Testing the Maximum Entropy Production approach for estimating evapotranspiration from closed canopy shrubland in a low-energy humid environment

Journal:	Hydrological Processes
Manuscript ID	HYP-17-0444.R2
Wiley - Manuscript type:	Scientific Briefing
Date Submitted by the Author:	n/a
Complete List of Authors:	Wang, Hailong; University of Aberdeen, School of Geosciences Tetzlaff, Doerthe; University of Aberdeen, Northern Rivers Institute, School of Geosciences Soulsby, Chris; University of Aberdeen, School of Geosciences
Keywords:	evapotranspiration, water balance, interception, climate change, northern uplands, maximum entropy production

1		
2		
3	1	Testing the Merinana Entropy Dechastics conneces for estimating
4	1	Testing the Maximum Entropy Production approach for estimating
5		
6	2	evapotranspiration from closed canopy shrubland in a low-energy humid
/		
8	2	inc t
9	3	environment
10		
12		
13	4	
14		
15		
16	5	Hailong Wang* Doerthe Tetzlaff Chris Soulshy
17	5	Hanong wang , Doertie Tetzian, emits Souisby
18		
19		
20	6	
21		
22		
23	7	Northern Rivers Institute, School of Geosciences, University of Aberdeen, AB24 3UE,
24		
20	0	United Vinadom
20	0	United Kingdom
28		
29		
30	9	*corresponding to hailong.wang@abdn.ac.uk; wh184@hotmail.com; +44 1224 272342
31		
32		
33	10	
34		
35		
36	11	
37	11	Emails of co-authors:
38		
39		
40	12	Doerthe Tetzlaff: <u>d.tetzlaff@abdn.ac.uk</u>
41		
43		
44	13	Chris Soulsby: c.soulsby@abdn.ac.uk
45		
46		
47	14	
48		
49		
50		
51		
52 52		
55 54		
55		
56		
57		
58		

1
2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
13
14
15
16
17
18
10
20
∠∪ 24
21
22
23
24
25
26
27
28
29
30
31
22
3Z 22
33
34
35
36
37
38
39
40
41
42
43
44
44 15
40
40
4/
48
49
50
51
52
53
54
55
56
57
50
20
59

60

15	Abstract: Quantifying and partitioning evapotranspiration (ET) into evaporation (E)
16	and transpiration (T) is challenging but important for interpreting vegetation effects on
17	the water balance. We applied a model based on the theory of maximum entropy
18	production (MEP) to estimate ET for shrubs for the first time in a low-energy humid
19	headwater catchment in the Scottish Highlands. In total, 53% of rainfall over the
20	growing season was returned to the atmosphere through ET (59±2% as transpiration),
21	with 22% of rainfall ascribed to interception loss and understory ET. The remainder of
22	rainfall percolated below the rooting zone. The MEP model showed good capability for
23	total ET estimation, in addition to providing a first approximation for distinguishing E
24	and T in such ecosystems. This study shows that this simple and low-cost approach has
25	potential for local to regional ET estimation with availability of high-resolution
26	hydroclimatic data. Limitations of the approach are also discussed.

27 Key words: evapotranspiration; water balance; interception; climate change; northern °ez 28 uplands; maximum entropy production

30 1. Introduction

30	1. Introduction
31	Northern high latitude ecosystems are experiencing amplified climate warming
32	(Serreze and Barry, 2011; IPCC, 2014) which has led to changes in the composition,
33	density and distribution of vegetation communities in recent decades (Elmendorf et al.,
34	2012); for example, a northward advance of the tree-line replacing tundra shrubs
35	(Serreze and Barry, 2011; Yu et al., 2014). Future drying and warming in growing
36	seasons (Lindner et al., 2008) may lead to a reduction in subsurface water storage and
37	streamflow due to increasing evapotranspiration (ET). In water-limited areas, annual
38	ET can account for over 90% of precipitation (Wilcox et al., 2006). Whilst the
39	evaporation (E) component of ET is essentially a water loss, transpiration (T) is
40	related to biomass production (Kool et al., 2014), though constrained by both plant
41	physiological and environmental factors such that stomata can respond to stress
42	imposed by high vapor pressure deficit or low root-zone soil water content (Wang et
43	al., 2014). The proportion of E dominates over bare soil and sparsely vegetated
44	surfaces (Lu <i>et al.</i> , 2017); while T is usually greater over densely vegetated areas and
45	in energy limited regions (Miralles et al., 2011; Schlesinger and Jasechko, 2014).
46	Estimating and partitioning ET is crucial to provide evidence for sustainable water
47	management that targets high water use efficiency, especially in a time of marked
48	environmental change.

Whilst the physics are understood (Brutsaert, 1982; Allen et al., 1996), we still have

1
2
2
1
4
5
6
7
8
9
10
14
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
33
22
34
35
36
37
38
39
40
0 ∕/1
40
42
43
44
45
46
47
48
- -0 /0
49 50
50
51
52
53
54
55
56
50
ວ/ ກ
58
59
60

50	difficulties in estimating actual ET in the landscape. Kool et al., (2014) summarized
51	ET partitioning methods ranging from field measurements to remote sensing
52	algorithms. Eddy covariance and Bowen ratio techniques commonly provide total
53	over-canopy ET measurements mostly in flat terrain and for homogeneous vegetation
54	covers (Baldocchi et al., 2001). Other methods such as sap flow measurements
55	(Granier, 1987) and mass balance of stable isotopes (Sutanto et al., 2012) can provide
56	separate estimates of E and T . However, such field techniques are often difficult to
57	extrapolate to a broader scale, and have high costs to setup and maintain instruments,
58	particularly in remote areas with complex topography and heterogeneous vegetation
59	cover (Caylor et al., 2006). Surface energy balance-based remote sensing algorithms
60	(e.g., Shuttleworth and Wallace, 1985) can provide long-term ET estimates for large
61	spatial areas, but usually are not able to provide <i>ET</i> at high spatiotemporal resolutions
62	due to low satellite orbiting frequency and high cloud cover (Shwetha and Kumar,
63	2015) in some high latitude regions. Hydrological models can help understand
64	interlinkages between different water balance components, though such models
65	usually require large input datasets (Chen et al., 2007) to calibrate parameters (often
66	unidentifiable) commonly against streamflow (van Huijgevoort et al., 2016). ET
67	parameterization in such models is either overly simple (e.g., van Huijgevoort et al.,
68	2016) or extremely complex (e.g., Noilhan and Planton, 1989).

69 Recently, a novel and simple approach for *ET* estimation was proposed based on the

Hydrological Processes

70	theory of maximum entropy production (MEP), and tested over dry land surfaces
71	(Wang and Bras, 2009, 2011). The model only requires net radiation (<i>Rn</i>), temperature
72	and specific humidity measured at soil and canopy surfaces for E and T estimation
73	respectively. The model differs to conventional bulk transfer approaches in several
74	ways (Bras, 2015): water and energy fluxes are estimated without using temperature
75	and humidity gradients; wind speed and surface roughness are not needed to
76	parameterize turbulent transport; and surface energy balance is always and
77	automatically conserved. Notably, previous application of the MEP model was
78	focused on either bare soil for evaporation or full vegetation cover for transpiration.
79	Whilst total ET estimation using the MEP model over vegetated surfaces can
80	substantially reduce measurement efforts, the approach has not yet been fully tested.

Here, we focus on a humid, low-energy heather (*Calluna vulgaris* and *Erica tetralix*) shrub ecosystems in NE Scotland (Tetzlaff et al., 2015). Heather moorland is the third most extensive land cover in the UK (Stewart et al., 2008), and the characteristics of its growth, development and ecology have been well documented (Gimingham, 1960; MacDonald et al., 1995). However, the potential effects of the complex nature of heather canopy on water and energy exchange with atmosphere are not well investigated, and studies on water use and interception in heather-dominated areas are limited to several in the British uplands around 1980s and 1990s (Wallace et al., 1982; Calder et al., 1984; Miranda et al., 1984; Calder, 1986; Dunn and Mackay, 1995;

3
4
5
6
7
8
à
3
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
24
34
35
36
37
38
39
40
<u>1</u> 1
40
42
43
44
45
46
47
48
10
00
51
52
53
54
55
56
50
ວ/ ເດ
58
59
60

90	Haria and Price, 2000). Though annual ET is usually modest compared to other water
91	budget components in the Scottish Highlands (Soulsby et al., 2015), its quantification
92	is crucial for assessing the role of land use in water fluxes and stores (Calder, 1986;
93	Ladekarl et al., 2005). Therefore, in this study we applied the MEP model to test its
94	capability for providing total ET estimation and partitioning in such an ecosystem.
95	Subsequently, we quantified the water budgets to enhance our understanding of the
96	vegetation effects on water partitioning in terms of T , E and deep percolation. We also
97	discussed the strengths and weaknesses of the approach in this environmental setting.

98 2. Data and Methods

99 2.1. Study site and measurements

100 The Bruntland Burn (57.04°N, 3.13°W, Figure 1) in the Scottish Highlands represents a 101 low-energy, high-humidity headwater catchment in northerly latitudes at the 102 temperate/boreal transition (Tetzlaff et al., 2014; Soulsby et al., 2015). The catchment 103 has an elevation of 250-500 m.a.s.l, with gentle slopes across most areas and only steep 104 slopes in the upper areas. Annual precipitation (P) is over 1000 mm of which only <5%105 is snow. There are no distinct dry and wet seasons since P is fairly evenly distributed 106 throughout the year, with a monthly average of 74±15 mm and a median of 68 mm over 107 the last three decades. Annual mean air temperature (Ta) is $\sim 6^{\circ}$ C and relative humidity 108 (RH) is ~80%. Annual mean runoff at the outlet is ~700 mm (Soulsby et al., 2015). 109 Winds are commonly moderate to strong, thus, vigorous turbulence often occurs over

Hydrological Processes

the landscape. The majority of the catchment is covered by 0.3-0.6 m tall, dense closed-canopy heather overlying podzolic soils. Heather shrubs are evergreen with most roots in the upper 10 cm of the soils. *Sphagnum* spp. moss and other bryophytes form a dense understory beneath densely layered woody stem and branch networks of heather supporting the evergreen leaves. This results in very low light penetration through vegetation to the soil surface. Scots pine forest (Pinus sylvestris) is restricted to inaccessible steeper hillslopes and plantations near the catchment outlet, covering <10% of total catchment area. The riparian zones are covered by *Sphagnum* moss and grass (Molinia caerulea).

<Figure 1 here>

iButton sensors (DS1923 model, Maxim Integrated, USA) were attached to bamboo sticks hanging directly above the heather canopy (≤ 5 cm from the top) (Figure 1c) to measure temperature and relative humidity (RH). The iButton sensors have a precision of $\pm 0.5^{\circ}$ C and $\pm 5\%$ for temperature and *RH*, respectively. Sensors were shielded by two layers of white plastic bowls with the top layer wrapped by thick aluminum foils to avoid radiation influence while ensuring ventilation. To account for spatial variability of temperature and humidity above the heather canopy, 15 sensors were set up 2 m apart in an array of 3 by 5 in a representative plot, recording data every 30 min. In addition, air temperature (Ta), RH, net radiation (Rn), ground heat flux (G), wind speed/direction,

and air pressure were collected from an automatic weather station (1.8 m above ground)100 m away at 15-min intervals.

Data were collected during two time periods (TP) over one calendar year: 31/07 to 31/10 in 2015 (TP15), and 21/04 to 04/08 in 2016 (TP16). In addition, 22 throughfall collectors were placed under the heather canopies during 01/06-24/09 in 2015 to measure throughfall on a weekly basis (Braun *et al.*, 2016). Collectors comprised an inner measuring cylinder, an open orifice with a mesh screen (to prevent leaf/litter blockage) that funnels throughfall to the cylinder, and a bottom supporting part buried in ground.

2.2. Methods

The MEP model formulates the entropy production function to include the latent heat flux term. Maximization of the function under the constraint of energy conservation leads to a unique partition of net radiation into latent, sensible and ground heat fluxes for different surfaces (Wang and Bras, 2009, 2011). In this study, we adapted the model for transpiration (T) estimation in equations (1-3):

$$T = \frac{k_u \cdot Rnc}{\lambda \left(1 + B^{-1}(\sigma) \right)} \tag{1}$$

145
$$B(\sigma) = 6\left(\sqrt{1 + \frac{11}{36}\sigma} - 1\right)$$
(2)

http://mc.manuscriptcentral.com/hyp

146
$$\sigma(T_c, q_c) = \frac{\lambda^2}{c_p R_v} \frac{q_c}{T_c^2}$$
(3)

Where k_{μ} is for unit conversion, equals to 3.6×10⁶ for transpiration in mm/h. *Rnc* is net radiation at the canopy $[W/m^2]$. λ is latent heat of vaporization [J/kg]. $B(\sigma)$ is the reciprocal of the Bowen ratio. σ characterizes the phase-change related state of the evaporating surface, as a function of temperature (T_c , in °C) and specific humidity (q_c , in kg/kg) at the canopy surface, which in this study were the iButton measurements. c_p is the specific heat capacity of air at constant pressure [1013 J/(kg°C]. R_v is the gas constant for water vapor [461.5 J/(kg°C)]. Transpiration was calculated at hourly intervals and then summed up to daily values. Night-time transpiration was assumed zero because T in this environment is primarily controlled by radiation (Wang et al., 2017).

Rnc was not directly measured but estimated based on Beer's law: $Rnc=Rn \cdot (1-e^{-\kappa \cdot LAI})$, where Rn is net radiation measured at the weather station. Beer's law has been commonly used for solar radiation allocation for canopy and soil (e.g., Ritchie, 1972; Wang et al., 2014a). It has been found that the Rn intercepted by canopy can also be calculated using the Beer's law (Ross, 1981; Shuttleworth and Wallace, 1985; Yang et al., 2013), since Rn during daylight hours is primarily determined by the solar radiation, and net longwave radiation is dependent on surface-air temperature difference which is small in the catchment. LAI (leaf area index) measured using a plant canopy analyzer LAI-2200C (LI-COR Environmental, USA) was 3.0 which is unrealistically high,

3
4
5
6
7
2 Q
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
32
33
34
35
36
37
38
30
40
40
41
42
43
44
45
46
<u>1</u> 7
+1 10
40
49
50
51
52
53
54
55
55
20
5/
58
59
60

166	because the optical sensor placed at the bottom of heather plants viewed not only the
167	small leaves but also the well-developed stems and highly layered branches from
168	bottom to top (Figure 1d, e). We therefore adopted the value of 1.7 from Calder et al.,
169	(1984) derived for a similar environment. Average LAI extracted from MODIS
170	products (500m, 8-day) in 2015 was 1.9 (Myneni and Park, 2015) comparable to the
171	value used. κ is the light extinction coefficient prescribed as 0.56, the average value for
172	global shrublands (Zhang <i>et al.</i> , 2014). <i>LAI</i> and κ are influenced by canopy structure,
173	leaf angle, solar angle (De Costa et al., 1992). A sensitivity analysis is given in Figure
174	S1 in Supplementary Materials, which shows that variations in T and T/ET ratio were
175	sensitive to $\kappa \cdot LAI$ (e.g. an increase in $\kappa \cdot LAI$ by 10% will cause a 0.04 mm/d increase
176	in T and 3.5% increase in T/ET ratio, respectively). However, heather is a slow
177	growing evergreen species (Gimingham, 1960), and once mature, its canopy structure
178	changes little. The setting of a constant LAI and κ for a 12 months period was
179	therefore deemed reasonable for this site.

To estimate the total *ET* over the vegetated surface with the MEP model, we used *Ta*, *RH*, and *Rn*, *G* measured at a nearby weather station #1 (Figure 1). Comparisons of vapor pressure deficit at 3 weather stations in the catchment across a range of elevations (250-360 m.a.s.l, Figure S2 in Supplementary Materials) confirmed that there is a vapor equilibrium from the weather station #1 to an altitude ~100 m above. This indicates that the humid air is usually sufficiently mixed by winds from above

Hydrological Processes

the heather canopies to higher levels, ensuring the ET based on measurements at the weather station representative in the area. Evaporation (E) was calculated as the difference between ET and T. Note that this E is theoretically likely composed of soil evaporation, moss transpiration and interception loss.

To test the *ET* estimates from the MEP model, results were compared to those derived from more commonly used approaches. We used the FAO crop coefficient (Kc) method which has been used for ET estimation for various vegetation communities (Cammalleri et al., 2013; Rosa et al., 2016). Kc (0.70) was estimated from the MODIS 8-day ET product during the growing seasons of 2015 and 2016 (Mu et al., 2011) in the study site pixel which is mostly covered by heather. The Kc value is consistent with Johnson (1991) for a similar catchment in central Scotland, and previous modeling work in the study catchment (Ala-aho et al., 2017). Two methods were used to calculate the potential evapotranspiration (pET) using meteorological data at the weather station #1: the Penman-Monteith equation (Allen et al., 1998), denoted as pET_{PM} ; and the Priestley-Taylor equation (Priestley and Taylor, 1972), denoted as pET_{PT} . The Priestley-Taylor coefficient was set to the default value 1.26. Transpiration was compared to that derived from the widely applied Hydrus-1D model (Simunek et al., 2012). Soil hydraulic parameters were obtained from inverse modeling using the soil moisture observations at three depths. Inverse results (Figure S3 in Supplementary Materials) show that water balance estimates with Hydrus reproduced

the variations in soil moisture with $R^2 \ge 0.61$ and root mean square error of 0.02 cm^3/cm^3 for all three depths. This gives an independent comparison for the MEP results. More information of the Hydrus model setup, ancillary sampling and measurements can be found in the Supplementary Materials.

Lastly, the water balance between observed rainfall and the MEP-estimated *ET* was calculated, to understand the role of heather in water partitioning in terms of transpiration and rainfall interception, and potential recharge to subsurface water storage.

- **3. Results**
- **3.1. Daily dynamics of hydroclimatic variables**

<Figure 2 here>

The two periods shared similar characteristics of temperature and humidity. Monitoring in 2015 (TP15, 93 days) coincided with cooling down from mid-summer to autumn with a mean daily *Ta* of $10.1\pm2.9^{\circ}$ C (mean \pm one standard deviation), while TP16 (106 days) was the spring warm up with a mean *Ta* of $10.6\pm3.6^{\circ}$ C (Figure 2a). *RH* was generally high during the two periods, averaging $80.7\pm7.0\%$ and $76.1\pm8.0\%$, respectively. Rainfall in the two periods (167.2 and 292.2 mm) was 33\% less and 30% more than the recent decadal average respectively. Net radiation (*Rn*) decreased

gradually in TP15 while large variation characterized TP16 mainly due to frequent rainfall and associated clouds. Evapotranspiration was primarily restricted by energy, reflected by a strong positive linear relationship between *pET* and *Rn* ($R^2 \ge 0.87$, p<0.001), followed by relative humidity ($R^2 \ge 0.63$, p<0.001). *pET* estimated by Priestley-Taylor equation is higher than that by Penman-Monteith equation.

3.2. Evapotranspiration and its partitioning

<Figure 3 here>

Estimated ET and its components (Figure 3a-b) exhibited similar dynamics, and were generally higher in TP16 (spring/summer) than TP15 (summer/autumn). Variation of ET were consistent with radiation and pET in Figure 2. In total, estimated heather T (143.1 mm) was about 1.4 times higher than E (101.5 mm). The T/ET ratio during the entire study period varied from 0.55 to 0.66, with the average of 0.59 ± 0.02 and median of 0.59, consistent in TP15 and TP16. *T/ET* ratio was generally high on rainy days when E was low and then became smaller on days after rain when the proportion of interception loss increased. The bands in Figure 3b demonstrate the upper and lower bounds for E and T based on standard deviation of daily Tc and RH. E increased on days shortly after rain, and then decreased towards zero when rain-free days were long enough. The T/ET ratio is also affected by the LAI and light extinction coefficient κ (Figure S1). The sensitivity analysis shows that when $\kappa \cdot LAI$ is increased by 10%, T increases by 0.04 mm/d and the T/ET ratio by 0.03; an increase of $\kappa \cdot LAI$ by 50% results

2
3
4
5
5
0
1
8
9
10
11
12
12
13
14
15
16
17
18
19
20
20 24
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
12
44
45
46
47
48
49
50
50
51
5Z
53
54
55
56
57
58
50
09
b ()

244 in an increase of 0.17 mm/d in T and 0.14 in the T/ET ratio. As heather is a slow 245 growing evergreen species and around 20 years old at the study site, an increase in the 246 κ -LAI by 50% gives an extreme illustration of potential effects, as such rapid growth 247 would be impossible. Further, when LAI increases with vegetation growth, the total ET 248 usually also increases (Hu et al., 2008). However, in this sensitivity analysis ET is 249 calculated in the MEP model from hydroclimatic measurements at the weather station 250 and therefore excludes vegetation growth effects on ET in the κ -LAI increasing 251 scenarios.

252 The comparison of ET and T estimated by alternative methods showed that the MEP 253 approach gave comparable estimations (Figure 3c-e). The crop coefficient method 254 showed a good agreement with the MEP model for ET estimation when pET was calculated with the Penman-Monteith equation $(R^2=0.92 \text{ and a slope of } 0.94)$. Using the 255 256 potential ET from the Priestley-Taylor equation, however, overestimated ET by about 257 21% compared to the MEP model, showing a linear regression slope of 0.79 and 258 R^2 =0.98 (p<0.001). This may indicate that the default Priestley-Taylor coefficient (1.26) 259 is too high for this site. Regarding transpiration, the MEP model gave consistent results 260 to the Hydrus-1D simulations, showing a linear regression slope of 0.88 ($R^2=0.74$, 261 *p*<0.001).

262	3.3. Water partitioning in the low-energy, shrub-dominated humid catchment
263	<table 1="" here=""></table>

264	A summary of rainfall, ET and its components, and potential percolation for the two
265	study periods is given in Table 1. Based on the observations and the MEP modelling
266	results, there was a total of 459.4 mm rainfall over the two periods, and 53.3% was
267	returned to the atmosphere through ET . It is worth mentioning that E in this case
268	comprised soil evaporation (<i>Es</i>), moss transpiration (T_m) and interception loss (<i>Ei</i>). <i>Es</i>
269	and T_m can be very small because of low light penetration to the soil surface caused by
270	the heather structure. Therefore, majority of the 22.1% of rainfall is most likely
271	attributable to <i>Ei</i> from both heather leaves and stems. Summer surface runoff at the site
272	does not occur due to flat terrain, low intensity of rainfall and high infiltration capacity,
273	consequently 46.7% of rainfall percolated to the underlying soil/groundwater.

4. Discussion

4.1. Using the MEP model for total *ET* estimation

276 Previous studies using the MEP model (Wang and Bras, 2011) focused on E and T277 estimations from bare soil and full vegetation surfaces at the plot scale. In this study, the 278 agreement of ET from different methods suggests that the MEP model also has potential 279 for estimating total ET over extensive homogenous vegetated surfaces. It is notable that 280 the comparison in Figure 3c indicates that the default Priestley-Taylor coefficient

http://mc.manuscriptcentral.com/hyp

 α =1.26 was too high for our site; α is usually smaller in humid areas (Weiß and Menzel, 282 2008). To accommodate the actual *ET* estimation using the crop coefficient method, 283 α =1.05 would be more realistic for our site (with a linear regression slope of 0.99 and 284 R^2 =0.98), which is consistent with other work in upland areas dominated by shrubs 285 (Engstrom *et al.*, 2002).

To ensure the meteorological measurements at the weather station capture the total ETfluxes at this specific site, a vapor equilibrium from above the canopy to the level where Ta, RH and Rn were measured is required. This is similar to the practical setup of an eddy covariance tower (Baldocchi et al., 2001) to account for the contribution of soil and vegetation to the total ET flux within a suitable footprint. By comparing the vapor pressure deficit at 3 weather stations (Figure S2) located at different elevations in the catchment, we can confirm this equilibrium in our humid environment, at least from the weather station #1 to nearly 100 m higher. In this sense, this study potentially extends the application of the MEP model from a plot scale assessment of E and T from bare soils and vegetation canopies to ET estimation over a spatially extensive vegetated surface. One such integrated set of meteorological measurements at an appropriate height can be more cost-effective compared to concurrent measurements at both the soil and canopy surfaces. With the increasing availability of high-resolution assimilation data of Ta, q and Rn, G (Liston and Elder, 2006), and remote sensing techniques for partitioning land surface temperature into soil surface temperature and canopy surface

Hydrological Processes

temperature (Yang and Shang, 2013), this may provide a step towards a feasible and
efficient tool to map local to regional *ET* over more heterogeneous surfaces.

4.2. ET partitioning and canopy water balance

Despite the promising potential of the MEP model for total ET estimation, there are two major limitations in this study. Firstly, the difficulty of dividing E into specific components including *Ei*, *Es*, and *Tm*. Considering the high fractional vegetation cover, the dense closed heather canopy, and the high stem and branch density (MacDonald et al., 1995) that effectively attenuate light penetration, Es and Tm were expected to be small. From the perspective of energy balance, under-canopy available energy was 38.6% of the total based on the Beer's law. Most of this radiation is intercepted by the layered stems and branches, and partly used to evaporate intercepted water when present; the rest was sensible heat to warm up the air. A very recent soil water isotope analysis shows that *Es* was <5% of net precipitation (Sprenger *et al.*, 2017), equivalent to 3% of gross rain. Therefore, majority of E (22.1% of rainfall) over the entire study period would have been *Ei*, which is lower than the average estimate (28% of rainfall) for a catchment mixed with trees and shrubs near the Scotland-England border (Robinson et al., 1998).

318 Secondly, there is a difficulty in completely distinguishing canopy evaporation from

transpiration under wet conditions, because the iButton sensed Ta and RH will likely

3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
43
44
 15
40
40
47
48
49
50
51
52
53
50
54
22
56
57
58
59
60

320	include the influence of both T and Ei . The rainy day time (7:00-19:00) represented
321	only 6.8% of the total day time (based on 15-min measurements). However, during
322	such times, the site received >63% of the total rainfall. Apart from stemflow, the rest of
323	interception would have been on the leaves and stems. The water on leaves evaporates
324	first in a short time after rains when there is available energy, followed by transpiration.
325	This is believed to be the main period when the effects of evaporation and transpiration
326	on iButton sensed Tc and RH coexist. Storage on stem surfaces will evaporate with
327	energy available below the canopy, but this process should not affect the measurements
328	too much because of the sensors positions. This part of interception loss would have
329	been the main source of E in addition to Es and Tm on rain-free days. Direct throughfall
330	measurements in June-September 2015 indicated about 38% of rain was intercepted
331	though stemflow was not measured (Braun et al., 2016). The estimated Ei was 20.8% of
332	rainfall when both <i>Es</i> and <i>Tm</i> are assumed as 3% in the similar period. The difference
333	could be explained by stemflow along the heather (17.2%) which is higher than some
334	desert shrubs (~9%) (Li et al., 2016), but within the range for European shrubs (Llorens
335	and Domingo, 2007).

Over the entire study period, the residual rainfall (46.7%) after *ET* loss percolated into the deeper soils, because surface runoff is negligible at the study plot due to the flat terrain and permeable podzolic soils (Tetzlaff *et al.*, 2007). Based on previous studies using geophysical surveys (Soulsby *et al.*, 2016) and a tracer-aided model (Birkel *et al.*,

Hydrological Processes

2011), most of the excess rainfall beyond ET becomes storage in soils; then may later recharge groundwater (Tetzlaff *et al.*, 2007), and contribute to downslope riparian zones and streams through subsurface lateral flow (Blumstock et al., 2016). The MEP-derived water balance highlights the qualitative and quantitative effects of vegetation on water partitioning and storage in heather dominated areas like the study site. This provides a benchmark for assessing the effects of land use change from management effects or projected future warmer conditions with dry summers and wet winters.

5. Conclusions

This study applied the MEP based ET model for the first time in a humid, low-energy headwater catchment. The model generally gave plausible estimates of total evapotranspiration and a first approximation of transpiration. The most encouraging finding of this study is that it shows the potential of the MEP model for assessing evaporation and transpiration under relatively uniform vegetation canopies, rather than the sharply contrasting (i.e. bare soil/vegetated conditions in previous applications). In the absence of measurements below the canopy it is difficult to precisely partition the evaporation into canopy evaporation and understory ET, though in the current study the latter is likely very small. Mixing of canopy evaporation and transpiration on wet days is also hard to separate with the measuring techniques in this study, though again in this case the effects are likely small and short in time. In total, over the study period, more

360	than half of rainfall was returned to the atmosphere by ET, and the remaining percolated
361	to recharge soil and groundwater. Around one third of rainfall was lost through heather
362	transpiration and 22% as interception loss and understory ET. Heather shrublands, with
363	extensive spatial coverage play a crucial role in water flow and storage in Northern
364	upland. Understanding this role may assist land and water management in the future.
365	Acknowledgements
366	We would like to thank The Leverhulme Trust (project PLATO, RPG-2014-016) and
367	the European Research Council (ERC, project GA 335910 VeWa) for funding. We also
368	thank three anonymous reviewers for their invaluable comments that improved the
369	manuscript substantially. Data in this study can be accessed upon request to the authors.
370	References
371	Ala-aho P. Soulsby C. Wang H. Tetzlaff D. 2017. Integrated surface-subsurface model
372	to investigate the role of groundwater in headwater catchment runoff generation: a
373	minimalist approach to parameterisation. Journal of Hydrology DOI:
374	10.1016/i.ihvdrol.2017.02.023
375	Allen RG, Pereira LS, Raes D, Smith M, 1998, Crop evapotranspiration - Guidelines
376	for computing crop water requirements - FAO Irrigation and drainage paper 56.
377	<i>Irrigation and Drainage</i> : 1–15 DOI: 10.1016/j.eja.2010.12.001
378	Allen RG, Pruitt WO, Businger JA, Fritschen LJ, Jensen ME, Quinn FH. 1996.
379	Evaporation and Transpiration. In <i>Hydrology Handbook</i> American Society of
380	Civil Engineers: New York, NY; 125–252. DOI: 10.1061/9780784401385.ch04
381	Baldocchi DD, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P. Bernhofer
382	C, Davis K, Evans R, et al. 2001. FLUXNET : A New Tool to Study the Temporal
383	and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and
384	Energy Flux Densities. Bulletin of the American Meteorological Society 82

- 385 (February): 2415–2434 DOI:

Hydrological Processes

2		
3	386	10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
4	387	Birkel C, Soulsby C, Tetzlaff D. 2011. Modelling catchment-scale water storage
5	388	dynamics: Reconciling dynamic storage with tracer-inferred passive storage
0 7	380	Hydrological Processes 75 (25): 3024–3026 DOI: 10.1002/hym.8201
8	200	$\frac{11}{2} \frac{11}{2} \frac$
9	390	Blumstock M, Tetzian D, Dick JJ, Nuetzmann G, Souisby C. 2016. Spatial
10	391	organization of groundwater dynamics and streamflow response from different
11	392	hydropedological units in a montane catchment. <i>Hydrological Processes</i> 30 (21):
12	393	3735–3753 DOI: 10.1002/hyp.10848
13 14	394	Bras RL. 2015. Complexity and organization in hydrology: A personal view. Water
15	395	Resources Research 51 (8): 6532–6548 DOI: 10.1002/2015WR016958
16	396	Braun H Tetzlaff D Soulsby C Weiler M 2016 Influence of vegetation canonies on
17	397	precipitation partitioning and isotone fractionation in porthern unland
18	200	establight FOLL Constal Assembly, hold 17.22 April 2016; Vienna Austria:
19	398	catchinents.EGU General Assembly, neid 17-22 April, 2016. Vienna Austria,
20	399	p.498.
22	400	Brutsaert W. 1982. Evaporation into the atmosphere: Theory, history, and applications.
23	401	Springer Netherlands. DOI: 10.1007/978-94-017-1497-6
24	402	Calder IR. 1986. The influence of land use on water yield in upland areas of the U.K.
25	403	Journal of Hydrology 88 (3–4): 201–211 DOI: 10.1016/0022-1694(86)90091-0
20 27	404	Calder IR, Hall RL, Harding RJ, Wright IR. 1984. The Use of a Wet-Surface Weighing
28	405	Lysimeter System in Rainfall Interception Studies of Heather (calluna yulgaris)
29	406	Journal of Climate and Applied Meteorology 23 (3): 461–473 DOI: Doi
30	407	10 1175/1520 0450(1084)023<0461:Tuonwes>2 0 Co:2
31	407	10.1175/1520-0450(1984)025 < 0401.100aws > 2.0.00,2
<i>उ∠</i> २२	408	Cammanen C, Ciraolo G, Minacapini M, Rano G. 2013. Evaporanspiration from an
34	409	Olive Orchard using Remote Sensing-Based Dual Crop Coefficient Approach.
35	410	Water Resources Management 27 (14): 4877–4895 DOI:
36	411	10.1007/s11269-013-0444-7
37	412	Caylor KK, D'Odorico P, Rodriguez-Iturbe I. 2006. On the ecohydrology of
30	413	structurally heterogeneous semiarid landscapes. Water Resources Research 42 (7):
40	414	n/a-n/a DOI: 10.1029/2005WR004683
41	415	Chen F. Manning KW. Lemone MA. Trier SB. Alfieri JG. Roberts R. Tewari M.
42	416	Nivogi D Horst TW Oncley SP et al 2007 Description and evaluation of the
43	/17	characteristics of the NCAR high resolution land data assimilation system
44 45	-117 /10	Loweral of Applied Meteorology and Climatology 46 (6): 604 712 DOI:
46	410	Journal of Applied Meleorology and Climatology 40 (0). $094-713$ DOI.
47	419	10.11/5/JAM2463.1
48	420	De Costa WAJM, Dennett MD, Biomass I, Index LA. 1992. Is Canopy Light Extinction
49	421	Coefficient a Species - Specific Constant? Tropical Agricultural Research 4
50 51	422	Dunn SM, Mackay R. 1995. Spatial variation in evapotranspiration and the influence of
52	423	land use on catchment hydrology. Journal of Hydrology 171 (1–2): 49–73 DOI:
53	424	10.1016/0022-1694(95)02733-6
54	425	Elmendorf SC, Henry GHR, Hollister RD, Biörk RG, Boulanger-Lapointe N Cooper
55	426	EL Cornelissen IHC Day TA Dorrepaal E Elumeeva TG et al 2012 Plot-scale
56	120	evidence of tundra vegetation change and links to recent summer warming. Nature
58	4 <i>∠</i> /	evidence of tundra vegetation change and miks to recent summer walling. Nature
59		21
60		

428	Climate Change 2 (6): 453-457 DOI: 10.1038/nclimate1465
429	Engstrom RN, Hope AS, Stow DA, Vourlitis GL, Oechel WC. 2002. Priestley-Taylor
430	alpha coefficient: variability and relationship to NDVI in Arctic tundra landscapes.
431	Journal of the American Water Resources Association 38 (6): 1647–1659 DOI:
432	10.1111/j.1752-1688.2002.tb04371.x
433	Gimingham CH. 1960. Calluna vulgaris (L.) Hull. Journal of Ecology 48 (2): 455-483
434	DOI: 10.2307/2257528
435	Granier A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap
436	flow measurements. Tree Physiology 3 (0): 309–320
437	Haria AH, Price DJ. 2000. Evaporation from Scots pine (Pinus sylvestris) following
438	natural re-colonisation of the Cairngorm mountains, Scotland. Hydrology and
439	Earth System Sciences 4 (3): 451–461 DOI: 10.5194/hess-4-451-2000
440	Hu Z, Yu G, Fu Y, Sun X, Li Y, Shi P, Wang Y, Zheng Z. 2008. Effects of vegetation
441	control on ecosystem water use efficiency within and among four grassland
442	ecosystems in China. Global Change Biology 14 (7): 1609–1619 DOI:
443	10.1111/j.1365-2486.2008.01582.x
444	van Huijgevoort MHJ, Tetzlaff D, Sutanudjaja EH, Soulsby C. 2016. Using high
445	resolution tracer data to constrain water storage, flux and age estimates in a
446	spatially distributed rainfall-runoff model. Hydrological Processes 30 (25): 4761–
447	4778 DOI: 10.1002/hyp.10902
448	IPCC. 2014. Summary for Policymakers. In Climate Change 2014: Impacts,
449	Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution
450	of Working Group II to the Fifth Assessment Report of the Intergovernmental
451	Panel on Climate Change1–32. DOI: 10.1016/j.renene.2009.11.012
452	Johnson R. 1991. Effects of upland afforestation on water resources. The Balquhidder
453	experiment 1981-1991. In Report Institute of Hydrology.
454	Kool D, Agam N, Lazarovitch N, Heitman JL, Sauer TJ, Ben-Gal A. 2014. A review of
455	approaches for evapotranspiration partitioning. Agricultural and Forest
456	Meteorology 184: 56–70 DOI: 10.1016/j.agrformet.2013.09.003
457	Ladekarl UL, Rasmussen KR, Christensen S, Jensen KH, Hansen B. 2005.
458	Groundwater recharge and evapotranspiration for two natural ecosystems covered
459	with oak and heather. Journal of Hydrology 300 (1–4): 76–99 DOI:
460	10.1016/j.jhydrol.2004.05.003
461	Li L, Li X-Y, Zhang S-Y, Jiang Z-Y, Zheng X-R, Hu X, Huang Y-M. 2016. Stemflow
462	and its controlling factors in the subshrub Artemisia ordosica during two
463	contrasting growth stages in the Mu Us sandy land of northern China. Hydrology
464	<i>Research</i> 47 (2): 409–418 DOI: 10.2166/nh.2015.253
465	Lindner M, Garcia-Gonzalo J, Kolström M, Green T, Reguera R, Maroschek M, Seidl
466	R, Lexer MJ, Netherer S, Schopf A, et al. 2008. Impacts of Climate Change on
467	European Forests and Options for Adaptation
468	Liston GE, Elder K. 2006. A Meteorological Distribution System for High-Resolution
469	Terrestrial Modeling (MicroMet). Journal of Hydrometeorology 7 (2): 217–234
	22

Hydrological Processes

470	DOI: 10 1175/IHM486 1
471	Llorens P. Domingo F. 2007. Rainfall partitioning by vegetation under Mediterranean
472	conditions A review of studies in Europe <i>Journal of Hydrology</i> 335 (1–2): 37–54
473	DOI: 10.1016/i.ihvdrol.2006.10.032
474	Lu X, Liang LL, Wang L, Jenerette GD, McCabe MF, Grantz DA, 2017, Partitioning of
475	evapotranspiration using a stable isotope technique in an arid and high
476	temperature agricultural production system. Agricultural Water Management 179:
477	103–109 DOI: 10.1016/j.agwat.2016.08.012
478	MacDonald AJ, Kirkpatrick AH, Hester AJ, Sydes C. 1995. Regeneration by natural
479	layering of heather (Calluna vulgaris): frequency and characteristics in upland
480	Britain. Journal of Applied Ecology 32 (1): 85–99 DOI: 10.2307/2404418
481	Miralles DG, De Jeu RAM, Gash JH, Holmes TRH, Dolman AJ. 2011. Magnitude and
482	variability of land evaporation and its components at the global scale. <i>Hydrology</i>
483	and Earth System Sciences 15 (3): 967–981 DOI: 10.5194/hess-15-967-2011
484	Miranda AC, Jarvis PG, Grace J. 1984. Transpiration and evaporation from heather
485	Moorland. Boundary-Layer Meteorology 28 (3–4): 227–243 DOI:
486	10.1007/BF00121306
487	Mu Q, Zhao M, Running SW. 2011. Improvements to a MODIS global terrestrial
488	evapotranspiration algorithm. Remote Sensing of Environment 115 (8): 1781-
489	1800 DOI: 10.1016/j.rse.2011.02.019
490	Myneni R, Park YKT. 2015. MCD15A2H MODIS/Terra+Aqua Leaf Area
491	Index/FPAR 8-day L4 Global 500m SIN Grid V006. NASA EOSDIS Land
492	<i>Processes DAAC</i> Available at: https://doi.org/10.5067/MODIS/MCD15A2H.006
493	Noilhan J, Planton S. 1989. A Simple Parameterization of Land Surface Processes for
494	Meteorological Models. Monthly Weather Review 117 (3): 536-549 DOI:
495	10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2
496	Priestley CHB, Taylor RJ. 1972. On the Assessment of Surface Heat Flux and
497	Evaporation Using Large-Scale Parameters. Monthly Weather Review 100 (2):
498	81–92 DOI: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
499	Ritchie JT. 1972. Model for predicting evaporation from a row crop with incomplete
500	cover. <i>Water Resources Research</i> 8 (5): 1204–1213 DOI:
501	10.1029/WR008i005p01204
502	Robinson M, Moore RE, Nisbet TR, Blackle JR. 1998. From moorland to forest : the
503	Coalburn catchment experiment. (133) : 24–27 Available at:
504	http://nora.nerc.ac.uk//3/2/1/IH_133.pdf [Accessed 12 June 2017]
505	Rosa RD, Ramos IB, Pereira LS. 2016. The dual Kc approach to assess maize and
506	sweet sorghum transpiration and soil evaporation under saline conditions:
507	Application of the SIMDualKe model. Agricultural water Management 177: 77–
508	94 DOI: 10.1016/j.agwat.2016.06.028 Dess L 1081 The rediction regime and architecture of plant stands. In Techn for
510	Koss J. 1961. The radiation regime and architecture of plant stands. In <i>Tasks for</i>
510	10 1007/078 04 000 8647 2
311	10.100//9/0-94-009-004/-3
	23

512 513	Schlesinger WH, Jasechko S. 2014. Transpiration in the global water cycle. <i>Agricultural and Forest Meteorology</i> 189–190 : 115–117 DOI:
514	10.1016/j.agrformet.2014.01.011
515	Serreze MC, Barry RG. 2011. Processes and impacts of Arctic amplification: A
516	research synthesis. Global and Planetary Change 77 (1-2): 85-96 DOI:
517	10.1016/j.gloplacha.2011.03.004
518	Shuttleworth WJ, Wallace JS. 1985. Evaporation From Spare Crops - An Energy
519	Combination Theory. Quarterly Journal of The Royal Meteorological Society 111
520	(469): 839–855 DOI: 10.1002/qj.49711146910
521	Shwetha HR, Kumar DN. 2015. Prediction of Land Surface Temperature Under
522	Cloudy Conditions Using Microwave Remote Sensing and ANN. Aquatic
523	Procedia 4 (Icwrcoe): 1381–1388 DOI: 10.1016/j.aqpro.2015.02.179
524	Šimůnek J, Genuchten M Van, Sejna M. 2012. HYDRUS: Model use, calibration, and
525	validation. Transactions of the ASABE 55 (1987): 1261–1274 DOI:
526	10.1029/2002WR001340
527	Soulsby C, Birkel C, Geris J, Dick J, Tunaley C, Tetzlaff D. 2015. Stream water age
528	distributions controlled by storage dynamics and nonlinear hydrologic
529	connectivity: Modeling with high-resolution isotope data. Water Resources
530	Research 51 (9): 7759–7776 DOI: 10.1002/2015WR017888
531	Soulsby C, Bradford J, Dick J, P. McNamara J, Geris J, Lessels J, Blumstock M,
532	Tetzlaff D. 2016. Using geophysical surveys to test tracer-based storage estimates
533	in headwater catchments. Hydrological Processes DOI: 10.1002/hyp.10889
534	Sprenger M, Tetzlaff D, Soulsby C. 2017. Stable isotopes reveal evaporation dynamics
535	at the soil-plant-atmosphere interface of the critical zone. Hydrology and Earth
536	System Sciences Discussions (February): 1–37 DOI: 10.5194/hess-2017-87
537	Stewart H, Hewitt CN, Bunce RGH. 2008. Assessing, mapping and quantifying the
538	distribution of foliar biomass in Great Britain. Biomass and Bioenergy 32 (9):
539	838–856 DOI: 10.1016/j.biombioe.2007.12.015
540	Sutanto SJ, Wenninger J, Coenders-Gerrits AMJ, Uhlenbrook S. 2012. Partitioning of
541	evaporation into transpiration, soil evaporation and interception: A comparison
542	between isotope measurements and a HYDRUS-1D model. Hydrology and Earth
543	System Sciences 16 (8): 2605–2616 DOI: 10.5194/hess-16-2605-2012
544	Tetzlaff D, Birkel C, Dick J, Geris J, Soulsby C. 2014. Storage dynamics in
545	hydropedological units control hillslope connectivity, runoff generation, and the
546	evolution of catchment transit time distributions. <i>Water resources research</i> 50 (2):
547	969–985 DOI: 10.1002/2013WR014147
548	Tetzlaff D, Buttle J, Carey SK, van Huijgevoort MHJ, Laudon H, McNamara JP,
549	Mitchell CPJ, Spence C, Gabor RS, Soulsby C. 2015. A preliminary assessment of
550	water partitioning and ecohydrological coupling in northern headwaters using
551	stable isotopes and conceptual runoff models. Hydrological Processes: n/a-n/a
552	DOI: 10.1002/hyp.10515
553	Tetzlaff D, Soulsby C, Waldron S, Malcolm IA, Bacon PJ, Dunn SM, Lilly A,
	24

Hydrological Processes

554	Youngson AF. 2007. Conceptualization of runoff processes using a geographical
555	information system and tracers in a nested mesoscale catchment. Hydrological
556	Processes 21 (10): 1289–1307 DOI: 10.1002/hyp.6309
557	Wallace JS, Roberts JM, Roberts AM. 1982. Evaporation from heather moorland in
558	north Yorkshire, England. Hydrological research basins and their use in water
559	resources planning : proceedings of the international symposium held in Berne,
560	Switzerland September 21-23, 1982 Available at:
561	http://agris.fao.org/agris-search/search.do?recordID=US201301444022
562	[Accessed 25 May 2017]
563	Wang H, Guan H, Deng Z, Simmons CT. 2014. Optimization of canopy conductance
564	models from concurrent measurements of sap flow and stem water potential on
565	Drooping Sheoak in South Australia. Water Resources Research 50 (7): 6154-
566	6167 DOI: 10.1002/2013WR014818
567	Wang H, Tetzlaff D, Dick JJ, Soulsby C. 2017. Assessing the environmental controls
568	on Scots pine transpiration and the implications for water partitioning in a boreal
569	headwater catchment. Agricultural and Forest Meteorology 240-241: 58-66 DOI:
570	10.1016/j.agrformet.2017.04.002
571	Wang J, Bras RL. 2009. A model of surface heat fluxes based on the theory of
572	maximum entropy production. Water Resources Research 45 (11): n/a-n/a DOI:
573	10.1029/2009WR007900
574	Wang J, Bras RL. 2011. A model of evapotranspiration based on the theory of
575	maximum entropy production. Water Resources Research 47 (3): n/a-n/a DOI:
576	10.1029/2010WR009392
577	Weiß M, Menzel L. 2008. A global comparison of four potential evapotranspiration
578	equations and their relevance to stream flow modelling in semi-arid environments.
579	Adv. Geosci 18: 15–23 Available at: www.adv-geosci.net/18/15/2008/ [Accessed
580	29 May 2017]
581	Wilcox BP, Dowhower SL, Teague WR, Thurow TL. 2006. Long-Term Water Balance
582	in a Semiarid Shrubland. Rangeland Ecology & Management 59 (November):
583	600–606 DOI: 10.2111/06-014R3.1
584	Yang Y, Shang S. 2013. A hybrid dual-source scheme and trapezoid framework-based
585	evapotranspiration model (HTEM) using satellite images: Algorithm and model
586	test. Journal of Geophysical Research: Atmospheres 118 (5): 2284–2300 DOI:
587	10.1002/jgrd.50259
588	Yang Y, Guan H, Hutson JL, Wang H, Ewenz C, Shang S, Simmons CT. 2013.
589	Examination and parameterization of the root water uptake model from stem water
590	potential and sap flow measurements. Hydrological Processes 27: 2857-2863
591	DOI: 10.1002/hyp.9406
592	Yu M, Wang G, Parr D, Ahmed KF. 2014. Future changes of the terrestrial ecosystem
593	based on a dynamic vegetation model driven with RCP8.5 climate projections
594	from 19 GCMs. Climatic Change 127 (2): 257–271 DOI:
595	10.1007/s10584-014-1249-2
	25
	2.5

3
4
5
6
7
0
0
9
10
11
12
12
13
14
15
16
17
10
10
19
20
21
22
23
20
24
25
26
27
28
20
29
30
31
32
33
24
34
35
36
37
38
20
39
40
41
42
43
44
15
40
46
47
48
49
50
50
51
52
53
54
55
55
30
57
58

 Zhang L, Hu Z, Fan J, Zhou D, Tang F. 2014. A meta-analysis of the canopy light
extinction coefficient in terrestrial ecosystems. *Frontiers of Earth Science* 8 (4):
599–609 DOI: 10.1007/s11707-014-0446-7

Table 1 Daily average (± one standard deviation) of measured (rainfall) and estimated (evapotranspiration, transpiration, evaporation, and deep percolation) water balance components. Percentage of rainfall of total amount of each component over the study periods is also given below.

	Daily average (mm/d)		Percent of rainfall		
	31/07- 31/10/2015	21/04- 04/08/2016	31/07- 31/10/2015	21/04- 04/08/2016	Entire period
Rainfall	1.80±3.2	2.76±5.8			
Evapotranspiration	0.91±0.6	1.51±0.7	50.4%	54.9%	53.3%
Transpiration	0.53±0.3	$0.89{\pm}0.4$	29.2%	32.3%	31.2%
Evaporation	0.38±0.3	0.62±0.3	21.2%	22.6%	22.1%
Percolation	0.89±3.5	1.24±6.2	49.6%	45.1%	46.7%

http://mc.manuscriptcentral.com/hyp

Figure 1 (a) Location of the Bruntland Burn catchment on the map of Scotland; (b) Aerial photo of the catchment showing three major vegetation types in green (Scots pine), dark brown (heather), and light brown (grass), and locations of 3 weather stations, heather plot in this study, and stream gauge at the outlet; (c) Heather plot with iButton sensors hanging right above canopies; (d) Heather canopies in December 2016; and (e) Moss cover under heather at soil surface.

254x190mm (150 x 150 DPI)

Figure 2 Daily dynamics of hydroclimatic variables at the weather station #1. (a) Air temperature (*Ta*), relative humidity (*RH*), and rainfall (*P*); (b) Net radiation (*Rn*) and potential evapotranspiration (*pET*). pET_{PT} is *pET* calculated using the Priestley-Taylor equation, and pET_{PM} is *pET* calculated using the Penman-Monteith equation. The gap separates the two measurement periods in 2015 and 2016.

227x119mm (300 x 300 DPI)

217x145mm (300 x 300 DPI)