was finer and had a silt and clay component of 30% and a d50 of 85 μm 

(Figure 7). The tidal currents were estimated to be on average 0.08 m/s, the average wind 

speed was 6 m/s and the sea state was generally slight to moderate. 

As would be expected, the contact drag of each gear component increases as its weight 

increases. For the rectangular doors, the contact drag decreases as towing speed increases on 

the coarser sediment (Figure 8) and there appears to be a similar (albeit less clear-cut) 

tendency for the fixed disks and cylinders (Figure 9). However, for the rolling cylinders and 

disks there does not seem to be any consistent trend on either sediment (Figures 10 and 11).  

The nature of the relationship between contact drag and component weight is more clearly 

expressed in Figures 12 – 15 which plot the same data as in Figures 8 - 11 but, this time, in 

terms of weight per unit area. These figures group together gear components with the same 

d/b value and demonstrate that the contact force per unit area is similar for components with 

the same aspect ratio. The quadratic regression curves fit the data well and those for the 

cylinders and disks are reproduced in Figures 16 and 17 where we compare the effect of 

sediment type on the rolling components and the effect of whether they are fixed or rolling on 

the coarser Dornach Firth sediment.  

On the coarser sediment the drag of the fixed elements is greater than that of the rolling ones; 

the drag of the fixed cylinders is greater than the drag of the fixed disks; and the drag of the 

rolling cylinders and disks are very similar (Figure 16). On the finer sediment, however, the 

drag of the rolling cylinders is greater than that of the rolling disks (Figure 17). This figure 
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also demonstrates that the drag of the rolling components is greater on the finer sediment than 

it is on the coarser one. 

 

4 Discussion 

These trials provide a better understanding of the contact forces of towed demersal fishing 

gears and the seabed. They highlight that, to fully appreciate these forces, it is necessary to 

have a detailed knowledge of the weight and geometry of the gear components in contact 

with the sea bed, the sediment type and the nature of the contact (rolling or dragging). 

On the coarser of the two sediments examined, the drag of the rectangular doors and (to a 

lesser extent) the fixed cylinders and disks reduces as towing speed increases (Figures 8 and 

9). This effect appears to be more pronounced for the heavier components, but when the 

components roll on either sediment there is no apparent relationship between drag and towing 

speed (Figure 10). 

This is the opposite of what we would normally expect. During soil deformation, there is an 

increase of the void space between sand particles which gives rise to a pressure gradient and 

drives an inflow of additional pore water from the surrounding soil. This is known as the 

common rate effect. In regions where the rate of the deformation is sufficiently high, the 

reductions of the pore pressure will be large and the voids will fill rapidly leading to an 

increase of the mean principle effective stress, an increase of the resistance of soil to shear 

and consequently an increase of the drag force required to deform the soil. At slower speeds, 

this effect is not so pronounced as there is more time for the pore water to fill the void space 

and the resulting pore pressure changes are small (Esmaeili and Ivanovic, 2014). During our 

trials, because our components are free to move in the vertical direction, it is possible that the 
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rate effect is offset by the gear components finding an equilibrium position that penetrates the 

seabed to a lesser depth when they are towed at higher speeds. Our results, however, are 

variable which may indicate that the interaction of the governing mechanisms is subtle and 

dependent on factors which can vary between and during tows such as seabed bathymetry 

(e.g. presence and size of sand ripples), sediment type and sea state and also on whether the 

components are fixed or are rolling.  

The contact drag of the narrow disks and the cylinders are dependent on their aspect ratio 

when they are fixed on the coarser sediment and rolling on the finer sediment (Figures 16 and 

17). For these cases the scaled drag of the very narrow disks (d/b = 8.0) is lower than that of 

the cylinders. This dependency is less apparent as the cylinders become wider (ie as d/b 

decreases), which suggests that for the wider cylinders soil failure is predominantly a two-

dimensional phenomenon and that three dimensional effects such as pushing sediment 

sideways near the soil surface only play a role at the edges and hence, are only of particular 

importance for the narrow disks. On the coarser sediment there is no evidence of a 

dependence on the aspect ratio for the rolling cylinders and disks (Figure 17). The scaled 

contact drag of the very narrow disks and of the different cylinder categories is very similar. 

This suggests that when  components roll on the coarser sediment the problem is two 

dimensional and there is unlikely to be any significant lateral displacement of sediment at the 

edges, where the geotechnical processes will be much the same as those of the central part of 

the wider cylinders. 

The contact drag of the rolling cylinders is greater on the finer sediment than it is on the 

coarser one (Figure 17). This is likely to be due to greater penetration of these components 

into the sediment with larger clay and silt content and with a soft consistency. 
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While these results highlight the need to have a full understanding of the physical 

characteristics of the gear components, their dynamic constraints and the substrate on which 

they are towed, they are also significant in their own right as they can be used to identify 

simple design rules to aid the development of low impact demersal trawls. Research in this 

area has often focused on the use of lighter components and a reduction of the number of 

contact points with the seabed (Valdemarsen et al., 2007; He and Winger, 2010; Sterling and 

Eayrs, 2006; Rose et al., 2013; Fonteyne and Polet, 2002), but this has frequently been 

accompanied by a reduction in efficiency. For example a reduction of the weight of twin 

trawl clumps or modifications to the sweeps or groundgear can result in poorer contact of the 

fishing gear with the seabed and a subsequent loss of catch. Here we have shown, however 

that it is possible to keep the overall weight and contact area constant and significantly reduce 

contact drag by (i) using rolling components instead of fixed ones and (ii) using a number of 

narrow components instead of a single wide one. In particular we have demonstrated on the 

coarser sediment that the contact drag of rolling cylinders is less than half of what it is when 

they are fixed (Figure 16); and that on the finer sediment, the drag of six rolling separated 

disks is also less than half that when there are no spaces between them (Figure 17). 

These data will also be very useful for testing and validating the numerical geotechnical 

models which are being developed to predict the contact forces and penetration into the 

seabed of individual gear components (Ivanović et al., 2011; Ivanović and O’Neill, 2015; 

Esmaeili and Ivanović, 2014) and in a number of other areas where similar processes occur 

such as: soil cutting and ploughing processes (Nouguier et al., 2000); iceberg interaction with 

the seabed (Yang and Poorooshasb, 1997;  Barrette, 2011); vehicle mobility assessment 

(Bekker, 1969; Wong, 2001); and the indentation and rolling of wheels associated with off-

road vehicles (Hambleton and Drescher, 2008, 2009). To characterize the geotechnical 

response of a wider range of sediment types, different constitutive stress/strain relationships 
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which underpin the numerical models are being explored and the accuracy and efficiency of 

the numerical methods are being investigated. These types of numerical models are likely to 

be one of the most productive ways forward. They will permit the quantitative assessment of 

the physical impact of towed demersal trawls and will contribute to the development of more 

fuel efficient gears; and in the longer term will form the basis of a more deterministic 

approach to assessing the broader ecological and environmental consequence of towing 

fishing gears in the benthic environment.  
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Figure 1. Examples of towed demersal fishing gears. (Going clockwise) A demersal otter trawl, a 

tickler chain beam trawl, three scallop dredges on a single beam and a demersal seine net with some 

of the components that are in contact with the seabed identified. 
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Figure 2. Some components of towed demersal fishing gears: (In the clockwise direction) a 

roller clump which is used in twin trawls to maintain contact with the seabed; otter doors 

which spread the gear; the shoes and ticker chains of a beam trawl and a rockhopper 

groundgear which maintains contact with and protect the netting from the seabed.  
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Figure 3 The towed sledge, sitting upright, used to tow the range of cylindrical objects 

supported on an axle. 
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Figure 4. The range of gear components designed to simulate some of the groundgears, 

clump weights and doors used in demersal fisheries comprising disks, cylinders and trawl 

doors. All measurements are in millimetres. 
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Figure 5. The framework to which the gear components and axle were attached showing 

where the additional weights were fitted and the position of the two Strainstall 500kg X-Y 

load cells. 
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Figure 6. The scaled hydrodynamic drag estimates of the gear components. The area scale of 

the disks and cylinders is equal to Aelem hence their scaled hydrodynamic drag can be 

represented by one curve.  
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Figure 7. The particle size distribution of the sediment at each site. At the Dornoch Firth site 

in 2013 the silt and clay component was 12% and the d50 was 100 μm. At the site east north 

east of Tarbat Ness in 2015 the sediment was finer and the silt and clay component was 30% 

and the d50 was 85 μm. 
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Figure 8 The contact drag measurements (and their linear  regressions) for the rectangular 

doors plotted against towing speed from the 2013 trials on the coarser Dornach Firth 

sediment. The light grey, dark grey and black points are the data when the vertical forces (in 

water) were approximately 588, 1176 and 1764 N respectively. (Note, the y axis scale varies 

between plots) 
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Figure 9 The contact drag measurements (and their linear  regressions) for the fixed circular 

disks and cylindrical components plotted against towing speed from the 2013 trials on the 

coarser Dornach Firth sediment. The light grey, dark grey and black points are the data when 

the vertical forces (in water) were approximately 588, 1176 and 1764 N respectively. (Note, 

the x and y axis scales vary between plots) 
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Figure 10 The contact drag measurements (and their linear  regressions) for the rolling 

circular disks and cylindrical components plotted against towing speed from the 2013 trials 

on the coarser Dornach Firth sediment. The light grey, dark grey and black points are the data 

when the vertical forces (in water) were approximately 588, 1176 and 1764 N respectively. 

(Note, the x and y axis scales vary between plots) 
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Figure 11 The contact drag measurements (and their linear  regressions) for the rolling 

circular disks and cylindrical components plotted against towing speed from the 2015 trials 

on the finer sediment east north east of Tarbat Ness. The light grey, dark grey and black 

points are the data when the vertical forces (in water) were approximately 588, 1176 and 

1764 N respectively. (Note, the y axis scale varies between plots) 
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Figure 12 The contact drag measurements for the fixed circular disks and cylindrical 

components plotted against weight per unit area from the 2013 trials on the coarser Dornach 

Firth sediment where each plot represents a different aspect ratio group (Note, the x and y 

axis scales vary between plots). The curves are quadratic regression with a zero intercept. 
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Figure 13 The contact drag measurements for the rolling circular disks and cylindrical 

components plotted against weight per unit area from the 2013 trials on the coarser Dornach 

Firth sediment where each plot represents a different aspect ratio group (Note, the x and y 

axis scales vary between plots). The curves are quadratic regression with a zero intercept. 
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Figure 14 The contact drag measurements for the rectangular doors plotted against weight 

per unit area from the 2013 trials on the coarser Dornach Firth sediment. 
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Figure 15. The contact drag measurements for the rolling circular disks and cylindrical 

components plotted against towing speed from the 2015 trials on the finer sediment east north 

east of Tarbat Ness where each plot represents a different aspect ratio group (Note, the x and 

y axis scales vary between plots). 
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Figure 16. Comparison of the fixed and rolling cylinders on the coarser Dornach Firth 

sediment. The black lines are the fitted curves of figure 11 for the fixed cylinders and disks. 

The grey lines are the fitted curves of figure 12 for the rolling cylinders and disks. The labels 

are the aspect ratio group that each curve represents. (The 0.5 curve for the fixed cylinders 

and disks cannot be distinguished from the 0.33 curve in this plot). 
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Figure 17 Comparison of the rolling cylinders and disks on the coarser and finer sediments. 

The grey lines are the fitted curves of figure 12 for the rolling cylinders and disks on the 

coarser Dornach Firth sediment. The black lines are the fitted curves of figure 14 for the 

rolling cylinders and disks on the finer sediment east north east of Tarbat Ness. The labels are 

the aspect ratio group that each curve represents. 
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Table 1. The dimensions and diameter to breadth ratio of the components tested during the 

experimental sea trials. The labels correspond to the diagrams of figure 4. 

 cylinders 

labels d 

(diameter) 

b  

(breadth)  

Aelem   

( = bd) 

d/b Godwin & O’Dogherty 

(2007) 

i 0.2 0.15 0.03 1.33 narrow 

ii 0.2 0.3 0.06 0.67 intermediate 

iii 0.2 0.6 0.12 0.33 wide 

v 0.3 0.225 0.0675 1.33 narrow 

vi 0.3 0.45 0.135 0.67 intermediate 

vii 0.3 0.6 0.18 0.5 intermediate 

ix 0.4 0.3 0.12 1.33 narrow 

x 0.4 0.6 0.24 0.67 intermediate 

 
disks 

 d 

(diameter) 

b  

(breadth)  

Aelem   

( = 

6bd) 

d/b Godwin & O’Dogherty 

(2007) 

iv 0.2 0.025 0.03 8 very narrow 

viii 0.3 0.0375 0.0675 8 very narrow 

xi 0.4 0.05 0.12 8 very narrow 

  

rectangular doors 

 h  

(height) 

b 

(breadth) 

Aelem   

( = hb) 

h/b t  

(thickness) 

xii 0.2 0.6 0.12 0.33 0.02 

xiii 0.3 0.6 0.18 0.5 0.02 

xiv 0.4 0.6 0.24 0.67 0.02 
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