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Abstract: Quantifying and partitioning evapotranspiration (ET) into evaporation (E) 15 

and transpiration (T) is challenging but important for interpreting vegetation effects on 16 

the water balance. We applied a model based on the theory of maximum entropy 17 

production (MEP) to estimate ET for shrubs for the first time in a low-energy humid 18 

headwater catchment in the Scottish Highlands. In total, 53% of rainfall over the 19 

growing season was returned to the atmosphere through ET (59±2% as transpiration), 20 

with 22% of rainfall ascribed to interception loss and understory ET. The remainder of 21 

rainfall percolated below the rooting zone. The MEP model showed good capability for 22 

total ET estimation, in addition to providing a first approximation for distinguishing E 23 

and T in such ecosystems. This study shows that this simple and low-cost approach has 24 

potential for local to regional ET estimation with availability of high-resolution 25 

hydroclimatic data. Limitations of the approach are also discussed.  26 

Key words: evapotranspiration; water balance; interception; climate change; northern 27 

uplands; maximum entropy production 28 
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1. Introduction 30 

Northern high latitude ecosystems are experiencing amplified climate warming 31 

(Serreze and Barry, 2011; IPCC, 2014) which has led to changes in the composition, 32 

density and distribution of vegetation communities in recent decades (Elmendorf et al., 33 

2012); for example, a northward advance of the tree-line replacing tundra shrubs 34 

(Serreze and Barry, 2011; Yu et al., 2014). Future drying and warming in growing 35 

seasons (Lindner et al., 2008) may lead to a reduction in subsurface water storage and 36 

streamflow due to increasing evapotranspiration (ET). In water-limited areas, annual 37 

ET can account for over 90% of precipitation (Wilcox et al., 2006). Whilst the 38 

evaporation (E) component of ET is essentially a water loss, transpiration (T) is 39 

related to biomass production (Kool et al., 2014), though constrained by both plant 40 

physiological and environmental factors such that stomata can respond to stress 41 

imposed by high vapor pressure deficit or low root-zone soil water content (Wang et 42 

al., 2014). The proportion of E dominates over bare soil and sparsely vegetated 43 

surfaces (Lu et al., 2017); while T is usually greater over densely vegetated areas and 44 

in energy limited regions (Miralles et al., 2011; Schlesinger and Jasechko, 2014). 45 

Estimating and partitioning ET is crucial to provide evidence for sustainable water 46 

management that targets high water use efficiency, especially in a time of marked 47 

environmental change. 48 

Whilst the physics are understood (Brutsaert, 1982; Allen et al., 1996), we still have 49 
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difficulties in estimating actual ET in the landscape. Kool et al., (2014) summarized 50 

ET partitioning methods ranging from field measurements to remote sensing 51 

algorithms. Eddy covariance and Bowen ratio techniques commonly provide total 52 

over-canopy ET measurements mostly in flat terrain and for homogeneous vegetation 53 

covers (Baldocchi et al., 2001). Other methods such as sap flow measurements 54 

(Granier, 1987) and mass balance of stable isotopes (Sutanto et al., 2012) can provide 55 

separate estimates of E and T. However, such field techniques are often difficult to 56 

extrapolate to a broader scale, and have high costs to setup and maintain instruments, 57 

particularly in remote areas with complex topography and heterogeneous vegetation 58 

cover (Caylor et al., 2006). Surface energy balance-based remote sensing algorithms 59 

(e.g., Shuttleworth and Wallace, 1985) can provide long-term ET estimates for large 60 

spatial areas, but usually are not able to provide ET at high spatiotemporal resolutions 61 

due to low satellite orbiting frequency and high cloud cover (Shwetha and Kumar, 62 

2015) in some high latitude regions. Hydrological models can help understand 63 

interlinkages between different water balance components, though such models 64 

usually require large input datasets (Chen et al., 2007) to calibrate parameters (often 65 

unidentifiable) commonly against streamflow (van Huijgevoort et al., 2016). ET 66 

parameterization in such models is either overly simple (e.g., van Huijgevoort et al., 67 

2016) or extremely complex (e.g., Noilhan and Planton, 1989). 68 

Recently, a novel and simple approach for ET estimation was proposed based on the 69 
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theory of maximum entropy production (MEP), and tested over dry land surfaces 70 

(Wang and Bras, 2009, 2011). The model only requires net radiation (Rn), temperature 71 

and specific humidity measured at soil and canopy surfaces for E and T estimation 72 

respectively. The model differs to conventional bulk transfer approaches in several 73 

ways (Bras, 2015): water and energy fluxes are estimated without using temperature 74 

and humidity gradients; wind speed and surface roughness are not needed to 75 

parameterize turbulent transport; and surface energy balance is always and 76 

automatically conserved. Notably, previous application of the MEP model was 77 

focused on either bare soil for evaporation or full vegetation cover for transpiration. 78 

Whilst total ET estimation using the MEP model over vegetated surfaces can 79 

substantially reduce measurement efforts, the approach has not yet been fully tested. 80 

Here, we focus on a humid, low-energy heather (Calluna vulgaris and Erica tetralix) 81 

shrub ecosystems in NE Scotland (Tetzlaff et al., 2015). Heather moorland is the third 82 

most extensive land cover in the UK (Stewart et al., 2008), and the characteristics of 83 

its growth, development and ecology have been well documented (Gimingham, 1960; 84 

MacDonald et al., 1995). However, the potential effects of the complex nature of 85 

heather canopy on water and energy exchange with atmosphere are not well 86 

investigated, and studies on water use and interception in heather-dominated areas are 87 

limited to several in the British uplands around 1980s and 1990s (Wallace et al., 1982; 88 

Calder et al., 1984; Miranda et al., 1984; Calder, 1986; Dunn and Mackay, 1995; 89 
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Haria and Price, 2000). Though annual ET is usually modest compared to other water 90 

budget components in the Scottish Highlands (Soulsby et al., 2015), its quantification 91 

is crucial for assessing the role of land use in water fluxes and stores (Calder, 1986; 92 

Ladekarl et al., 2005). Therefore, in this study we applied the MEP model to test its 93 

capability for providing total ET estimation and partitioning in such an ecosystem. 94 

Subsequently, we quantified the water budgets to enhance our understanding of the 95 

vegetation effects on water partitioning in terms of T, E and deep percolation. We also 96 

discussed the strengths and weaknesses of the approach in this environmental setting. 97 

2. Data and Methods 98 

2.1. Study site and measurements 99 

The Bruntland Burn (57.04ºN, 3.13ºW, Figure 1) in the Scottish Highlands represents a 100 

low-energy, high-humidity headwater catchment in northerly latitudes at the 101 

temperate/boreal transition (Tetzlaff et al., 2014; Soulsby et al., 2015). The catchment 102 

has an elevation of 250-500 m.a.s.l, with gentle slopes across most areas and only steep 103 

slopes in the upper areas. Annual precipitation (P) is over 1000 mm of which only <5% 104 

is snow. There are no distinct dry and wet seasons since P is fairly evenly distributed 105 

throughout the year, with a monthly average of 74±15 mm and a median of 68 mm over 106 

the last three decades. Annual mean air temperature (Ta) is ~6˚C and relative humidity 107 

(RH) is ~80%. Annual mean runoff at the outlet is ~700 mm (Soulsby et al., 2015). 108 

Winds are commonly moderate to strong, thus, vigorous turbulence often occurs over 109 
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the landscape. The majority of the catchment is covered by 0.3-0.6 m tall, dense 110 

closed-canopy heather overlying podzolic soils. Heather shrubs are evergreen with 111 

most roots in the upper 10 cm of the soils. Sphagnum spp. moss and other bryophytes 112 

form a dense understory beneath densely layered woody stem and branch networks of 113 

heather supporting the evergreen leaves. This results in very low light penetration 114 

through vegetation to the soil surface. Scots pine forest (Pinus sylvestris) is restricted 115 

to inaccessible steeper hillslopes and plantations near the catchment outlet, covering 116 

<10% of total catchment area. The riparian zones are covered by Sphagnum moss and 117 

grass (Molinia caerulea). 118 

<Figure 1 here> 119 

iButton sensors (DS1923 model, Maxim Integrated, USA) were attached to bamboo 120 

sticks hanging directly above the heather canopy (<5 cm from the top) (Figure 1c) to 121 

measure temperature and relative humidity (RH). The iButton sensors have a precision 122 

of ±0.5ºC and ±5% for temperature and RH, respectively. Sensors were shielded by two 123 

layers of white plastic bowls with the top layer wrapped by thick aluminum foils to 124 

avoid radiation influence while ensuring ventilation. To account for spatial variability 125 

of temperature and humidity above the heather canopy, 15 sensors were set up 2 m apart 126 

in an array of 3 by 5 in a representative plot, recording data every 30 min. In addition, 127 

air temperature (Ta), RH, net radiation (Rn), ground heat flux (G), wind speed/direction, 128 
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and air pressure were collected from an automatic weather station (1.8 m above ground) 129 

100 m away at 15-min intervals. 130 

Data were collected during two time periods (TP) over one calendar year: 31/07 to 131 

31/10 in 2015 (TP15), and 21/04 to 04/08 in 2016 (TP16). In addition, 22 throughfall 132 

collectors were placed under the heather canopies during 01/06-24/09 in 2015 to 133 

measure throughfall on a weekly basis (Braun et al., 2016). Collectors comprised an 134 

inner measuring cylinder, an open orifice with a mesh screen (to prevent leaf/litter 135 

blockage) that funnels throughfall to the cylinder, and a bottom supporting part buried 136 

in ground. 137 

2.2. Methods 138 

The MEP model formulates the entropy production function to include the latent heat 139 

flux term. Maximization of the function under the constraint of energy conservation 140 

leads to a unique partition of net radiation into latent, sensible and ground heat fluxes 141 

for different surfaces (Wang and Bras, 2009, 2011). In this study, we adapted the model 142 

for transpiration (T) estimation in equations (1-3): 143 

( ))(1 1 σλ −+

⋅
=

B

Rnck
T u      (1) 144 











−+= 1

36

11
16)( σσB      (2) 145 
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c

c
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cc
T

q

Rc
qT

λ
σ =      (3) 146 

Where ku is for unit conversion, equals to 3.6×106 for transpiration in mm/h. Rnc is net 147 

radiation at the canopy [W/m2]. λ is latent heat of vaporization [J/kg]. B(σ) is the 148 

reciprocal of the Bowen ratio. σ characterizes the phase-change related state of the 149 

evaporating surface, as a function of temperature (Tc, in ºC) and specific humidity (qc, 150 

in kg/kg) at the canopy surface, which in this study were the iButton measurements. cp 151 

is the specific heat capacity of air at constant pressure [1013 J/(kgºC]. Rv is the gas 152 

constant for water vapor [461.5 J/(kgºC)]. Transpiration was calculated at hourly 153 

intervals and then summed up to daily values. Night-time transpiration was assumed 154 

zero because T in this environment is primarily controlled by radiation (Wang et al., 155 

2017). 156 

Rnc was not directly measured but estimated based on Beer’s law: Rnc=Rn· (1-e- к· LAI), 157 

where Rn is net radiation measured at the weather station. Beer’s law has been 158 

commonly used for solar radiation allocation for canopy and soil (e.g., Ritchie, 1972; 159 

Wang et al., 2014a). It has been found that the Rn intercepted by canopy can also be 160 

calculated using the Beer’s law (Ross, 1981; Shuttleworth and Wallace, 1985; Yang et 161 

al., 2013), since Rn during daylight hours is primarily determined by the solar radiation, 162 

and net longwave radiation is dependent on surface-air temperature difference which is 163 

small in the catchment. LAI (leaf area index) measured using a plant canopy analyzer 164 

LAI-2200C (LI-COR Environmental, USA) was 3.0 which is unrealistically high, 165 

Page 9 of 30

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

10 

because the optical sensor placed at the bottom of heather plants viewed not only the 166 

small leaves but also the well-developed stems and highly layered branches from 167 

bottom to top (Figure 1d, e). We therefore adopted the value of 1.7 from Calder et al., 168 

(1984) derived for a similar environment. Average LAI extracted from MODIS 169 

products (500m, 8-day) in 2015 was 1.9 (Myneni and Park, 2015) comparable to the 170 

value used. κ is the light extinction coefficient prescribed as 0.56, the average value for 171 

global shrublands (Zhang et al., 2014). LAI and κ are influenced by canopy structure, 172 

leaf angle, solar angle (De Costa et al., 1992). A sensitivity analysis is given in Figure 173 

S1 in Supplementary Materials, which shows that variations in T and T/ET ratio were 174 

sensitive to κ·LAI (e.g. an increase in κ·LAI by 10% will cause a 0.04 mm/d increase 175 

in T and 3.5% increase in T/ET ratio, respectively). However, heather is a slow 176 

growing evergreen species (Gimingham, 1960), and once mature, its canopy structure 177 

changes little. The setting of a constant LAI and κ for a 12 months period was 178 

therefore deemed reasonable for this site. 179 

To estimate the total ET over the vegetated surface with the MEP model, we used Ta, 180 

RH, and Rn, G measured at a nearby weather station #1 (Figure 1). Comparisons of 181 

vapor pressure deficit at 3 weather stations in the catchment across a range of 182 

elevations (250-360 m.a.s.l, Figure S2 in Supplementary Materials) confirmed that 183 

there is a vapor equilibrium from the weather station #1 to an altitude ~100 m above. 184 

This indicates that the humid air is usually sufficiently mixed by winds from above 185 
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the heather canopies to higher levels, ensuring the ET based on measurements at the 186 

weather station representative in the area. Evaporation (E) was calculated as the 187 

difference between ET and T. Note that this E is theoretically likely composed of soil 188 

evaporation, moss transpiration and interception loss. 189 

To test the ET estimates from the MEP model, results were compared to those derived 190 

from more commonly used approaches. We used the FAO crop coefficient (Kc) 191 

method which has been used for ET estimation for various vegetation communities 192 

(Cammalleri et al., 2013; Rosa et al., 2016). Kc (0.70) was estimated from the MODIS 193 

8-day ET product during the growing seasons of 2015 and 2016 (Mu et al., 2011) in 194 

the study site pixel which is mostly covered by heather. The Kc value is consistent 195 

with Johnson (1991) for a similar catchment in central Scotland, and previous 196 

modeling work in the study catchment (Ala-aho et al., 2017). Two methods were used 197 

to calculate the potential evapotranspiration (pET) using meteorological data at the 198 

weather station #1: the Penman-Monteith equation (Allen et al., 1998), denoted as 199 

pETPM; and the Priestley-Taylor equation (Priestley and Taylor, 1972), denoted as 200 

pETPT. The Priestley-Taylor coefficient was set to the default value 1.26. Transpiration 201 

was compared to that derived from the widely applied Hydrus-1D model (Šimůnek et 202 

al., 2012). Soil hydraulic parameters were obtained from inverse modeling using the 203 

soil moisture observations at three depths. Inverse results (Figure S3 in 204 

Supplementary Materials) show that water balance estimates with Hydrus reproduced 205 
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the variations in soil moisture with R
2≥0.61 and root mean square error of 0.02 206 

cm3/cm3 for all three depths. This gives an independent comparison for the MEP 207 

results. More information of the Hydrus model setup, ancillary sampling and 208 

measurements can be found in the Supplementary Materials. 209 

Lastly, the water balance between observed rainfall and the MEP-estimated ET was 210 

calculated, to understand the role of heather in water partitioning in terms of 211 

transpiration and rainfall interception, and potential recharge to subsurface water 212 

storage. 213 

3. Results 214 

3.1. Daily dynamics of hydroclimatic variables 215 

<Figure 2 here> 216 

The two periods shared similar characteristics of temperature and humidity. Monitoring 217 

in 2015 (TP15, 93 days) coincided with cooling down from mid-summer to autumn 218 

with a mean daily Ta of 10.1±2.9ºC (mean ± one standard deviation), while TP16 (106 219 

days) was the spring warm up with a mean Ta of 10.6±3.6ºC (Figure 2a). RH was 220 

generally high during the two periods, averaging 80.7±7.0% and 76.1±8.0%, 221 

respectively. Rainfall in the two periods (167.2 and 292.2 mm) was 33% less and 30% 222 

more than the recent decadal average respectively. Net radiation (Rn) decreased 223 
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gradually in TP15 while large variation characterized TP16 mainly due to frequent 224 

rainfall and associated clouds. Evapotranspiration was primarily restricted by energy, 225 

reflected by a strong positive linear relationship between pET and Rn (R2≥0.87, 226 

p<0.001), followed by relative humidity (R2≥0.63, p<0.001). pET estimated by 227 

Priestley-Taylor equation is higher than that by Penman-Monteith equation. 228 

3.2. Evapotranspiration and its partitioning 229 

<Figure 3 here> 230 

Estimated ET and its components (Figure 3a-b) exhibited similar dynamics, and were 231 

generally higher in TP16 (spring/summer) than TP15 (summer/autumn). Variation of 232 

ET were consistent with radiation and pET in Figure 2. In total, estimated heather T 233 

(143.1 mm) was about 1.4 times higher than E (101.5 mm). The T/ET ratio during the 234 

entire study period varied from 0.55 to 0.66, with the average of 0.59±0.02 and median 235 

of 0.59, consistent in TP15 and TP16. T/ET ratio was generally high on rainy days when 236 

E was low and then became smaller on days after rain when the proportion of 237 

interception loss increased. The bands in Figure 3b demonstrate the upper and lower 238 

bounds for E and T based on standard deviation of daily Tc and RH. E increased on days 239 

shortly after rain, and then decreased towards zero when rain-free days were long 240 

enough. The T/ET ratio is also affected by the LAI and light extinction coefficient к 241 

(Figure S1). The sensitivity analysis shows that when к·LAI is increased by 10%, T 242 

increases by 0.04 mm/d and the T/ET ratio by 0.03; an increase of к·LAI by 50% results 243 
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in an increase of 0.17 mm/d in T and 0.14 in the T/ET ratio. As heather is a slow 244 

growing evergreen species and around 20 years old at the study site, an increase in the 245 

к·LAI by 50% gives an extreme illustration of potential effects, as such rapid growth 246 

would be impossible. Further, when LAI increases with vegetation growth, the total ET 247 

usually also increases (Hu et al., 2008). However, in this sensitivity analysis ET is 248 

calculated in the MEP model from hydroclimatic measurements at the weather station 249 

and therefore excludes vegetation growth effects on ET in the к·LAI increasing 250 

scenarios.  251 

The comparison of ET and T estimated by alternative methods showed that the MEP 252 

approach gave comparable estimations (Figure 3c-e). The crop coefficient method 253 

showed a good agreement with the MEP model for ET estimation when pET was 254 

calculated with the Penman-Monteith equation (R2=0.92 and a slope of 0.94). Using the 255 

potential ET from the Priestley-Taylor equation, however, overestimated ET by about 256 

21% compared to the MEP model, showing a linear regression slope of 0.79 and 257 

R
2=0.98 (p<0.001). This may indicate that the default Priestley-Taylor coefficient (1.26) 258 

is too high for this site. Regarding transpiration, the MEP model gave consistent results 259 

to the Hydrus-1D simulations, showing a linear regression slope of 0.88 (R2=0.74, 260 

p<0.001).  261 
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3.3. Water partitioning in the low-energy, shrub-dominated humid catchment 262 

<Table 1 here> 263 

A summary of rainfall, ET and its components, and potential percolation for the two 264 

study periods is given in Table 1. Based on the observations and the MEP modelling 265 

results, there was a total of 459.4 mm rainfall over the two periods, and 53.3% was 266 

returned to the atmosphere through ET. It is worth mentioning that E in this case 267 

comprised soil evaporation (Es), moss transpiration (Tm) and interception loss (Ei). Es 268 

and Tm can be very small because of low light penetration to the soil surface caused by 269 

the heather structure. Therefore, majority of the 22.1% of rainfall is most likely 270 

attributable to Ei from both heather leaves and stems. Summer surface runoff at the site 271 

does not occur due to flat terrain, low intensity of rainfall and high infiltration capacity, 272 

consequently 46.7% of rainfall percolated to the underlying soil/groundwater. 273 

4. Discussion 274 

4.1. Using the MEP model for total ET estimation 275 

Previous studies using the MEP model (Wang and Bras, 2011) focused on E and T 276 

estimations from bare soil and full vegetation surfaces at the plot scale. In this study, the 277 

agreement of ET from different methods suggests that the MEP model also has potential 278 

for estimating total ET over extensive homogenous vegetated surfaces. It is notable that 279 

the comparison in Figure 3c indicates that the default Priestley-Taylor coefficient 280 
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α=1.26 was too high for our site; α is usually smaller in humid areas (Weiß and Menzel, 281 

2008). To accommodate the actual ET estimation using the crop coefficient method, 282 

α=1.05 would be more realistic for our site (with a linear regression slope of 0.99 and 283 

R
2=0.98), which is consistent with other work in upland areas dominated by shrubs 284 

(Engstrom et al., 2002).  285 

To ensure the meteorological measurements at the weather station capture the total ET 286 

fluxes at this specific site, a vapor equilibrium from above the canopy to the level where 287 

Ta, RH and Rn were measured is required. This is similar to the practical setup of an 288 

eddy covariance tower (Baldocchi et al., 2001) to account for the contribution of soil 289 

and vegetation to the total ET flux within a suitable footprint. By comparing the vapor 290 

pressure deficit at 3 weather stations (Figure S2) located at different elevations in the 291 

catchment, we can confirm this equilibrium in our humid environment, at least from the 292 

weather station #1 to nearly 100 m higher. In this sense, this study potentially extends 293 

the application of the MEP model from a plot scale assessment of E and T from bare 294 

soils and vegetation canopies to ET estimation over a spatially extensive vegetated 295 

surface. One such integrated set of meteorological measurements at an appropriate 296 

height can be more cost-effective compared to concurrent measurements at both the soil 297 

and canopy surfaces. With the increasing availability of high-resolution assimilation 298 

data of Ta, q and Rn, G (Liston and Elder, 2006), and remote sensing techniques for 299 

partitioning land surface temperature into soil surface temperature and canopy surface 300 
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temperature (Yang and Shang, 2013), this may provide a step towards a feasible and 301 

efficient tool to map local to regional ET over more heterogeneous surfaces. 302 

4.2. ET partitioning and canopy water balance 303 

Despite the promising potential of the MEP model for total ET estimation, there are two 304 

major limitations in this study. Firstly, the difficulty of dividing E into specific 305 

components including Ei, Es, and Tm. Considering the high fractional vegetation cover, 306 

the dense closed heather canopy, and the high stem and branch density (MacDonald et 307 

al., 1995) that effectively attenuate light penetration, Es and Tm were expected to be 308 

small. From the perspective of energy balance, under-canopy available energy was 38.6% 309 

of the total based on the Beer’s law. Most of this radiation is intercepted by the layered 310 

stems and branches, and partly used to evaporate intercepted water when present; the 311 

rest was sensible heat to warm up the air. A very recent soil water isotope analysis 312 

shows that Es was <5% of net precipitation (Sprenger et al., 2017), equivalent to 3% of 313 

gross rain. Therefore, majority of E (22.1% of rainfall) over the entire study period 314 

would have been Ei, which is lower than the average estimate (28% of rainfall) for a 315 

catchment mixed with trees and shrubs near the Scotland-England border (Robinson et 316 

al., 1998).  317 

Secondly, there is a difficulty in completely distinguishing canopy evaporation from 318 

transpiration under wet conditions, because the iButton sensed Ta and RH will likely 319 
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include the influence of both T and Ei. The rainy day time (7:00-19:00) represented 320 

only 6.8% of the total day time (based on 15-min measurements). However, during 321 

such times, the site received >63% of the total rainfall. Apart from stemflow, the rest of 322 

interception would have been on the leaves and stems. The water on leaves evaporates 323 

first in a short time after rains when there is available energy, followed by transpiration. 324 

This is believed to be the main period when the effects of evaporation and transpiration 325 

on iButton sensed Tc and RH coexist. Storage on stem surfaces will evaporate with 326 

energy available below the canopy, but this process should not affect the measurements 327 

too much because of the sensors positions. This part of interception loss would have 328 

been the main source of E in addition to Es and Tm on rain-free days. Direct throughfall 329 

measurements in June-September 2015 indicated about 38% of rain was intercepted 330 

though stemflow was not measured (Braun et al., 2016). The estimated Ei was 20.8% of 331 

rainfall when both Es and Tm are assumed as 3% in the similar period. The difference 332 

could be explained by stemflow along the heather (17.2%) which is higher than some 333 

desert shrubs (~9%) (Li et al., 2016), but within the range for European shrubs (Llorens 334 

and Domingo, 2007). 335 

Over the entire study period, the residual rainfall (46.7%) after ET loss percolated into 336 

the deeper soils, because surface runoff is negligible at the study plot due to the flat 337 

terrain and permeable podzolic soils (Tetzlaff et al., 2007). Based on previous studies 338 

using geophysical surveys (Soulsby et al., 2016) and a tracer-aided model (Birkel et al., 339 
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2011), most of the excess rainfall beyond ET becomes storage in soils; then may later 340 

recharge groundwater (Tetzlaff et al., 2007), and contribute to downslope riparian 341 

zones and streams through subsurface lateral flow (Blumstock et al., 2016). The 342 

MEP-derived water balance highlights the qualitative and quantitative effects of 343 

vegetation on water partitioning and storage in heather dominated areas like the study 344 

site. This provides a benchmark for assessing the effects of land use change from 345 

management effects or projected future warmer conditions with dry summers and wet 346 

winters. 347 

5. Conclusions 348 

This study applied the MEP based ET model for the first time in a humid, low-energy 349 

headwater catchment. The model generally gave plausible estimates of total 350 

evapotranspiration and a first approximation of transpiration. The most encouraging 351 

finding of this study is that it shows the potential of the MEP model for assessing 352 

evaporation and transpiration under relatively uniform vegetation canopies, rather than 353 

the sharply contrasting (i.e. bare soil/vegetated conditions in previous applications). In 354 

the absence of measurements below the canopy it is difficult to precisely partition the 355 

evaporation into canopy evaporation and understory ET, though in the current study the 356 

latter is likely very small. Mixing of canopy evaporation and transpiration on wet days 357 

is also hard to separate with the measuring techniques in this study, though again in this 358 

case the effects are likely small and short in time. In total, over the study period, more 359 
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than half of rainfall was returned to the atmosphere by ET, and the remaining percolated 360 

to recharge soil and groundwater. Around one third of rainfall was lost through heather 361 

transpiration and 22% as interception loss and understory ET. Heather shrublands, with 362 

extensive spatial coverage play a crucial role in water flow and storage in Northern 363 

upland. Understanding this role may assist land and water management in the future. 364 
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Table 1 Daily average (± one standard deviation) of measured (rainfall) and estimated 

(evapotranspiration, transpiration, evaporation, and deep percolation) water balance 

components. Percentage of rainfall of total amount of each component over the study periods 

is also given below. 

 

Daily average (mm/d) Percent of rainfall 

31/07-

31/10/2015 

21/04-

04/08/2016 

31/07-

31/10/2015 

21/04-

04/08/2016 

Entire 

period 

Rainfall 1.80±3.2 2.76±5.8    

Evapotranspiration 0.91±0.6 1.51±0.7 50.4% 54.9% 53.3% 

Transpiration 0.53±0.3 0.89±0.4 29.2% 32.3% 31.2% 

Evaporation 0.38±0.3 0.62±0.3 21.2% 22.6% 22.1% 

Percolation 0.89±3.5 1.24±6.2 49.6% 45.1% 46.7% 
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Figure 1 (a) Location of the Bruntland Burn catchment on the map of Scotland; (b) Aerial photo of the 
catchment showing three major vegetation types in green (Scots pine), dark brown (heather), and light 
brown (grass), and locations of 3 weather stations, heather plot in this study, and stream gauge at the 

outlet; (c) Heather plot with iButton sensors hanging right above canopies; (d) Heather canopies in 
December 2016; and (e) Moss cover under heather at soil surface.  

 
254x190mm (150 x 150 DPI)  

 

 

Page 28 of 30

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 2 Daily dynamics of hydroclimatic variables at the weather station #1. (a) Air temperature (Ta), 
relative humidity (RH), and rainfall (P); (b) Net radiation (Rn) and potential evapotranspiration (pET). pETPT 
is pET calculated using the Priestley-Taylor equation, and pETPM is pET calculated using the Penman-Monteith 

equation. The gap separates the two measurement periods in 2015 and 2016.  
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Figure 3 (a) Daily dynamics of evapotranspiration (ET), T/ET ratio and precipitation (P). (b) daily dynamics 
of evaporation (E) and transpiration (T). The bands of E and T give the upper and lower limits estimated 

based on daily standard deviation of temperature and humidity. The gap separates the two periods in 2015 

and 2016. (c-d) Comparisons of ET estimated from the MEP model, FAO crop coefficient method with 
potential ET calculated by Priestley-Taylor and Penman-Monteith equations respectively. (e) Comparison of T 
by the MEP model and Hydrus-1D model. Dashed lines are 1:1 lines. Solid lines are from linear regression.  

 
217x145mm (300 x 300 DPI)  

 

 

Page 30 of 30

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


