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The formation of inhomogeneities within fluidized beds, both in terms of the particle configu-

rations and flow structures, have a pronounced effect on the interaction force between the fluid

and particles. While recent numerical studies have begun to probe the effects of inhomogeneities

on the drag force at the particle scale, the applicability of prior micro-scale constitutive drag

relations is still limited to random, homogeneous distributions of particles. Since an accurate

model for the drag force is needed to predict the fluidization behavior, the current study utilizes

the lessons of prior inhomogeneity studies in order to derive a robust drag relation that is

both able to account for the effect of inhomogeneities and applicable as a constitutive closure

to larger-scale fluidization simulations. Using fully-resolved lattice Boltzmann simulations of

systems composed of fluid and monodisperse spherical particles in the low-Reynolds-number

(Re) regime, the fluid-particle drag force, normalized by the ideal Stokes drag force, is found to

significantly decrease, over a range of length scales, as the extent of inhomogeneities increases.

The extent of inhomogeneities is found to most effectively be quantified through one of two sub-

grid-scale quantities: the scalar variance of the particle volume fraction or the drift flux, which

is the correlation between the particle volume fraction and slip velocity. Scale-similar models

are developed to estimate these two sub-grid measures over a wide range of system properties.

Two new drag constitutive models are proposed that are not only functions of the particle volume

fraction and the Stokes number (St), but also dependent on one of these sub-grid measures for

the extent of inhomogeneities. Based on the observed, appreciable effect of inhomogeneities on

drag, these new low Re drag models represent a significant advancement over prior constitutive

relations.
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1. Introduction

The ability to attain quantitatively reliable predictions of fluidized bed behavior is highly

dependent on the accuracy of the fluid-particle drag force, since in fluidized beds, the buoyant

weight of particles is principally balanced by the drag force exerted by the flowing fluid. In

numerical studies of industrial-scale systems, the interactions between fluid and particles cannot

be fully resolved at the scale of the particle’s surface due to limitations in computational power.

Instead, in these large-scale simulations, the fluid computational grid size is larger than a particle

diameter, and so constitutive relations for the fluid-particle drag force are necessary. The accuracy

of these drag models at the particle-scale level is vital in order to achieve quantitative precision in

the study of fluidized beds. Despite this fact, there are a number of limitations to the drag models

that are commonly employed in the literature. While a number of recent studies (Zhou et al.

2014; Wang et al. 2011; Xu et al. 2007) have elucidated the effect of the magnitude and direction

of inhomogeneities in the particle configuration on the drag, these studies have not resulted in a

generalized inhomogeneity-dependent drag model that can be applied as a constitutive closure

to larger-scale fluidization simulations. Thus, the current work primarily addresses the need for

the development of such a drag relation that accounts for inhomogeneities in the distribution of

particles.

Prior drag models that have been employed in large-scale simulations of fluidized beds are

typically based on either the sedimentation of particles (Richardson & Zaki 1954; Wen & Yu

1966; Garside & Al-Dibouni 1977) or fixed particle beds (Hill et al. 2001; van der Hoef et al.

2005; Beetstra et al. 2007; Tenneti et al. 2011). Typically, these drag models are expressed in

terms of a dimensionless drag force, F , which is defined as:

F =
FFF f p ·uuuslip

FFFd,Stokes ·uuuslip

, (1.1)

where FFF f p is the total fluid-particle interaction force per particle minus the generalized buoyancy

arising from the slowly varying stress field, uuuslip is the slip velocity, which is the difference

between the fluid velocity, uuu f , and the particle velocity, vvvp, and the Stokes drag relation on a

single spherical particle at infinite dilution in a viscous fluid is given by:

FFFd,Stokes = 3πµ f dpuuuslip, (1.2)

where dp is diameter of the particle and µ f is the dynamic fluid viscosity. These drag models are

typically expressed as functions of the particle volume fraction, φ , and Reynolds number (Re),

which is defined as:

Re =
ρ f (1−φ)

∣∣uuuslip

∣∣dp

µ f

, (1.3)

where ρ f is the fluid density. Recently, the Rubinstein et al. (2016) model expanded upon these

traditional drag relations by accounting for the effects of particle inertia through the Stokes

number (St), which is the ratio of the particle relaxation time to the fluid relaxation time, and

is defined as:

St =
ρp (1−φ)

∣∣uuuslip

∣∣dp

18µ f

. (1.4)

While the Rubinstein et al. (2016) drag model provides a significant improvement over prior

drag relations in its ability to implicitly account for the effects of particle translation and rotation

through St, one key limitation that persists is that this drag model is only applicable to random,
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homogeneous distributions of particles. This constitutive relation relies on the key assumption

that the distribution of particles is homogeneous at the scale at which the model is applied.

However, the effect of the extent of inhomogeneities on the drag force has been found to be

significant, even at the small scale of several particle diameters (Kriebitzsch et al. 2013; Zhou

et al. 2014). Thus, the goal of the current work is to develop a new drag model that is able to

account for the effect of inhomogeneities.

The importance of inhomogeneities in the particle distribution on the behavior of fluidized

beds has been demonstrated by a number of studies. In fluidized bed simulations based on

the two-fluid model (TFM), achieving grid size convergence with traditional drag closures

has proven to be very difficult, even at grid sizes as small as 10 dp, due to the presence of

heterogeneous structures (Agrawal et al. 2001; Igci et al. 2008; Li et al. 2014). In particular, for

Geldart Group A particles, typical fine-grid TFM simulations are unable to predict the behavior

that is observed experimentally (Cloete et al. 2015; Liu et al. 2015; Wang et al. 2009; Lu

et al. 2009). These shortcomings are especially pronounced in high-velocity systems, where

homogeneous drag models are unable to resolve all of the mesoscale structures (Hong et al.

2016). While the effects of particle cohesion and fluid turbulence could have contributed to

the observed differences between the TFM simulations and experiments of fluidized beds with

Geldart Group A particles, prior studies, like that of Wang et al. (2009), have found that, due

to the significance of inhomogeneities at relatively small length scales, a sufficiently fine grid

size is needed in order to accurately simulate the flow characteristics using TFM. Thus, failing to

account for particle structures significantly affects the computed fluid-particle drag. In the current

work, by focusing on low Re systems with non-cohesive particles, we singularly study the effects

of inhomogeneities. This choice of fluidized bed simulations therefore provides a direct method

to probe the specific effects of inhomogeneities on the drag force.

One of the key measures that has been used in prior studies to quantify the extent of inhomo-

geneities is the solid volume fraction gradient, ∇∇∇φ . This quantity, ∇∇∇φ , has been found to correlate

with the grid size required to achieve grid convergence (Fullmer & Hrenya 2016). Furthermore,

in fixed particle systems with simple linear variations in φ , it has been demonstrated that the

drag is affected by both the magnitude of ∇∇∇φ and the angle between uuuslip and ∇∇∇φ (Zhou et al.

2014; Li et al. 2016). Larger magnitudes of ∇∇∇φ lead to larger changes in the drag. In terms of the

directional effect, when ∇∇∇φ is aligned with the slip velocity, the fluid flow has to move through

an area where there is a high concentration of particles, causing for there to be an increase in the

drag. On the other hand, when ∇∇∇φ is perpendicular to the slip velocity, the fluid flow can easily

by-pass the areas with high concentration of particles, leading to a reduction in the drag. Thus,

the drag is maximized when uuuslip is parallel to ∇∇∇φ , and is minimized when uuuslip is perpendicular

to ∇∇∇φ (Zhou et al. 2014; Li et al. 2016). In demonstrating the importance of the ∇∇∇φ measure,

these studies have further emphasized how significant inhomogeneities are to the behavior of

fluidized beds.

While there have been some prior attempts to correct the homogeneous drag models with

additional terms that are computed using detailed particle distribution information (Wang et al.

2011; Xu et al. 2007), prior studies have not arrived at a drag model that can both account for

the effect of inhomogeneities and be easily applied to TFM and computational fluid dynamics-

discrete element method (CFD-DEM) larger-scale simulations. The goal of the current study is

to therefore take the insights gained from these prior studies, and use them to derive a new drag

constitutive relation that not only accounts for the effect of particle distribution inhomogeneities,

but is also applicable as a closure to a variety of larger-scale simulations. Towards this goal, lattice

Boltmann method (LBM) simulations of fluidized beds are performed. Using the detailed flow

and particle configuration data obtained from these simulations, the fluid-particle drag is found
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FIGURE 1. The low Re dimensionless drag force, F , is plotted as a function of particle volume fraction, φ ,
for the both the van der Hoef et al. (2005) model for fixed particle beds (high St limit) and the Wen & Yu
(1966) model for sedimenting particle beds (low St limit).

to depend on a sub-grid-scale measure for the extent of inhomogeneities. Models to estimate

these sub-grid quantities are developed that are based on a scale-similarity approach, which

was originally derived for single-phase turbulence (Germano et al. 1991) and later adapted to

applications in multi-phase flow (Parmentier et al. 2012; Ozel et al. 2013). By accounting for the

effect of inhomogeneities, these newly-derived constitutive relations for the fluid-particle drag

force provide a significant improvement over prior models that assumed a random, homogeneous

distribution of particles.

In section 2, we describe prior drag modeling attempts, our LBM simulation scheme, and the

filtering method used to analyze the results. In section 3, we provide the simulation results from

this study, as well as the development of our new drag models that account for inhomogeneities

in the distribution of particles in low Re systems. In section 4, we provide some concluding

remarks on the overall findings of this study.

2. Methodology

2.1. Prior drag modeling

In Figure 1, we see that in the low Re regime, the fixed bed dimensionless drag (van der Hoef

et al. 2005) is significantly greater than the particle sedimentation drag (Wen & Yu 1966) over the

entire range of φ . While the granular temperature has been shown to have a significant effect on

the drag in dynamic fluidized beds at larger Re (Tang et al. 2016), this quantity has a small effect

in the low Re regime. Instead, this large difference in the drag relations, which was identified in

our prior work (Rubinstein et al. 2016), is attributed to St (equation 1.4). In the low Re regime,

the fixed bed drag can be thought of as the high-St-limit drag, while the particle sedimentation
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FIGURE 2. The Rubinstein et al. (2016) drag model, which accounts for the effects of St, is plotted over a
range of φ and St. The van der Hoef et al. (2005) curve represents the high St limit of this model, while the

F = (1−φ)−(4.2−2.5φ) curve represents the low St limit of this model.

drag can be thought of as the low-St-limit drag. Furthermore, in this prior work, we proposed a

new St-dependent drag model that was able to bridge the transition from the low St limit to the

high St limit. This drag model has the following form:

F (φ ,St) = α (Stmod)FvdH (φ)+(1−α (Stmod))(1−φ)−(n(φ)−2) , (2.1)

where the high-St-limit drag is given by the van der Hoef et al. (2005) curve:

FvdH (φ) =
10φ

1−φ
+(1−φ)3

(
1+1.5

√
φ
)
, (2.2)

and the low-St-limit drag is given by:

FlowSt (φ) = (1−φ)−(n(φ)−2) , (2.3)

with n(φ) = 6.2− 2.5φ . The parameter α , which describes the transition from the low-St limit

to the high-St limit, is given by:

α (Stmod) =
1

2

(
1+

Stmod−10

Stmod +10

)
, (2.4)

where the modified Stokes number, Stmod , is defined as:

Stmod =
St

(1−φ)2
. (2.5)

This new St-dependent drag model is shown in Figure 2.
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2.2. LBM scheme

In this study, LBM simulations of fluidized beds are employed in order to develop a new drag

model that can account for the effect of inhomogeneities. In LBM, the fluid flow is represented by

the movement of fluid parcels along a three-dimensional lattice of nodes. These fluid dynamics

are governed by the Boltzmann equation, which is discretized in both time and space. In the

low-Mach-number limit, these discretized Boltzmann equations converge to the incompressible

Navier-Stokes equations when averaged over a sufficiently large volume (Chen & Doolen 1998).

The LBM scheme employed in this study is based on a slight variant of the widely used LBGK

scheme (Qian et al. 1992). This scheme, which is used to solve for the evolution of the fluid

density and momentum distributions, is described in more detail by Somers (1993) and Eggels

& Somers (1995).

The interactions between the solid particles and fluid, which were first studied using LBM by

Ladd (1994), are resolved using a technique similar to the immersed boundary method (Goldstein

et al. 1993; ten Cate et al. 2002; Derksen & Van den Akker 1999). This forcing mechanism

ensures that the no-slip boundary condition is satisfied by imposing additional forces on the fluid

along the surface of the solid particle. The net force and torque that the fluid exerts on a solid

particle is then computed by summing over these local surface forces. An additional particle-

particle lubrication force, which accounts for unresolved, sub-grid flow contributions when the

gap between two particles is smaller than the lattice grid size, is introduced into the scheme

(Nguyen & Ladd 2002; Kim & Karilla 1991). Furthermore, in order to computationally facilitate

collisions between particles, each of the solid particles is given a small degree of softness.

Particle-particle collisions still effectively resemble hard sphere collisions, as the maximum

overlap distance is about 0.001 particle diameters. At each time step, the velocity and position

of the particles are updated by using the total force and torque acting on each particle. Further

details of the LBM numerical scheme used in this study can be found in Derksen & Sundaresan

(2007) and Rubinstein et al. (2016).

In the current study, fluidized beds with spherical monodisperse particles are simulated in a

cubic domain with fully periodic boundary conditions in all dimensions. In this periodic system,

a body force is applied to all of the fluid and particles in order to drive flow in the system and

balance the net weight of the fluid and particles (Derksen & Sundaresan 2007). Since the lattice

units are dimensionless, for simplicity, the lattice spacing, ∆ , and the time step are taken to be

1. The parameters that define a given system are: the particle diameter, dp, the fluid kinematic

viscosity, ν f , the particle-to-fluid density ratio, ρp/ρ f , the strength of the applied external body

force, fext , the total number of particles, N, and the dimensions of the lattice, nx, ny, and nz. For

the current study, dp = 12 and ν f = 0.1. While larger values of dp would correspond to higher

resolutions of the fluid flow profile, the chosen combination of values was previously shown to

provide a sufficient level of resolution in order to achieve convergence in the flow behavior in

the low Re regime (Rubinstein et al. 2016). Furthermore, in order to obtain a sufficiently large

domain where inhomogeneous structures are able to form, we choose: nx = ny = nz = 12dp. The

domain-averaged volume fraction, 〈φ〉, is defined as:

〈φ〉=
N
(

π
6

d3
p

)

nxnynz

. (2.6)

St cannot be set a priori, and so it is, instead, computed from the results of the simulation. In this

study, fext , ρp/ρ f , and 〈φ〉 are varied so that large ranges of St and inhomogeneous structures

are sampled. In particular, since the study is focused on the low Re regime, a given simulation is

defined by the following pair of parameters: ρp/ρ f and 〈φ〉.

In this study, using the insights developed in our prior work (Rubinstein et al. 2016), we
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Effect of inhomogeneities on drag force 7

utilized two additional types of LBM simulations: high St limit and low St limit beds. Since

particles are slow to adapt to the surrounding fluid in the high St regime, in the high St limit

simulations, the fluid flow establishes an equilibrium around a bed of fixed particles, with the

particle translational and rotational velocities held fixed at 0. Since particles adapt very quickly

to the surrounding fluid in the low St regime, in the low St limit simulations, the fluid flow and

particle velocities are allowed to evolve until the net force and torque on each particle is 0, while

the particles are held fixed in place. Further details of the high St and low St limit simulations

are presented in Rubinstein et al. (2016).

2.3. Analyzing LBM results: Filtering procedure

The goal of the current study is to analyze the effect of inhomogeneous structures on the

fluid-particle drag. While our prior analysis simply looked to compute domain-averaged LBM

quantities, such an approach would be insufficient for resolving these different structures. Thus,

in the current study, a filtering technique is employed, in which the LBM simulation results

are analyzed over a range of length scales. In this method, first of all, the Lagrangian particle

variables are mapped onto an Eulerian grid with a base cell size of ∆b = 1dp using a Gaussian-

type mapping function (Pepiot & Desjardins 2012), g(s), which is given by:

g(s) =





1
4
s4− 5

8
s2 + 115

192
, s 6 0.5

− 1
6
s4 + 5

6
s3− 5

4
s2 + 5

24
s+ 55

96
, 0.5 < s 6 1.5

(2.5−s)4

24
, 1.5 < s 6 2.5

0, s > 2.5

. (2.7)

In equation 2.7, s is the distance between the particle center and grid center, normalized by the

Eulerian grid size, ∆b. The fully-resolved fluid lattice grid variables are then coarsened, via phase

Favre averaging, to the ∆b = 1dp Eulerian grid using the mapping function in equation 2.7. The

size of the base Eulerian grid is chosen to be 1dp, since below this length scale, the fluctuations in

the structures are too fine to effectively model. At this base grid size, the particle volume fraction,

fluid velocity, particle velocity, and fluid-particle interaction force per unit volume are denoted

as φ , uuu f , vvvp, and fff f p, respectively. Once all of these variables have been computed over this 1dp

Eulerian grid, the structures in each simulation system are studied over a range of length scales

by defining a filter size, ∆ f , which is greater than or equal to the base grid size, ∆b. Each of

these variables is then filtered by performing either simple volume-averaging (φ , fff f p) or Favre

averaging (uuu f , vvvp). These filtered variables are denoted as φ , ũuu f , ṽvvp, and fff f p, and are computed

as follows:

φ =
∑iVcell,iφi

∑iVcell,i
, (2.8)

ũ f , j =
∑iVcell,i (1−φi)u f ,i j

∑iVcell,i (1−φi)
, (2.9)

ṽp, j =
∑iVcell,iφivp,i j

∑iVcell,iφi

, (2.10)

f f p, j =
∑iVcell,i f f p,i j

∑iVcell,i
, (2.11)

where each of these sums is performed over all of the base grid cells that are contained within a

particular filter cell, Vcell,i is the volume of the ith base grid cell, and the index j is used to denote
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the x, y, and z components. By using this filtering technique, the effect of inhomogeneities on the

flow behavior is studied over a range of length scales. To put our prior domain-averaged analysis

into context, it is equivalent to performing a filtering analysis with ∆ f = ∆b = nx.

3. Simulation results

3.1. Effect of inhomogeneities on drag

In order to demonstrate the significance of the effect of inhomogeneities on the drag force, we

compared the drag in systems with random, homogeneous distributions of particles to those with

inhomogeneous structures. Drawing upon our methodology in our prior work, our goal was to

establish these inhomogeneity effects at the high and low St limits. In doing so, we are able to

isolate the effect of inhomogeneities from that of St.

Random, homogeneous configurations of particles are obtained using a thermalization tech-

nique via DEM simulations, which is described in further detail by Rubinstein et al. (2016).

These random, homogeneous distributions are employed as the initial particle configurations

in fluidized bed simulations. Inhomogeneous configurations of particles are then obtained by

running fluidized bed simulations until a statistical steady state is reached. The statistical steady

state is based on the time evolution of
〈
uuuslip

〉
. The final, inhomogeneous configuration is not

correlated with the initial, homogeneous configuration, and so the inhomogeneity-dependent drag

results obtained in this study are unaffected by the thermalization technique. In our study, we find

that fluidized beds with different values of ρp/ρ f induce different extents of inhomogeneities,

and so we investigate the properties of inhomogeneous configurations originating from fluidized

beds with a range of ρp/ρ f values.

In figure 3, the random, homogeneous drag results are compared with the inhomogeneous drag

results at the (a) high St limit and (b) low St limit. In this figure, the dimensionless drag force, F ,

is plotted as a function of the filtered particle volume fraction, φ . In terms of filtered quantities,

F is defined as:

F =
FFF f p · ũuuslip

3πµ f dpũuuslip · ũuuslip

, (3.1)

where ũuuslip = ũuu f − ṽvvp and FFF f p =
(
Vp/φ

)
fff f p. For the current analysis, all of these quantities

are computed using a filter size of ∆ f /dp = 3. In figure 3, each drag curve is computed by bin-

averaging the F values with φ , using a bin-width of 0.01. In order to more simply visualize the

effects of inhomogeneities over a large range of φ , each drag curve combines the results from

systems with 〈φ〉= 0.1, 0.15, 0.2, 0.25, and 0.3.

As expected, in figure 3a, the random, homogeneous, high St limit drag results (red line)

converge to the homogeneous, high St limit curve (van der Hoef et al. 2005) given in equation

2.2. In figure 3b, the random, homogeneous, low St limit drag results (red line) nearly converge to

the homogeneous, low St limit curve provided in equation 2.3 (Wen & Yu (1966) type drag), with

a modest observed difference due to the slight domain-size dependence of the homogeneous, low

St drag. In figure 3a, in addition to the homogeneous curve, three inhomogeneous, high St limit

drag curves are shown that are derived from inhomogeneous particle configurations arising from

fluidized beds with ρp/ρ f = 10, 100, and 300, respectively. These same set of inhomogeneous

particle configurations are used to obtain the three inhomogeneous, low St limit drag curves

shown in figure 3b.

From both figures 3a and b, it is clear that there is a significant reduction in drag when

moving from the homogeneous curve to the inhomogeneous curves at both the high and low St
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(a) (b)

FIGURE 3. The dimensionless drag force, F , is plotted as a function of the filtered volume fraction, φ , for
both randomly homogeneous and inhomogeneous particle configurations for (a) the high St limit and (b)
low St limit. The inhomogeneous drag configurations are taken from fluidized systems with three differerent
values of ρp/ρ f (10, 100, and 300). Each drag curve is computed by bin-averaging the drag with φ , using
a bin-width of 0.01 and ∆ f /dp = 3, and combines the results from systems over a range of 〈φ〉 (0.1, 0.15,
0.2, 0.25, and 0.3).

limits, with a stronger effect observed at the low St limit. The magnitude of this drag reduction

increases for inhomogeneous configurations arising from fluidized beds with larger ρp/ρ f .

Larger values of ρp/ρ f result in a higher growth rate of inertial instabilities, leading to a

greater extent of inhomogeneities in the configurations. Thus, since higher values of ρp/ρ f are

associated with configurations with greater extents of inhomogeneities, in the low Re regime,

increases in the extent of inhomogeneities result in decreases in the drag at both the high and

low St limits. In terms of the φ -bin-averaged drag results, at φ = 0.3, there is a roughly 18%

reduction in drag when moving from the high St limit, homogeneous curve to the high St limit,

inhomogeneous curve that is derived from particle configurations taken from fluidized beds with

ρp/ρ f = 300, and this analogous reduction in drag is about 34% for the low St limit case. Thus,

we conclude that homogeneous drag relations are insufficient in modeling the fluid-particle drag

in inhomogeneous systems at both the high and low St limits.

In section 1, the mechanism for the effect of inhomogeneities on the drag was interpreted

in terms of ∇∇∇φ‖ and ∇∇∇φ⊥, the components of ∇∇∇φ that are parallel and perpendicular to uuuslip,

respectively. In this study, since the dominant effect of inhomogeneities is a reduction in drag,

we conclude that the type of inhomogeneous structures that form within our fluidized bed

simulations are ones for which ∇∇∇φ is primarily perpendicular to uuuslip, thus allowing the fluid

to more easily by-pass the denser parts of these particle structures.

In our prior work (Rubinstein et al. 2016), we established that the fluidized bed drag over a full

range of St can be determined from an interpolation of the high and low St limits. Thus, based on

our conclusions at the high and low St limits, we are able to infer that homogeneous drag models

are unable to properly describe the drag force in fluidized beds due to the significant reduction in

drag caused by the presence of inhomogeneous structures.
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FIGURE 4. The probability distribution functions (PDF) are plotted for the percent error in the drag
prediction for three homogeneous drag models: van der Hoef et al. (2005), Wen & Yu (1966), and
Rubinstein et al. (2016). This error analysis is applied to fluidized bed systems with the following set
of parameters: ρp/ρ f = 4, 10, 100, 300, 1500, and 3000 and 〈φ〉 = 0.1, 0.15, 0.2, 0.25, and 0.3. The drag
results are computed using ∆ f /dp = 3.

3.2. Error analysis of homogeneous drag models

As discussed in section 1, prior drag models have been derived using random, homogeneous

distributions of particles. However, in practice, these drag models are applied to fluidized bed

systems with inhomogeneous microstructures. In order to conduct an analysis of the accuracy of

these prior drag models, the filtered
(
∆ f /dp = 3

)
fluid-particle drag, F , is computed via fully-

resolved simulations in fluidized beds with ρp/ρ f = 4, 10, 100, 300, 1500, and 3000 and 〈φ〉=
0.1, 0.15, 0.2, 0.25, and 0.3, and these LBM drag values are compared with the drag that is

predicted by the following constitutive models: van der Hoef et al. (2005), Wen & Yu (1966),

and Rubinstein et al. (2016). In doing so, the error in the model predictions is computed, and the

bias and spread in these predictions models are determined. These results are depicted in figure

4, in which the probability distribution function (PDF) for each model’s percent error in the drag

prediction is plotted.

For a given drag prediction error PDF curve, the model bias is computed from both the percent

error at which the PDF is at a maximum and from the average percent error over the entire

distribution. Since the error distributions are slightly skewed towards larger positive errors, the

average error is higher than the percent error at the PDF maximum for all of the drag models.

The spread in the percent error is computed as half the distance between the two percent error

values at which the PDF is at half its maximum. The percent error at the PDF maximum, average

error and spread in the errors are summarized in table 1.

As expected, based on the results of figure 4 and table 1, the van der Hoef et al. (2005)
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Drag model
% Error at

PDF maximum
Average
% error

Spread in
% error

van der Hoef et al. (2005) 34.0% 42.8% 34.2%
Wen & Yu (1966) -26.0% -19.8% 16.5%

Rubinstein et al. (2016) 14.0% 24.0% 22.8%

TABLE 1. The percent error at the maximum of the probability distribution functions, the average percent
error, and spread in the distribution of the percent errors of the homogeneous drag models are presented,
when these models are applied, using ∆ f /dp = 3, to fluidized bed systems with the following set of
parameters: ρp/ρ f = 4, 10, 100, 300, 1500, and 3000 and 〈φ〉= 0.1, 0.15, 0.2, 0.25, and 0.3.

model, which is a high St limit drag relation, is biased towards overpredicting the drag in finite-St

fluidized beds. Analogously, the Wen & Yu (1966) model, which is a low St limit drag relation, is

biased towards underpredicting the drag in finite-St fluidized beds. The Rubinstein et al. (2016)

drag model, which accounts for the effect of St, performs better than the two extremes based on

the percent errors at the PDF maximum, and better than the van der Hoef et al. (2005) model

based on the average percent error. Still, on average, there is a significant drag overprediction

(+14% error at the PDF maximum and +24% average error). This significant overprediction

is due to the fact that the Rubinstein et al. (2016) model is unable to capture the effects of

inhomogeneities, which, as we found in section 3.1, result in a drag reduction. Overall, by

analyzing the prediction errors of the homogeneous drag models, the need for a new drag model

that is able to account for the effects of inhomogeneities is clearly demonstrated.

3.3. Effect of filter size on the behavior of fluidized beds relative to the high and low St limits

In our prior study focusing on the effect of St (Rubinstein et al. 2016), we found that we could

simplify our analysis of the fluid-particle interaction force in a fluidized bed by focusing on the

two extreme limits of behavior: high and low St limit beds. In order to connect our findings at

these two limits to the behavior of a particular fluidized bed, we developed the parameter, α ,

which quantifies the relative magnitude of the drag in a fluidized bed compared to the high and

low St limits:

α =
Ff luidized−FlowSt, inhom

FhighSt, inhom−FlowSt, inhom

, (3.2)

where Ff luidized is the dimensionless drag of the fluidized system. In equation 3.2, FhighSt, inhom

and FlowSt, inhom are the drag values computed from the high and low St limit bed simulations,

respectively, which utilize the inhomogeneous configuration of particles that is taken directly

from the fluidized system. In our prior work (Rubinstein et al. 2016), we computed α over the full

domain size (∆b = ∆ f = nx). In doing so, we found that the results collapse onto a single curve

for α as a function of the modified Stokes number, S̃t (defined in equation 2.5). The domain-

averaged function for α
(
S̃t
)

is given in equation 2.4. In the present study, we extended this

analysis to filter sizes smaller than the domain size, as demonstrated in figure 5. In our current

analysis, ∆b/dp = 1, and α is computed with ∆ f /dp = 3 and 5, using fluidized bed simulations

with ρp/ρ f = 4, 10, 100, 300, 1500, and 3000 and 〈φ〉 = 0.1, 0.15, 0.2, 0.25, and 0.3. In terms

of filtered quantities, the modified Stokes number, S̃t, is defined as:

S̃t =
ρp

∣∣ũuuslip

∣∣dp

18µ f

(
1−φ

) . (3.3)

S̃t is the filtered version of the modified Stokes number, Stmod , defined in equation 2.5.
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12 G. J. Rubinstein, A. Ozel, X. Yin, J. J. Derksen and S. Sundaresan

FIGURE 5. The parameter quantifying the behavior of a fluidized bed relative to the high and low St limits,
α , is plotted as a function of the modified Stokes number, S̃t, for different filter sizes: ∆ f /dp = 3 and 5,
with ∆b/dp = 1. These measurements are taken from simulations of fluidized beds with the following set
of parameters: ρp/ρ f = 4, 10, 100, 300, 1500, and 3000 and 〈φ〉= 0.1, 0.15, 0.2, 0.25, and 0.3. The results

for α as a function of S̃t fall onto a single curve, which is given by: α
(
S̃t
)
= 1

2

(
1+ S̃t−7

S̃t+7

)
.

From figure 5, we see that the results for α as a function of S̃t computed using different filter

sizes all fall on a single curve, which has the following functional form:

α
(
S̃t
)
=

1

2

(
1+

S̃t−7

S̃t +7

)
. (3.4)

Equation 3.4 is nearly identical to equation 2.4, which was derived for our prior domain-averaged

analysis (Rubinstein et al. 2016), with the small discrepancy in the coefficient that defines the

low-to-high St limit transition point (7 versus 10) due to a limited sensitivity in the results to the

choice of ∆b. The fact that all of the results for α as a function of S̃t fall onto a single curve

signifies that the relationship between α and S̃t persists even as ∆ f varies, which provides us

with a powerful relationship between the fluid-particle drag in a fluidized bed and that in the

two limiting cases (high and low St limits). Using this relationship between α and S̃t at different

length scales, our approach for developing a new drag model that accounts for the effects of

inhomogeneities is greatly simplified by our ability to focus on the high and low St limit beds,

and then interpolate the fluidized bed drag value using the α(S̃t) parameter, rather than having

to separately study the effect of inhomogeneities on every different type of fluidized bed.

3.4. Quantifying the effect of inhomogeneities

In the low Re regime, where the effects of fluctuations in the particle velocity on the drag

force are negligible, changes in the fluid-particle drag of a fluidized bed relative to the random,

homogeneous case are due to the extent of inhomogeneities in the distribution of particles. The
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key challenge in developing a new drag model, which is able to accurately describe the behavior

of fluidized beds with a wide range of inhomogeneous structures, is therefore to identify how to

properly quantify the extent of inhomogeneities. In the current study, three different measures

are proposed to quantify the extent of inhomogeneities: the components of the gradient in the

particle volume fraction that are perpendicular to the slip velocity, ∇∇∇φ⊥, the scalar variance of

the particle volume fraction, (φ ′)2
, and the drift flux, φ ṽvvdri f t . For the purposes of developing a

drag model, the two vector quantities, ∇∇∇φ⊥ and φ ṽvvdri f t , are converted into scalars, as discussed

in sections 3.4.1 and 3.4.3, respectively.

As summarized in sections 1 and 3.1, ∇∇∇φ has previously been shown by Zhou et al. (2014) and

Li et al. (2016) to be a significant measure for determining changes in the drag due to changes in

the extents of inhomogeneities, with ∇∇∇φ⊥, in particular, directly correlated with drag reduction.

The two other measures for the extent of inhomogeneities, (φ ′)2
and φ ṽvvdri f t , provide additional

insight into the effect of inhomogeneities due to their ability to capture sub-grid-scale structures.

The scalar variance of the particle volume fraction, (φ ′)2
, is defined as:

(φ ′)2 = φ 2−φ
2
. (3.5)

This form of (φ ′)2
was previously employed in the context of turbulent combustion modeling by

Jiménez et al. (2001), and later used in the context of multi-phase flow modeling by Ozel et al.

(2013). The drift flux, φ ṽvvdri f t , measures the correlation between uuuslip and φ , and is defined as:

φ ṽvvdri f t = uuuslipφ − ũuuslipφ . (3.6)

This drift flux measure was derived concurrently by Simonin and co-workers (Ozel et al. 2010;

Parmentier et al. 2012; Ozel et al. 2013) and in the work of Fox (2014). In the next three sections,

the effect of each of these three quantities on the drag is further analyzed.

In the current study, filter sizes of 3 and 5 dp are employed in order to investigate the effect

of inhomogeneities on the drag. Due to the multi-scale hierarachy of the complex structures

that develop in a fluidized system, the drag derived in a micro-scale LBM simulation still

cannot be directly applied to an industrial-scale TFM or CFD-DEM simulation, which, due to

computational restrictions, must have a grid size on the order of 100 dp. Instead, the goal of this

study is to develop a micro-scale drag model that can be applied as a constitutive closure to TFM

and CFD-DEM simulations at the meso-scale, where the grid size is ∼ 5dp. For those needs, the

range of filter sizes that are currently studied are most appropriate. In order to properly account

for the effects of the meso-scale structures when simulating industrial-scale fluidized beds, the

grid size in the TFM and CFD-DEM simulations needs to be significantly coarsened using a

filtering technique, in which a filtered drag relation is derived using meso-scale simulations (Igci

& Sundaresan 2011; Ozel et al. 2013).

3.4.1. Gradient in the particle volume fraction

Drawing upon the insights determined by Zhou et al. (2014) and Li et al. (2016), we sought to

study the effect of gradients in the particle volume fraction on the fluid-particle drag force. Since,

in section 3.1, we found that the dominant effect of inhomogeneities is to produce a reduction in

drag, our focus in this study is on ∇∇∇φ⊥. In particular, we utilized the following non-dimensional,

scalar measure: ∆ f

∣∣∇∇∇φ⊥
∣∣. Since this gradient measure is based solely on the configuration of

particles, we are able to, based on the conclusions of section 3.3, study the fluidized bed particle

configurations using the high and low St limit simulations, and then interpolate these results to

the behavior of fluidized beds using α
(
S̃t
)
, as defined in equation 3.4.

In figure 6, the dimensionless drag force, F , is plotted as a function of ∆ f

∣∣∇∇∇φ⊥
∣∣ for the (a)
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(a) (b)

FIGURE 6. The dimensionless drag force, F , is plotted as a function of the dimensionless magnitude of
the gradient in particle volume fraction that is perpendicular to the slip velocity, ∆ f

∣∣∇∇∇φ⊥
∣∣, for the (a) high

St limit and (b) low St limit. For both of these cases, the results are shown for φ = 0.1, 0.2, and 0.3 and
∆ f /dp = 3 and 5. These results are compiled from particle configurations taken from fluidized beds with
the following set of parameters: ρp/ρ f = 4, 10, 100, 300, 1500, and 3000 and 〈φ〉 = 0.1, 0.15, 0.2, 0.25,
and 0.3.

high and (b) low St limits. These results are compiled from particle configurations taken from

fluidized beds with the following set of parameters: ρp/ρ f = 4, 10, 100, 300, 1500, and 3000

and 〈φ〉= 0.1, 0.15, 0.2, 0.25, and 0.3. For the analysis shown in figure 6, F is computed using a

range of filter sizes
(
∆ f /dp = 3 and 5

)
and bin-averaged with both φ (using a bin width of 0.01)

and ∆ f

∣∣∇∇∇φ⊥
∣∣. In order to demonstrate the effect of ∆ f

∣∣∇∇∇φ⊥
∣∣ on F , the results are shown for

the following φ -bins: φ = 0.1, 0.2, and 0.3. From figures 6a and b, we observe that, as expected,

there is a reduction in drag as ∆ f

∣∣∇∇∇φ⊥
∣∣ increases for both the high and low St limits. This trend

holds even as φ and ∆ f are both varied.

In order to develop a new ∆ f

∣∣∇∇∇φ⊥
∣∣-dependent drag model that can be applied to larger-scale

simulations over a range of length scales, it is essential for the trends in the drag force to persist

as the filter size is varied. However, from figures 6a and b, it is clear that the results for F as a

function of ∆ f

∣∣∇∇∇φ⊥
∣∣ do not lie on a single curve as ∆ f is varied for both the high and low St

limits. This discrepancy in the trends is especially pronounced in the low St limit case. Instead,

it appears that as ∆ f increases, there is a clear reduction in drag for the same value of φ and

∆ f

∣∣∇∇∇φ⊥
∣∣. Choosing the characteristic length scale for the gradient in the volume fraction to be

dp instead of ∆ f does not result in a better collapse of the results (not shown in figure 6). Since

the ∆ f

∣∣∇∇∇φ⊥
∣∣ measure is only capable of detecting inhomogeneities at the scale of the filter size

or larger, it appears that at larger filter sizes, the inability of this measure to capture key sub-grid

structures, which prior larger-scale filtering studies (Igci & Sundaresan 2011; Schneiderbauer &

Pirker 2014) have found to have the most significant effect on the drag, prevents it from being a

useful method for quantifying the extent of inhomogeneities.

3.4.2. Scalar variance of the particle volume fraction

The scalar variance of the particle volume fraction, (φ ′)2
, provides a measure for the extent of

fluctuations in the volume fraction at the sub-grid scale. Using (φ ′)2
, as defined in equation 3.5,
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(a) (b)

FIGURE 7. The dimensionless drag force, F , is plotted as a function of the scalar variance in particle volume

fraction, (φ ′)2, for the (a) high St limit and (b) low St limit. For both of these cases, the results are shown

for φ = 0.1, 0.2, and 0.3 and ∆ f /dp = 3 and 5. These results are compiled from particle configurations
taken from fluidized beds with the following set of parameters: ρp/ρ f = 4, 10, 100, 300, 1500, and 3000
and 〈φ〉 = 0.1, 0.15, 0.2, 0.25, and 0.3. The curves, derived from the new drag model (equations 3.7 and
3.8) that best fits this data, are shown in these figures.

we sought to model the reduction in drag due to the effects of inhomogeneities. As was the case

for the ∆ f

∣∣∇∇∇φ⊥
∣∣ measure in section 3.4.1, since (φ ′)2

is solely based on the configuration of

particles, we are able to study the fluidized bed particle configurations using the high and low St

limit simulations, and then interpolate these results to the behavior of fluidized beds using α
(
S̃t
)

(equation 3.4).

In figure 7, the dimensionless drag force, F , is plotted as a function of (φ ′)2
for the (a) high

and (b) low St limits. F is computed using a range of filter sizes
(
∆ f /dp = 3 and 5

)
and bin-

averaged with both φ and (φ ′)2
. These results are compiled from particle configurations taken

from fluidized beds with the following set of parameters: ρp/ρ f = 4, 10, 100, 300, 1500, and

3000 and 〈φ〉 = 0.1, 0.15, 0.2, 0.25, and 0.3. In order to demonstrate the effect of (φ ′)2
on F ,

the results are shown for the following φ -bins: φ = 0.1, 0.2, and 0.3. From figures 7a and b,

we observe that, over a range of φ and ∆ f values, there is a strong reduction in drag as (φ ′)2

increases for both the high and low St limits. In fact, in low St limit systems at φ = 0.1, there is a

54% reduction in the (φ ′)2
-bin-averaged dimensionless drag force, F , over the range of observed

(φ ′)2
values, computed using ∆ f = 3dp. This strong reduction in F is completely undetected by

prior drag relations that do not account for the extent of inhomogeneities.

In contrast to the observations made from figure 6 for the ∆ f

∣∣∇∇∇φ⊥
∣∣ measure, in figure 7, we

clearly see that, for a particular value of φ , the results for F as a function of (φ ′)2
lie on a single

curve as ∆ f is varied. Such a result suggests that (φ ′)2
provides a powerful measure for the extent

of inhomogeneities over a range of length scales. Even at larger filter sizes, (φ ′)2
is still able to

capture the effects of key sub-grid-scale structures. Having established the utility of the (φ ′)2

measure, we then sought to model the drag results at both the high and low St limits. The high St
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Drag model function high St limit low St limit

F0

(
φ
)

8.54
φ

1−φ
+
(
1−φ

)3
(

1+4.11
√

φ
)

6.69
φ

1−φ
+
(
1−φ

)3
(

1+4.09
√

φ
)

a
(
φ
)

5.70−221
(

φ
φmax

)2.5 (
1− φ

φmax

)4
9.39−2100

(
φ

φmax

)3 (
1− φ

φmax

)7

b
(
φ
)

0.0220−240
(

φ
φmax

)6 (
1− φ

φmax

)10
0.0220−283

(
φ

φmax

)5 (
1− φ

φmax

)12

TABLE 2. The (φ ′)2-dependent drag model functions, F0, a, and b, are presented for both the high and low
St limits, with φmax = 0.64.

and low St limit drag models are written as:

FhighSt

(
φ , (φ ′)2

)
= F0,highSt

(
φ
)
−ahighSt

(
φ
) (φ ′)2/bhighSt

(
φ
)

1+(φ ′)2/bhighSt

(
φ
) , (3.7)

FlowSt

(
φ , (φ ′)2

)
= F0, lowSt

(
φ
)
−alowSt

(
φ
) (φ ′)2/blowSt

(
φ
)

1+(φ ′)2/blowSt

(
φ
) . (3.8)

In equations 3.7 and 3.8, the model functions F0, a, and b are defined in table 2. The functional

form of F0 in table 2 is inspired by the van der Hoef et al. (2005) drag model in equation 2.2.

The functional form of a and b in table 2 is empirically derived from this simulation study.

The solid curves drawn in figures 7a and b are based on the drag models in equations 3.7 and

3.8, respectively. The ability of these high and low St limit drag relations to accurately fit the

drag results over a range of φ and (φ ′)2
demonstrates the success of our model development.

Using the high and low St limit drag models, we then interpolate the drag value for a fluidized

bed with the following equation:

F
(

φ , S̃t, (φ ′)2
)
= α

(
S̃t
)

FhighSt

(
φ , (φ ′)2

)
+
(
1−α

(
S̃t
))

FlowSt

(
φ , (φ ′)2

)
, (3.9)

where α
(
S̃t
)

is defined in equation 3.4 and S̃t is defined in equation 3.3. Using equations 3.7-

3.9, we are able to define a new (φ ′)2
-dependent drag model that accounts for the effects of

inhomogeneities over a range of length scales. In applying this drag relation as a closure to

larger-scale simulations, where the flow is not resolved down to the 1dp scale, a method for

estimating (φ ′)2
is needed. In order to estimate the value of this quantity, we need to solve an

additional transport equation for (φ ′)2
or employ a scale-similarity approach, as described in

section 3.5.1.

3.4.3. Drift flux

As an alternative to defining a drag model in terms of (φ ′)2
, we can also define a drag model

in which the extent of inhomogeneities is captured through the drift flux (Ozel et al. 2013), as

defined in equation 3.6. This quantity is based not only on the configuration of particles, but also

on how the flow structures correlate with particle distributions. A normalized measure for the

drift flux is given as:

vd =

(
φ ṽvvdri f t

)
· ũuuslip

ũuuslip · ũuuslip

. (3.10)
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(a) (b)

FIGURE 8. The dimensionless drag force, F , is plotted as a function of the dimensionless drift flux, vd , for
(a) φ = 0.15 and (b) φ = 0.25. For both of these cases, the results are shown for α = 0.25, 0.55, and 0.85
and ∆ f /dp = 3 and 5. These results are compiled from fluidized bed simulations with the following set of
parameters: ρp/ρ f = 4, 10, 100, 300, 1500, and 3000 and 〈φ〉 = 0.1, 0.15, 0.2, 0.25, and 0.3. The curves,
derived from the new drag model (equation 3.11) that best fits this data, are shown in these figures.

vd , which is a scalar quantity, is defined as the normalized component of the drift flux that is in

the direction of the slip velocity. Since we found that the magnitude of the drift flux components

perpendicular to the slip velocity is negligible (< 1%) relative to that of the parallel components,

we are able to focus solely on the parallel components for the purposes of drag modeling. Since

the drift flux is not solely based on the configuration of particles, it is not useful to derive the drag

model based on the drift flux only using high and low St limit simulations. Thus, we are unable

to employ the same methodology for developing a vd-dependent drag model as we did with the

(φ ′)2
-based model in section 3.4.2.

In figure 8, F is plotted as a function of vd , using the results of fluidized bed simulations with

the following set of parameters: ρp/ρ f = 4, 10, 100, 300, 1500, and 3000 and 〈φ〉 = 0.1, 0.15,

0.2, 0.25, and 0.3. F is bin-averaged with φ , vd , and α for the following filter sizes: ∆ f /dp = 3

and 5. The value of α , as defined in equation 3.2, is computed at each filter cell by comparing

the drag results in a particular fluidized bed with those in its inhomogeneous high and low St

limit counterparts. In figures 8a and b, the results for the φ = 0.15 and φ = 0.25 bins are shown,

respectively. In order to fully demonstrate the effect of vd on F , the results in figure 8 are shown

for the following α-bins: α = 0.25, 0.55, and 0.85, with α-bin widths of 0.1. From figures 8a and

b, we observe that, over a range of φ , ∆ f , and α values, there is a reduction in drag as vd becomes

more negative. In fact, at φ = 0.15 and α = 0.25, there is a 49% reduction in the vd-bin-averaged

dimensionless drag force, F , over the range of observed drift flux values, computed using ∆ f =
3dp. Such a pronounced reduction in F cannot be detected by the Rubinstein et al. (2016) model

(equation 2.1). It is important to point out that the dimensionless drift flux is primarily negative

over the entire fluidized bed system. Since the drift flux is a measure of the correlation between

uuuslip and φ , this correlation is typically negative due to the fact that higher values of φ usually

result in lower magnitudes of uuuslip.

In figure 8, for a particular pair of φ and α values, the results for F as a function of vd fall

on a single curve as ∆ f is varied. Such a result suggests that the drift flux provides a powerful

measure for the extent of inhomogeneities over a range of length scales. Since vd , like (φ ′)2
,

is a sub-grid-scale quantity, this measure is still able to capture the effects of key small-scale
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Drag model function Functional value

F0,highSt

(
φ
)

8.41
φ

1−φ
+
(
1−φ

)3
(

1+3.45
√

φ
)

F0,lowSt

(
φ
)

6.57
φ

1−φ
+
(
1−φ

)3
(

1+3.39
√

φ
)

a
(
φ
)

10.95−24.82
(

φ
φmax

)0.5 (
1− φ

φmax

)2

b
(
φ
)

−0.093−6460
(

φ
φmax

)8 (
1− φ

φmax

)7

TABLE 3. The drift flux-dependent drag model functions, F0,highSt , F0,lowSt , a, and b, are presented, with
φmax = 0.64.

structures, even at larger filter sizes. Thus, we sought to model the drag as a function of the drift

flux.

The drift flux-dependent drag model is defined as follows:

F
(
φ , S̃t, vd

)
= F0

(
φ , α

(
S̃t
))
−a

(
φ
) vd/b

(
φ
)

1+ vd/b
(
φ
) , (3.11)

where F0

(
φ
)

is defined as:

F0

(
φ , α

(
S̃t
))

=
F0,highSt

(
φ
)
+F0,lowSt

(
φ
)

2
+

(
F0,highSt

(
φ
)
−F0,lowSt

(
φ
)

2

)
e10(α(S̃t)−0.6)−1

e10(α(S̃t)−0.6) +1
.

(3.12)

The functional form in equation 3.12 is based on the functional form for α
(
S̃t
)
, as given in

equation 3.4, with F0 → F0,highSt and F0 → F0,lowSt at the high and low St limits, respectively.

In equations 3.11 and 3.12, the model functions F0,highSt

(
φ
)
, F0,lowSt

(
φ
)
, a

(
φ
)
, and b

(
φ
)

are

defined in table 3. The functional form of F0,high St and F0,low St in table 3 is inspired by the

van der Hoef et al. (2005) drag model in equation 2.2. The functional form of a and b in table 3

is empirically derived from this simulation study.

The solid curves drawn in figures 8a and b are based on the drag model in equation 3.11. The

ability of this drag relation to accurately fit the drag results over a range of φ , vd , and α
(
S̃t
)

demonstrates the success of our model development. Using equations 3.11 and 3.12 and the

model functions of table 3, we are able to define a new vd-dependent drag model that accounts

for the effects of inhomogeneities over a range of length scales. As was the case for the (φ ′)2
-

dependent drag model, in applying this drag relation as a closure to larger-scale simulations, a

method for estimating vd is needed since the flow is not resolved down to the 1dp scale. In order to

estimate vd , we need to solve an additional transport equation for vd or employ a scale-similarity

approach, as described in section 3.5.2.

3.5. Scale-similar modeling of sub-grid-scale quantities

The new drag models that are proposed in section 3.4 quantify the extent of inhomogeneities

through one of two sub-grid-scale measures: (φ ′)2
or vd . In LBM simulations, the flow is fully

resolved at the 1dp length scale of the base grid cell, and so these quantities can be directly

computed using flow information that is available at the sub-filter scale. However, when these

drag relations are applied as constitutive closures to larger-scale simulations, where the flow is

not resolved at the 1dp length scale and where ∆ f and ∆b are both taken to be equal to the
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fluid grid size, the sub-grid-scale quantities cannot be directly computed. Thus, a method for

estimating these sub-grid quantities is needed.

In this study, we employ a scale-similar approach to model the sub-grid-scale quantities. This

scale-similar approach was first introduced in modeling eddy viscosity in the context of single

phase turbulence by Germano et al. (1991), and was later adapted to drag modeling in large-

scale multi-phase flow modeling by Parmentier et al. (2012) and Ozel et al. (2013). Such an

approach has not previously been used in the context of developing constitutive models for the

fluid-particle drag force using smaller-scale, fully-resolved simulations.

In the scale-similar approach, the key assumption made is that the type of inhomogeneous

structures that occur at a particular length scale can be predicted based on the type of structures

that occur at a second length scale. Thus, using scale-similarity, information available at or above

the grid length scale can be used to approximate the sub-grid quantities. In order to utilize the

scale-similar assumption, a model of the following form needs to be proposed for the sub-filter

quantities:

q = κ f
(
φ/φmax

)
g
(
∆ f /dp

)
, (3.13)

where q is a sub-grid-scale measure for the extent of inhomogeneities. f
(
φ/φmax

)
and g

(
∆ f /dp

)

define the functional dependence of the sub-grid quantity on the particle concentration and mesh,

respectively, and are applicable to fluidized beds with a wide range of system properties. In

equation 3.13, κ is a scalar quantity that adjusts based on the extent of inhomogeneities in a

particular system. While κ will vary from system to system, for a particular system, the value of

κ will persist over a range of length scales (filter sizes), based on the scale-similarity assumption.

The functional form in equation 3.13 is based on the work of Parmentier et al. (2012) and Ozel

et al. (2013).

In order to proceed with this scale-similar modeling approach, the first step is develop accurate

expressions for f and g. Our development of these models are described in sections 3.5.1 and

3.5.2 for (φ ′)2
and vd , respectively. Once models for f and g have been developed, in order to

estimate the sub-grid quantity in equation 3.13, we still need a method to approximate the value

of κ . In order to take advantage of the scale-similarity assumption, κ is computed through a

technique in which the flow structures are analyzed using a second, larger filter size, known as

the test filter, ∆ f ,test . Since the flow is resolved at length scales below ∆ f ,test , the use of this test

filter approach allows us to compute the extent of sub-filter-scale inhomogeneities at the ∆ f ,test

length scale. Since the value of κ holds at both ∆ f and ∆ f ,test , the value of κ can be determined

for all of the fluidized bed systems. Having determined f , g, and κ , the sub-grid-scale measure

for the extent of inhomogeneities can then be approximated. While some of the mechanics of this

test filter approach are presented in section 3.5.1 for the modeling of (φ ′)2
, further details can be

found in the work of Ozel et al. (2013).

3.5.1. Scalar variance of particle volume fraction

Since (φ ′)2
is a sub-grid-scale measure for the extent of inhomogeneities, we employ a scale-

similar approach to estimate this quantity. In order to utilize this approach, the scale-similar form

for (φ ′)2
is defined as:

(φ ′)2 = κ1 f1

(
φ/φmax

)
g1

(
∆ f /dp

)
, (3.14)

which is based on the generic scale-similar formalism in equation 3.13

In order to determine a model for f1, the dependence of (φ ′)2
on the concentration of particles,

the value of (φ ′)2
is evaluated for fluidized bed configurations with a wide range of parameters.
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(a) (b)

FIGURE 9. (a) The results for (φ ′)2, normalized by
∫ 1

0 (φ ′)2
d
(
φ/φmax

)
, are shown as a function of

φ/φmax. These results are computed using ∆ f /dp = 3. The results from the different particle configurations

all fall onto a single curve, which we define as: f1
(
φ/φmax

)
=

(
φ/φmax

)1.37 (
1−φ/φmax

)3.00
. (b) The

domain-averaged scalar variance results,
〈
(φ ′)2

〉
, normalized by

〈
f1
(
φ/φmax

)〉
, are shown as a function

of ∆ f /dp. The results from the different particle configurations are all modeled using a single function,

〈κ1〉g1

(
∆ f /dp

)
= 〈κ1〉

(∆ f /dp)
2

4.58+(∆ f /dp)
2 , which provides the functional form for the different fitting curves.

The results for both of these figures are compiled from particle configurations taken from fluidized beds
with the following set of parameters: ρp/ρ f = 10, 100, and 300 and 〈φ〉= 0.1, 0.2, and 0.3.

This analysis is shown in figure 9a, where f1 is determined as:

f1

(
φ/φmax

)
=

(φ ′)2

∫ 1
0 (φ ′)2

d
(
φ/φmax

) . (3.15)

In order to compute the integral in the denominator of equation 3.15, a curve is drawn through

the results of (φ ′)2
as a function of φ/φmax from φ/φmax = 0 to φ/φmax = 1. (φ ′)2

is forced to 0

at these two limits, since there is no variance in the volume fraction when no particles are present

and when the particles are at a maximum packing fraction. Using a filter size of ∆ f /dp = 3, the

results for (φ ′)2/
∫ 1

0 (φ ′)2
d
(
φ/φmax

)
are then computed as a function of φ/φmax. These results

are compiled from particle configurations taken from fluidized beds with the following set of

parameters: ρp/ρ f = 10, 100, and 300 and 〈φ〉 = 0.1, 0.2, and 0.3. From figure 9a, it is clear

that the results from these different configurations all fall onto a single curve, with the following

functional form:

f1

(
φ/φmax

)
=

(
φ/φmax

)n1
(
1−φ/φmax

)m1 , (3.16)

where n1 = 1.37, m1 = 3.00, and φmax = 0.64. The function f1

(
φ/φmax

)
, defined in equation

3.16 and derived using ∆ f /dp = 3, is valid over a range of length scales, as it has also been

shown to hold at ∆ f /dp = 5 to within 4%. In addition, while figure 9a provides only a sampling

of the fluidized beds that were simulated in the current study, the universal shape of equation

3.16 holds over the full range of ρp/ρ f (4−3000) and 〈φ〉 (0.1−0.3) that were investigated.

Furthermore, while the high computational demands associated with properly resolving the flow

between particles at very high particle volume fractions prevent us from sampling φ between 0.4

and φmax in the current work, the fact that the universal shape holds over the entire sampled φ

and that prior multiphase flow studies employing a scale-similarity technique (Ozel et al. 2013)

have found a similar concentration dependence suggest that equation 3.16 should hold over the

full range of φ .

Next, in order to determine a model for g1, which defines the mesh-dependence of (φ ′)2
, the
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properties of (φ ′)2
are studied over a range of filter sizes. This analysis is shown in figure 9b,

where g1 is determined as:

g1

(
∆ f /dp

)
=

〈
(φ ′)2

〉

〈
κ1 f1

(
φ/φmax

)〉 , (3.17)

with f1 defined by equation 3.16. Performing the domain-averaging operation in equation 3.17

allows for us to determine how, on average, (φ ′)2
changes with filter size. In figure 9b, the

results for
〈
(φ ′)2

〉
/
〈

f1

(
φ/φmax

)〉
, are shown as a function of ∆ f /dp. The results for each

different configuration have the same dependence on ∆ f /dp and g1

(
∆ f /dp

)
, and simply vary

by the multiplicative constant, 〈κ1〉, which defines the extent of inhomogeneities for a particular

system, averaged over the domain. This functional dependence on ∆ f /dp is found to be:

g1

(
∆ f /dp

)
=

(
∆ f /dp

)2

k1 +
(
∆ f /dp

)2
, (3.18)

where k1 = 4.58. While larger computational domains are necessary in order to fully probe the

validity of the quadratic mesh dependence in the smaller filter size regime, the form of equation

3.18 is confirmed in the current study through its ability to effectively pass through all of the data

points in figure 9b and by the fact that this equation is consistent with the Taylor series expansion

of the drift velocity that is performed by Ozel et al. (2013). The value for k1 is determined based

on a best fit of the simulation data points in figure 9b. The curves, based on 〈κ1〉g1

(
∆ f /dp

)
, are

shown, in figure 9b, to fit the results over a range of system parameters. κ1 is found to be larger

for particle configurations taken from fluidized beds with larger values of ρp/ρ f , due to the fact

that these configurations have a larger extent of inhomogeneities. As an example of this trend, for

systems with 〈φ〉= 0.3, the domain-averaged value of κ1 is 0.084 and 0.143 for the ρp/ρ f = 10

and ρp/ρ f = 300 configurations, respectively.

Having developed the scale-similar models for f1

(
φ/φmax

)
and g1

(
∆ f /dp

)
, (φ ′)2

can then

be estimated by utilizing the test filter approach, as discussed in section 3.5. Quantities that are

filtered using the test filter, ∆ f ,test , are denoted with ˆ. The scalar variance of the filtered solid

volume fraction,
̂
(φ ′)2

∗, at the test scale is defined as:

̂
(φ ′)2

∗ = φ̂ 2− φ̂
2

= κ1 f1

(
φ̂/φmax

)
g1

(
∆ f ,test/dp

)
, (3.19)

while the test-filtered scalar variance,
̂
(φ ′)2

, is defined as:

(φ ′)2

∧

= φ 2−φ
2

∧

= κ1 f1

(
φ/φmax

)
g1

(
∆ f /dp

)∧

. (3.20)

From equations 3.19 and 3.20, we are able to solve for κ1 as:

κ1 =
φ̂

2
− φ̂

2

f1

(
φ̂/φmax

)
g1

(
∆ f ,test/dp

)
− f1

(
φ/φmax

)
g1

(
∆ f /dp

)∧. (3.21)

Using this test filter approach, the value of κ1 can be estimated throughout the fluidized bed

system.

The sub-grid-scale measure for the extent of inhomogeneities, (φ ′)2
, can be approximated

through scale-similar modeling using equations 3.14, 3.16, 3.18, and 3.21. In doing so, this

quantity can be estimated in simulations where the flow is not fully resolved.
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(a) (b)

FIGURE 10. (a) The results for vd , normalized by
∫ 1

0 vdd
(
φ/φmax

)
, are shown as a function of φ/φmax.

These results are computed using ∆ f /dp = 3. The results from the different particle configurations all

fall onto a single curve, which we define as: f2
(
φ/φmax

)
=

(
φ/φmax

)1.44 (
1−φ/φmax

)1.84
. (b) The

domain-averaged drift flux results, 〈vd〉, normalized by
〈

f2
(
φ/φmax

)〉
, are shown as a function of

∆ f /dp. The results from the different particle configurations are all modeled using a single function,

〈κ2〉g2

(
∆ f /dp

)
= 〈κ2〉

(∆ f /dp)
2

9.20+(∆ f /dp)
2 , which provides the functional form for the different fitting curves.

The results for both of these figures are compiled from fluidized bed simulations with the following set of
parameters: ρp/ρ f = 10, 100, and 300 and 〈φ〉= 0.1, 0.2, and 0.3.

In equation 3.18, the parameter k1 defines how quickly the mesh-dependence of (φ ′)2
is

saturated at higher filter sizes, with smaller values of k1 correlating with this saturation occurring

at lower values of ∆ f . The current analysis has been performed using a domain size of nx = 12dp.

In order to determine how this saturation parameter, k1, varies with domain size, we have also

performed this analysis at other domain sizes (nx = 9dp and 24dp). From this analysis, it appears

that as the domain size increases, the mesh-dependence of (φ ′)2
becomes saturated at higher filter

sizes, and so k1 increases roughly as the square root of the domain size. Thus, as we look to apply

this new drag constitutive relation to large-scale fluidized bed simulations, we can extrapolate this

trend in order to conclude that: k1 ≫
(
∆ f /dp

)2
for large-scale systems. Using this relationship,

the scale-similar form for (φ ′)2
can be written in its modified form as:

(φ ′)2 = κ
′

1 f1

(
φ/φmax

)
g
′

1

(
∆ f /dp

)
, (3.22)

where κ
′

1 = κ1/k1 and g
′

1

(
∆ f /dp

)
=

(
∆ f /dp

)2
.

3.5.2. Drift flux

Since the drift flux is a sub-grid-scale measure for the extent of inhomogeneities, we employ,

as we did for (φ ′)2
in section 3.5.1, a scale-similar method to estimate this quantity. A scale-

similar form for the dimensionless drift flux is given by:

vd = κ2 f2

(
φ/φmax

)
g2

(
∆ f /dp

)
. (3.23)

In order to determine a model for f2, the dependence of vd on the concentration of particles,

this function, as shown in figure 10a, is computed as:

f2

(
φ/φmax

)
=

vd∫ 1
0 vdd

(
φ/φmax

) . (3.24)

Like (φ ′)2
, vd is taken to be 0 at the two φ/φmax limits. Using a filter size of ∆ f /dp = 3, the results
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for vd/
∫ 1

0 vdd
(
φ/φmax

)
are then computed as a function of φ/φmax. The results in figure 10a are

compiled from fluidized bed simulations with the following set of parameters: ρp/ρ f = 10, 100,

and 300 and 〈φ〉 = 0.1, 0.2, and 0.3. From figure 10a, it is clear that the results from these

different configurations all fall onto a single curve, with the following functional form:

f2

(
φ/φmax

)
=

(
φ/φmax

)n2
(
1−φ/φmax

)m2 , (3.25)

where n2 = 1.44, m2 = 1.84, and φmax = 0.64. f2

(
φ/φmax

)
is valid over a range of length

scales, as it has also been shown to hold at ∆ f /dp = 5 to within 5%. In addition, while figure

10a provides only a sampling of the fluidized beds that were simulated in the current study,

the universal shape of equation 3.25 holds over the full range of ρp/ρ f and 〈φ〉 that were

investigated. Furthermore, given the fact that the universal shape holds over the entire sampled

φ (0−0.4) and that prior multiphase flow studies employing a scale-similarity technique (Ozel

et al. 2013) have found a similar concentration dependence, the universal shape of equation 3.25

should hold over the full range of φ .

Comparing the results of figure 10a with those of figure 9a, the collapse of the vd data points

onto a single universal curve is found to be not as strong as that of (φ ′)2
, especially near the peak

of the curve. Since vd involves both φ and ũuuslip, there is a possibility that attaining a universal

shape for vd as a function of φ is more difficult as compared to (φ ′)2
, which only involves

φ . Near the peak of the curve in figure 10a, the overall effects of inhomogeneities are at their

most extreme, so any additional effects of inhomogeneities in ũuuslip would further complicate the

attempts to obtain a collapse of the vd data points onto a single curve. Still, based on the fact that

the data points in figure 10a generally fall onto the universal curve, the scale-similar approach is

still found to be appropriate for modeling vd .

Next, in order to determine a model for g2, the mesh-dependence of vd , this function, as shown

in figure 10b, is computed as:

g2

(
∆ f /dp

)
=

〈vd〉〈
κ2 f2

(
φ/φmax

)〉 , (3.26)

with f2 defined by equation 3.25. In figure 10b, the results for 〈vd〉/
〈

f2

(
φ/φmax

)〉
are shown

as a function of ∆ f /dp. The results for each different configuration have the same dependence

on ∆ f /dp, and simply vary by the multiplicative constant, 〈κ2〉. For all of these cases, 〈κ2〉 < 0

because vd is typically negative over the entire fluidized bed, as explained in section 3.4.3. The

functional dependence of vd on ∆ f /dp is found to be:

g2

(
∆ f /dp

)
=

(
∆ f /dp

)2

k2 +
(
∆ f /dp

)2
, (3.27)

where k2 = 9.20. While larger computational domains are necessary in order to fully probe the

validity of the quadratic mesh dependence in the smaller filter size regime, the form of equation

3.27 is confirmed in the current study through its ability to effectively pass through all of the

data points in figure 10b and by the fact that this equation is consistent with the Taylor series

expansion of the drift velocity that is performed by Ozel et al. (2013). The curves, based on

〈κ2〉g2

(
∆ f /dp

)
, are shown, in figure 10b, to fit the results over a range of system parameters.

As was true for κ1 in section 3.5.1, κ2 is found to be larger for particle configurations taken from

fluidized beds with larger values of ρp/ρ f .

Using a test filter approach similar to the one described in equation 3.21 for the (φ ′)2
measure,
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κ2 can be estimated throughout the fluidized bed system as:

κ2 =
φ
∣∣ũuuslip

∣∣
∧

−φ

∧∣∣ũuuslip

∣∣
∧

f2

(
φ̂/φmax

)
g2

(
∆ f ,test/dp

)∣∣ũuuslip

∣∣
∧

− f2

(
φ/φmax

)
g2

(
∆ f /dp

)∣∣ũuuslip

∣∣
∧. (3.28)

Thus, the dimensionless drift flux can be approximated through scale-similar modeling using

equations 3.23, 3.25, 3.27, and 3.28. In doing so, vd can be estimated in simulations where the

flow is not fully resolved.

Analogous to the domain-size dependence of k1, which is discussed in section 3.5.1, k2 is

found to increase with the domain size. Thus, the modified scale-similar model for the drift flux

that is applicable to larger-scale simulations is given by:

vd = κ
′

2 f2

(
φ/φmax

)
g
′

2

(
∆ f /dp

)
, (3.29)

where κ
′

2 = κ2/k2 and g
′

2

(
∆ f /dp

)
=

(
∆ f /dp

)2
.

Further details for implementing the inhomogeneity-dependent constitutive closures for the

fluid-particle drag force can be found in the Supplementary Material.

3.6. Error analysis of new drag models

In order to conduct an analysis of these newly-developed drag models, the filtered(
∆ f /dp = 3

)
, dimensionless drag, F , is computed via fully-resolved simulations in fluidized

beds with ρp/ρ f = 4, 10, 100, 300, 1500, and 3000 and 〈φ〉= 0.1, 0.15, 0.2, 0.25, and 0.3, and

these LBM drag values are compared with the drag that is predicted by these new constitutive

models. These new drag models account for the effect of inhomogeneities by involving a

sub-grid measure, either based on (φ ′)2
or vd . The (φ ′)2

-dependent model is defined in equation

3.9, while the vd-dependent model is defined in equation 3.11.

When using these new constitutive relations to predict the fluidized bed drag, we are able

to evaluate the sub-grid-scale measure for the extent of inhomogeneities either by computing

the quantity directly using the detailed flow information from the fully-resolved simulation

(henceforth, referred to as a direct computation), or by estimating the quantity using the scale-

similar approach, detailed in section 3.5, with ∆ f ,test/dp = 5. Since the drag relations will be

applied as constitutive closures to larger-scale simulations, where the sub-grid-scale quantities

cannot be directly computed, the latter analysis is a better test for how much improvement in

the drag prediction we have achieved. However, the former analysis does allow us to ascertain

how effective each of these inhomogeneity measures would be in predicting the drag if we were

able to achieve a perfect estimation of these sub-grid quantities. The prediction errors of this

drag model can be thought of as the best possible outcome if we are able to further improve our

methodology for estimating the sub-grid quantities.

Since we have developed two different drag models that are dependent on (φ ′)2
and vd , re-

spectively, and we are computing these sub-grid-scale quantities using two different approaches,

we are essentially analyzing the performance of four different inhomogeneous drag models. In

figure 11, in addition to analyzing the drag predictions of these four inhomogeneous models, we

have included the results from the Rubinstein et al. (2016) drag model (same curve as in figure

4), so that we would have the St-dependent, homogeneous model for direct comparison. In figure

11, the probability distribution function for each model’s percent error in the drag prediction is

plotted. The model bias, measured using both the prediction error at the PDF maximum and the

average prediction error, and the spread in the errors for each of these five models are summarized

in table 4.
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FIGURE 11. The probability distribution functions are plotted for the percent error in the drag prediction for
five different drag models. The homogeneous drag model of Rubinstein et al. (2016) is compared to our new
drag models that account for the effects of inhomogeneities. These drag models involve a sub-grid measure

for the extent of inhomogeneities, either based on (φ ′)2 or vd . Each of these sub-grid-scale measures is
either computed directly through a fully-resolved simulation, or estimated using a scale-similar method.
These drag models are applied to fluidized bed systems with the following set of parameters: ρp/ρ f = 4,
10, 100, 300, 1500, and 3000 and 〈φ〉 = 0.1, 0.15, 0.2, 0.25, and 0.3. This analysis is performed with
∆ f /dp = 3 and ∆ f ,test/dp = 5.

Drag model
% Error at

PDF maximum
Average
% error

Spread in
% error

Rubinstein et al. (2016) 14.0% 24.0% 22.8%

F
(

φ , St, (φ ′)2 computed directly
)

-2.0% 1.0% 14.2%

F
(

φ , St, (φ ′)2 estimated via scale-similarity
)

2.0% 2.8% 18.5%

F
(
φ , St, vd computed directly

)
-2.0% 1.8% 11.2%

F
(
φ , St, vd estimated via scale-similarity

)
-2.0% 2.0% 17.9%

TABLE 4. The percent error at the maximum of the probability distribution functions, the average percent
error, and spread in the distribution of the percent errors of one homogeneous and four inhomogeneous drag
models are presented, when these models are applied, using ∆ f /dp = 3 and ∆ f ,test/dp = 5, to fluidized bed
systems with the following set of parameters: ρp/ρ f = 4, 10, 100, 300, 1500, and 3000 and 〈φ〉= 0.1, 0.15,
0.2, 0.25, and 0.3.

From figure 11 and table 4, the fact that all four inhomogeneous drag models have a very small

bias (±3.0%) confirms that we have properly fit the simulation data with these new models over

a full range of φ and St. While the error distributions are slightly skewed towards larger positive

errors, this same conclusion can be made using either of the two measures for the model bias.

In contrast, the Rubinstein et al. (2016) model, on average, over-predicts the drag by 24.0%

due to the fact that this model was developed for homogeneous distributions of particles, and is

therefore unable to account for the reduction in drag caused by inhomogeneities.
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Since all four inhomogeneous drag models have essentially zero bias when predicting the drag

for this particular set of LBM data, the key parameter in determining the utility of these models

is the spread in the errors. Out of the four inhomogeneous models, the drift flux-dependent drag

model, in which the drift flux is computed directly, has the smallest spread in the percent error:

11.2%. In comparison, the (φ ′)2
-dependent drag model, in which (φ ′)2

is computed directly, has

a spread in the percent error of 14.2%. Thus, it is clear that if we are able to achieve a perfect

estimation of these two sub-grid quantities, the drift flux measure appears to provide a better fit

for the drag force than the (φ ′)2
measure. From this analysis, it appears that incorporating the

slip velocity into the measure for inhomogeneities provides a more powerful tool for modeling

the drag than one that is solely based on the configuration of particles. Furthermore, in contrast

with the homogeneous drag model of Rubinstein et al. (2016), both of these new drag models

are able to have a significantly smaller spread due to their ability to account for the effect of

inhomogeneities.

From figure 4 and table 1, we observe that there is a modest increase in the spread in the

prediction error when the sub-grid quantities are estimated using a scale-similar approach with

∆ f ,test/dp = 5, rather than through a direct computation. Given this observed reduction in the

model accuracy, it is clear that the scale-similar approach for estimating the sub-grid quantities

slightly degrades the quality of the drag force predictions. In particular, the fact that both models

involving a scale-similar estimation have very similar spreads in the prediction error indicates

that this effect is especially pronounced in the case of the drift flux scale-similar approach. Still,

even when we use the scale-similar method to estimate the sub-filter quantities, the spreads in

the error predictions are still significantly smaller than for the Rubinstein et al. (2016) case. This

result further demonstrates that we have improved on the prior homogeneous drag models by

accounting for the effect of sub-grid-scale inhomogeneities.

From the results of this study, it is clear that the (φ ′)2
- and vd-based drag models each have

their relative advantages and disadvantages. One of the main advantages of the drift flux measure

is that, as seen in figure 11, if these sub-grid-scale quantities can be directly computed, the

vd-dependent drag model provides a more precise representation of the actual drag than the

(φ ′)2
-dependent drag model. On the other hand, one of the main advantages for (φ ′)2

is that,

as seen in figures 9a and 10a, (φ ′)2
more strongly fits the scale-similarity approximation than

does the drift flux. Due to this difference in the applicability of the scale-similar approach, in

figure 11, the two inhomogeneous drag models are found to have almost identical precision

when the sub-grid-scale quantities are estimated using scale-similarity. In addition, vd is not only

based on the configurations of particles, but also on the flow structures, which allows the drift

flux to account for inhomogeneities in the slip velocity, whereas (φ ′)2
is only able to account for

inhomogeneities in the particle distribution. However, (φ ′)2
has a simpler physical interpretation,

as it is simply a measure of the fluctuations in the particle volume fraction, while the drift flux

is a measure of the correlation between the slip velocity and the particle volume fraction. Based

on this analysis, neither one of these options is definitively the better one, and so, instead, each

of these two measures for the extent of sub-grid-scale inhomogeneities should be considered in

future studies of the effects of inhomogeneities on the drag.

Based on the observed increase in the spread of the drag prediction errors when employing

the scale-similar approach, we see that there is some room for improvement in our modeling

of the sub-grid-scale inhomogeneities. One alternate technique for estimating these sub-grid

quantities is through the use of additional transport equations. Since these transport equations

require additional constitutive closures, depending on the quality of these closures, this approach

has the potential to improve the precision of our sub-grid quantity estimation. Overall, the current
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work provides a promising approach for accounting for the effect of inhomogeneities on the fluid-

particle drag force that can be further improved upon in future studies.

4. Summary

Through this work, using LBM simulations of fluidized beds with a cubic periodic domain

analyzed over a range of filter sizes, the effect of inhomogeneities on the fluid-particle drag force

is quantified in the low Re regime through one of two measures: the scalar variance of the particle

volume fraction, (φ ′)2
, or the dimensionless drift flux, vd . Two new drag models (equations 3.9

and 3.11) are then proposed that are, in addition to being functions of φ and St, dependent on

one of these two measures for the extent of inhomogeneities. Unlike prior drag models that were

derived under the assumption that the configuration of particles is randomly homogeneous, the

newly proposed constitutive relations are able to account for the significant reduction in drag that

occurs in the low Re regime due to the presence of inhomogeneities.

By focusing on the low Re regime, the current study is able to investigate the effects of

inhomogeneities without the additional influences of inertial forces and granular temperature,

which play a significant role at higher Re. A typical low Re fluidized bed is one that is fluidized

by ambient air, and whose particles have a diameter of 75 µm and a density of 1.5g/cm3. While

the terminal velocity of these particles is ∼ 20cm/s, the minimum fluidization velocity is only

about 4mm/s and the minimum bubbling velocity is about 2cm/s, which are both within the low

Re regime. While low Re fluidized beds can exhibit both non-bubbling and bubbling behavior,

industrial fluidization processes typically involve faster flow velocities, and are therefore in the

moderate-to-high Re regime. However, even in industrial fluidized beds, the local fluid-particle

slip velocities that govern the drag force are considerably smaller than the overall gas flow

velocities. Having established the effects of inhomogeneities on the drag in the low Re limit, the

approach used in the current study can be utilized to extend this analysis to systems with higher

Re. Higher Re studies would provide insights into how the interplay between inhomogeneities,

which tend to reduce the drag, and inertial forces and granular temperature, which tend to

increase the drag, combine to affect the overall interactions between the fluid and particles.

The two identified measures for the extent of inhomogeneities, (φ ′)2
and vd , in our new drag

models are both sub-grid quantities. In contrast, the gradient in the volume fraction, ∇∇∇φ , which

was shown in prior studies to be a useful measure for the extent of inhomogeneities, is found to

inadequately model the drag over a range of length scales due to its inability to account for sub-

grid-scale inhomogeneous structures. Thus, we have observed that the effect of inhomogeneities

on the drag force are primarily tied to the extent of sub-grid-scale inhomogeneities, as these are

the structures that are not resolved at the scale at which the drag is computed.

An approach for estimating the sub-grid measures is needed in order to utilize these sub-grid-

quantity-dependent drag relations in larger-scale simulations of fluidized beds, where the flow is

not fully resolved. While the use of additional transport equations has the potential to provide

higher accuracy in estimating these sub-grid quantities, in this study, the sub-grid quantities

are estimated using a scale-similar approach, in which, based on the structures observed at a

second, larger test filter size, the measure for the extent of inhomogeneities is extrapolated down

to the ∆ f -length scale. The scale-similar models for (φ ′)2
and vd are described by equations 3.14

and 3.23, respectively. Using these scale-similar approaches to estimate the sub-filter quantities,

both of the new drag models are shown to provide an improvement in the precision of the drag

predictions over the prior homogeneous drag models.

While a direct quantitative comparison between the results in the current study and those of
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prior inhomogeneity studies cannot be made due to the fact these prior studies have not resulted

in a generalized, low Re constitutive drag relation, the key observed trends can, however, be

compared. In these prior works (Zhou et al. 2014; Li et al. 2016), the fluid-particle drag force

is found to depend on both the direction and magnitude of the particle volume fraction gradient,

with volume fraction gradients in the direction of the fluid-particle slip velocity causing an

increase in drag, and volume fraction gradients perpendicular to the slip velocity causing a

decrease in drag. In the current work, the drag force is found to depend only on the magnitude

of the inhomogeneities, with increases in the inhomogeneities leading to a decrease in drag.

Putting the results of the current work in the context of these prior studies, the effects of the

volume fraction gradients perpendicular to the slip velocity significantly outweigh those of the

parallel components. Overall, all of these inhomogeneity studies have identified the significant

limitations in homogeneous drag relations due to their inability to account for inhomogeneities.

The current work, however, is the first to propose a robust drag model that accounts for the effects

of inhomogeneities over a full range of low Re, dynamic fluidized beds.

In order to fully assess the effect of incorporating measures for the extent of inhomogeneities

within the new drag constitutive relations, these new drag models must next be applied to

larger-scale simulations of fluidized beds. In doing so, the differences between the fluidized bed

behavior predicted using these new drag relations and that using the prior homogeneous drag

models will be ascertained, especially in relation to the grid resolution at which convergence

in the flow behavior is achieved, and to the flow structures that develop as a result of the

fluid-particle interactions. Based on the strong effect of inhomogeneities on the fluid-particle

drag force that we have demonstrated over the course of this study, the newly proposed drag

models should provide a significant improvement over prior constitutive relations that fail to

account for the extent of inhomogeneities.
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