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Abstract 

Wind turbine blades are a key structural component of the wind turbine and are crucial to efficient energy generation. 
The consequences of blade failure can be very expensive or even catastrophic and therefore a means of continuously 
monitoring the blades to determine their condition will provide substantial benefits. In this research, a novel 
application of Fuzzy Finite Element Model Updating (FFEMU) to wind turbine blades for their structural health 
assessment is demonstrated. Experimental frequencies obtained from modal analysis on a small-scale wind turbine 
blade were described by fuzzy numbers to model measurement uncertainty. Structural modification, intended to be in 
lieu of damage, was simulated experimentally in a non-destructive way through addition of a small mass to the blade 
trailing edge, inducing a structural change. A numerical model was constructed with the added mass parameters in 
several locations considered as updating parameters. Analyses were run with varying extents of the modification to 
obtain objective function values and fuzzy updated parameters were constructed that minimized the objective function. 
This methodology was able to successfully identify the location and extent of modification. 
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1. Introduction 

Costs associated with operation and maintenance (O&M) of wind turbines (WT) are approximately 20-30% of the 
lifecycle cost for onshore turbines and up to 30% of the already considerably higher lifecycle cost for offshore WTs 
[1]. To increase efficiency and cost effectiveness of WTs it is necessary to decrease these O&M costs whilst improving 
the reliability of the structures. In particular, wind turbine blades (WTB) are a key component of the WT with 
significant associated costs and downtime implications. The benefit of Structural Health Monitoring (SHM) techniques 
for early damage detection of WTBs will provide great benefit to WT operation.  
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Physics based SHM techniques like calibration of finite element models (FEM) by inverse techniques have 
developed significantly in recent years. Deterministic finite element model updating (FEMU) involves construction 
of an objective function, containing the variation between experimental and analytical modal parameters, which is 
minimised to determine a set of updated model parameters. This method does not account for uncertainties associated 
with the updated parameters arising from sources such as measurement noise and inaccurate FEMs. Probabilistic and 
non-probabilistic (fuzzy) uncertainty quantification methods can use uncertain measurement data and FEMs to 
propagate uncertainty into the updating parameters. 

Probabilistic FEMU is dependent on assumptions regarding the random distribution of measured modal parameters 
to determine statistical indices of structural (updated) parameters. Damage identification using probabilistic updating 
was studied by Behmanesh and Moaveni [2] through experimentally adding mass to a footbridge and capturing 
vibration data in operational conditions. A numerical model was updated to successfully locate and predict the added 
mass. Fuzzy finite element model updating (FFEMU) was discussed by Erdogan and Bakir [3] to investigate the effect 
of measurement noise on measured modal parameters. Global optimization algorithms (GOAs) were utilised to 
determine the global optimum of the objective function at each fuzzy membership level with comparisons drawn about 
membership functions of fuzzy updated parameters and results obtained via MCS methods. FFEMU was further 
investigated by Liu and Duan [4] for a full-scale bridge structure. This work considered the uncertain structural 
parameters as fuzzy variables, which led to fuzzification of the objective function for updating. Approaches reported 
in both [3] and [4] involve model updating of structures with data containing reducible uncertainty.  

This research is focused on non-probabilistic FFEMU methods which require no assumptions regarding the 
statistical distribution of uncertain variables. In contrast to probabilistic methods, FFEMU can handle more easily 
non-linear dependencies between modal parameters and structural parameters. In the present study, the FFEMU 
process is demonstrated for assessment of structural modification extent of a small scale WTB considering uncertainty 
propagation in updated parameters. Two experimental campaigns, in the baseline and altered states, were conducted 
to obtain the natural frequencies of the blade to be used as the target for updating studies. A numerical model was 
constructed with the added mass parameter of masses at specified locations considered to be updating parameters. 
Numerical analyses were run with varying extents of modification (mass change) to obtain the responses for varying 
modification extents. The objective function value for each combination was then calculated and fuzzy updated 
parameters which minimised the objective function at each fuzzy membership level were constructed.  

2. Theory 

2.1. Fuzzy sets and -level technique 
As the real-life situations entail fuzziness of variables such as those used in structural models, the fuzzy set method 

is a very powerful mechanism to quantify this uncertainty. In classical set theory, the statement about an object 
belonging to a particular set is described in binary terms, providing sharply defined boundaries. Fuzzy set theory, 
developed by Zadeh [5], on the other hand, assigns each object with a degree of membership within a particular set 
through prescription of a membership function. For a fuzzy set  ��, the membership function is represented by  A x   
for all values of x in the domain X:  
       , | , ( ) 0,1A AA x x x X x    

  (1) 

A value of  A x   equal to one indicates that element x is undoubtedly a member of the set ��, while a value of 

 A x   equal to zero indicates x is obviously not a member of set ��. A value between these two extremes indicates a 
degree of belief in the variable belonging to the set. Fuzzy arithmetic often involves the implementation of the -level 
technique, dividing the membership function of fuzzy variables into multiple levels, enabling a deterministic interval 
to be obtained for each level. This technique to model vagueness and ambiguity is particularly useful in the context of 
structural engineering where imprecision is commonplace.  

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.09.258&domain=pdf
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2.2. Fuzzy finite element model updating 
A description of the FFEMU process adopted within this research can be seen in Figure 1. The objective functions 

detailed in section 2.3 will be used for updating at the individual -levels. The figure shows that the updating process 
is carried out at each of the m -levels with the results of updating parameters at deterministic and fuzzy levels 
assembled to provide fuzzy updated parameters.

2.3. Objective functions for fuzzy model updating  
An objective function is used to minimise the deviation between experimental modal parameters and those 

predicted analytically. During the process of FFEMU, two objective functions are required, a deterministic function 
and a fuzzy objective function. The deterministic objective function used in this study, considering only frequencies, 
is: 

   2

1

n
a e e
i i i

i
  


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where   represents eigenvalue (frequency), superscripts a and e refer to analytical and experimental values, 
respectively, and n is the number of frequencies considered. A fuzzy objective function is used to determine the 
interval updating parameter vector which minimises the deviation between experimental and analytical results [3]: 
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where θI is the interval updating parameter vector, ( )a I
j θ and  a I

j θ  are the lower and upper intervals of analytical 

eigenvalue, respectively, whilst λj
e and �̅je are the lower and upper intervals of experimental eigenvalues, respectively, 

and W is the weighting matrix. Variables r and �̅ are relative frequency errors. 

3. Physical system and experiments 

3.1. Experimental configuration 
An experimental campaign on a small scale WTB was carried out to determine the modal parameters of the healthy 

(baseline state) WTB in laboratory conditions for use in model calibration studies. The blade was from a utility scale 
Fortis WT with 5 kW power output and 5 m rotor diameter. The blade is manufactured through pultrusion of glass-
fibre reinforced epoxy composite creating a solid cross section with a E387 profile and height of 2.36 m. The total 
mass and mass density of the specimen were estimated from measurements to be approximately 7.11 kg and 
2,300 kg/m3, respectively. A fixed-free configuration, with the blade clamped at the root to a heavy steel base placed 
on a heavy concrete floor, was chosen to simulate the support of an in-service WTB and minimise the influence of 
uncontrolled ambient excitations. The blade was configured vertically to save lab space. 

Experimental modal analysis was conducted to determine the dynamic modal parameters of the structure in its 
baseline state. Using a roving hammer methodology, the structure was impacted with a Brüel & Kjær 8206 impact 
hammer with sensitivity of 1.14 mV/N, effective mass of 0.1 kg and maximum force of 4,448 N in 26 locations as 
defined in Figure 2. To mitigate against any potential poor impacts, each location was struck ten times with the results 
averaged. To excite the structure in the desired frequency range, a soft polyurethane tip was used, enabling the 
structure to be excited in a frequency range of 0-550 Hz. To measure the response acceleration of the blade, two 

Figure 1 - Fuzzy finite element model updating process 
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accelerometers were attached using wax to the leading and trailing edge corners of the blade as demonstrated in Figure 
2. Force and acceleration readings were taken at a sampling rate of 2,048 Hz with a measurement time of 80 seconds 
for each impact. Although a single accelerometer would have been sufficient for the purpose, it was decided to use 
two for comparison purposes and beneficial data redundancy. Two miniature piezoelectric accelerometers model 
Metra KS94B-100 with an individual weight of 3.2 g, voltage sensitivity of 98.95 mV/g and an operational frequency 
range of 0.5-28 kHz were used. The force and acceleration signals were digitized with a National Instruments (NI) 
NI-9234 data acquisition card connected to a NI cDAQ-9174 chassis and laptop. NI LabView software was used for 
signal processing. 

3.2. Experimental modal analysis results in baseline state 
Dynamic characteristics of the blade were identified using two system identification (S-Id) methods to provide 

confidence in the results obtained. Accelerance frequency response functions (FRF) enable the analyst to construct a 
mathematical model which describes the dynamic behaviour of the structure. The average magnitude FRF (AMFRF), 
similar to the averaged normalised power spectral density [6], was used for a quick modal frequency identification 
using peak picking. The AMFRF is defined as: 
 

    
1

jN

i ij j
j

AMFRF f H f N

=  (4) 

where Nj is the number of excitation locations and |Hij(f)| is the averaged magnitude FRF estimated from numerous 
measurements at various excitation locations. Averaging of FRFs in this manner results in a loss of information 
regarding the local properties of the structure, however, it is suitable for determining the global properties of the 
structure. The AMFRF of measurements obtained can be seen in red in Figure 3. The peaks shown in the FRF plot 
indicate the natural frequencies. The first 8 natural frequencies are provided in Table 1, with the low first natural 
frequency indicative of the high flexibility of the WTB. To provide increased confidence in the results obtained, a 
subspace identification (SSI) method as described by [7] was run ten times with the results averaged, the outcomes of 
which can also be seen in Table 1. The standard deviations associated with each methodology were found to be very 
low, and near perfect agreement observed between peak picking and SSI, therefore these results are deemed acceptable 
for further investigations. 

3.3. Experimental modal analysis results in altered state 
According to visual inspections of ninety-nine 100 kW and 300 kW WTs by Ataya and Ahmed [8] damage in the 

form of cracking is most likely to occur at around 73% length on the blade trailing edge. Therefore, to simulate damage 
experimental modification was located at the WTBs trailing edge at 70% blade length. A thin metal plate was glued 
to the structure which facilitated the attachment of a 75x50x20 mm ferrite magnet. The weight of this assembly was 
measured to be 0.405 kg (5.7% total blade weight). Addition of a small mass to the structure will induce a structural 
change that can be studied in lieu of actual damage whilst preventing permanent damage to the structure.  

A comparison between the AMFRF obtained from both baseline and altered state can be seen in Figure 3. Obtained 
through AMFRF peak picking, the natural frequencies of the structure in its altered state can be seen in Table 2 with 
percentage reduction compared to the baseline state highlighted. The effect of added mass varies significantly between 
0.4% and 11.8%. 

 

3.4. Fuzzification of experimental results  
To create fuzzy experimental results, the AMFRF values obtained in Table 1 were considered to be deterministic 

values with the membership value of one for sub-level =1. To account for uncertainty in measurement and system 
identification, the experimental data were modelled as symmetric fuzzy numbers with triangular membership 
functions. 
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variance. The measurement error at each -level was defined as [9]: 
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where εj determines the magnitude of the modelling error. For this investigation, σj =0.01 Hz and εj=0.01 represents 
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Table 1 – Experimental natural frequencies for baseline state  Table 2 - Comparison of experimental natural frequencies 
between baseline and altered state 
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AMFRF 

frequency 
(Hz) 

Standard 
deviation 

(Hz) 

SSI 
frequency 

(Hz) 

Standard 
deviation 

(Hz) 

1 1.75 0.00 1.75 0.00 
2 11.2 0.00 11.2 0.00 
3 31.3 0.00 31.3 0.00 
4 38.8 0.00 38.8 0.01 
5 61.3 0.00 61.3 0.00 
6 100.4 0.01 100.5 0.00 
7 116.3 0.01 116.4 0.01 
8 149.4 0.01 149.3 0.00 
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frequency 

(Hz) 

Altered state 
frequency 

(Hz) 

Relative 
error 
(%) 

1 1.75 1.67 -4.8 
2 11.2 11.1 -0.7 
3 31.3 29.3 -6.6 
4 38.8 34.6 -10.9 
5 61.3 60.7 -1.0 
6 100.4 99.4 -1.0 
7 116.3 115.8 -0.4 
8 149.4 131.8 -11.8 
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4. Numerical model  

4.1. Numerical Model updating – baseline state 
A numerical model of the experimental test specimen defined in section 3.1 was created using ABAQUS software. 

The model consists of 9,828 nodes and 1,775 solid elements. Encastre boundary conditions are placed upon the bottom 
of the blade to simulate the clamped configuration within laboratory experiments. With limited material specifications 
available from the manufacturer of the glass-fibre reinforced epoxy composite blade, an initial estimate of material 
properties was required. Material properties of an epoxy composite with unidirectional glass fibre reinforcement, 
known as E-glass 21xK43 Gevetex, defined by Soden et al. [10] were utilised. To update the FEM, the longitudinal 
modulus, E1, and in-plane shear modulus, G12, were chosen as updating parameters.  

The first stage of fuzzy updating involves deterministic updating at -level =1 which includes minimisation of 
the deterministic objective function in equation (2) containing the difference between analytical and experimental 
eigenvalues using the particle swarm optimisation (PSO) algorithm [11]. A population of 10 particles were generated 
and the maximum number of iterations specified as 50. A methodology developed by Clerc and Kennedy [12] suggests 
PSO parameters such as the inertial weight equal to 0.73 and the personal/social acceleration coefficients are both 
equal to 1.45. At each iteration of the PSO algorithm, updated values were obtained using the ABAQUS2Matlab 
toolbox [13].The output of this stage is the determination of a vector of updating parameters with eigenvalues 
corresponding to the values specified in Table 1. In subsequent stages, fuzzy experimental results were used to conduct 
interval model updating at each individual -level. This was achieved through minimization of a fuzzy objective 
function in equation (3) containing the difference between analytical and experimental frequencies at the lower and 
upper bounds respectively using the same PSO algorithm. The output of this stage was an interval vector containing 
the lower and upper values of the updated parameters. The final fuzzy parameters were obtained by combining the 
deterministic and interval valued updating parameters at each -level. The minimum value was found to occur when 
E1 and G12 were 62.15 GPa and 8.33 GPa respectively. The updated deterministic material properties of the baseline 
model can be seen in Table 3.  

A comparison between the initially assumed material properties from [10] and the deterministic updated values can 
be seen in Table 3. Material properties estimated for the deterministic case provide the frequency values shown in Table 
4 with largest variation shown to decrease significantly through updating to be around 2.46% for the first mode of 
vibration. Deterministically updated values of material properties in Table 3 were used in modification extent 
assessment discussed in section 5. Over estimation of the first bending mode frequency may be due to the modelling 
inaccuracies resulting from idealizing the encastre boundary conditions specified; further study will involve modelling 
the boundary conditions as springs and including these as updating parameters during model calibration.    

As discussed, this process was repeated using the fuzzy experimental analysis results calculated in Section 0 to 
obtain the fuzzy updating parameters shown in Figure 4. These parameters were obtained by calculation of interval 
updating parameter vector at each subsequent -level; deterministic and interval updating parameter vectors were then 

Table 3 - Initial [10] and updated material 
properties for baseline state 

 Table 4 - Frequency comparison between experimental and initial and updated models for 
baseline state 

Material property Initial 
model 

Updated 
model 

Longitudinal 
modulus, �� (GPa) 

53.48 62.15 

Transverse modulus, 
�� (GPa) 

17.70 17.70 

In-plane shear 
modulus, ��� (GPa) 

5.83 8.33 

Major Poisson’s 
ratio, ��� 

0.278 0.278 

Through thickness 
Poisson’s ratio, ��� 

0.400 0.400 

 

 Mode no. 1 2 3 4 5 6 7 8 

Experimental 
(Hz) 1.75 11.2 31.3 38.8 61.3 100.5 116.4 149.3 

Initial model 
(Hz) 1.66 10.4 29.0 32.5 56.6 92.9 99.7 138.0 

Updated model 
(Hz) 1.79 11.2 31.3 38.8 61.2 100.5 117.2 149.3 

Initial model 
error (%) -5.00 -7.1 -49.3 -25.2 -47.0 -43.6 -20.1 -36.6 

Updated model 
error (%) 2.46 0.1 0.0 0.0 -0.2 0.0 0.7 0.0 
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assessment discussed in section 5. Over estimation of the first bending mode frequency may be due to the modelling 
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assembled to produce the fuzzy variables shown. Comparisons between the frequency values obtained for both fuzzy 
experimental and updated fuzzy model, Figure 5, show close correlation of frequencies. 

5. Structural modification identification 

5.1. Simulating the effects of structural modification 
 During this investigation, a singular modification location was considered with natural frequency values used as 

targets during updating. The updated analytical model in Section 4.1 was developed to identify the location and 
magnitude of experimental modification, physically simulated through addition of a mass at 70% length on the blades 
TE. To replicate this in the numerical model four masses, with variable magnitude, were modelled at the defined 
points highlighted in Figure 6. The mass of individual structural alterations, labelled Mn with n denoting the mass 
number, were considered as updating parameters. Insight into the placement of experimental mass led to the numerical 
masses being concentrated more heavily in the 50-75% region of the blade.  

5.2. Results of updating with structural alteration 
 For the damage identification problem, PSO was initialized with the same 

parameters as in Section 4.1. The process of deterministic updating at =1 was carried 
out through construction and minimisation of an objective function, of the form 
equation (2), using the PSO algorithm described. To obtain the inputs to the PSO 
algorithm ABAQUS2Matlab toolbox [13] was utilised. The deterministic updated 
parameters obtained can be seen in Table 5 and Figure 7, highlighting the accuracy 
with which PSO is able to identify the location and magnitude of damage. The 
methodology predicted a mass magnitude of 0.393 kg at M3 which is within 3% of the 
experimental value. A less significant mass magnitude was also predicted upon M2 of 
0.066 kg which could be a result of baseline updating and will be the focus of future 
research.  

 Using experimental fuzzy numbers determined from the 
altered state AMFRFs, interval updated parameter vectors were 
calculated at each -level through minimizing an equation of the 
form (3) and then assembled with the deterministic value to 
produce the results shown in Figure 7. The results show sections 1 
and 4 to have the smallest uncertainty with no structural 
modification present in these sections. Modification in section 3 is 
highlighted with the associated uncertainty revealed to vary within 
0.321<M3<0.422 kg. The updated deterministic frequency values 
can be seen in Figure 8, highlighting coherence between results.  
The greatest degree of variation was observed in modes 1, 5 and 7 
and is thought to be attributed to the discrepancies encountered in initially updating the baseline model, Figure 5.  

 

 

Figure 5 - Frequency comparison between fuzzy experimental results and fuzzy updated 
parameters in baseline state 
 

 
 
 
 
 
 
 

Table 5 - Deterministic damage identification 
comparison between experimental and PSO updated 

Added 
Mass 

Experimental (kg) PSO-Updated (kg) 

M1 0.000 0.000 

M2 0.000 0.066 

M3 0.405 0.393 

M4 0.000 0.000 

 

Figure 4 – Fuzzy updated parameters for 
baseline state 

Figure 6 - Blade FEM with added 
numerical masses highlighted 
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