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Much effort has been made to explain eye guidance
during natural scene viewing. However, a substantial
component of fixation placement appears to be a set of
consistent biases in eye movement behavior. We
introduce the concept of saccadic flow, a generalization
of the central bias that describes the image-independent
conditional probability of making a saccade to (xiþ1, yiþ1),
given a fixation at (xi, yi). We suggest that saccadic flow
can be a useful prior when carrying out analyses of
fixation locations, and can be used as a submodule in
models of eye movements during scene viewing. We
demonstrate the utility of this idea by presenting bias-
weighted gaze landscapes, and show that there is a link
between the likelihood of a saccade under the flow
model, and the salience of the following fixation. We
also present a minor improvement to our central bias
model (based on using a multivariate truncated
Gaussian), and investigate the leftwards and coarse-to-
fine biases in scene viewing.

Introduction

The human fovea provides a small window of high
acuity vision to the world, and the locations that we
select to view through this window can tell us how we
seek the information necessary to complete the task we
are currently undertaking. Fixation locations are
selected based on a combination of low-level factors
such as visual salience (Borji & Itti, 2013) and high-
level factors (Buswell, 1935; Land & Hayhoe, 2001;
Yarbus, 1967). However, there are also strong observ-
able biases in eye movements that are independent of

the content of the scene or the task being performed
(Foulsham & Kingstone, 2010; Tatler & Vincent, 2009),
such as a strong tendency to fixate near to the center of
images (Canosa, Pelz, Mennie, & Peak, 2003; Stainer,
Scott-Brown, & Tatler, 2013; Tatler, 2007). If we are to
gain a complete understanding of the factors that
govern how we sample information, we must build
models of eye guidance on the framework of these
underlying biases, using them as a baseline against
which to compare effects of the scene, task, image
properties, and individual differences.

Eye movement heuristics

One influential model of eye movements of the last
decade is the optimal search model (Najemnik &
Geisler, 2008), which posits that human saccadic
behavior during visual search is consistent with
predictions made by an ideal observer. The number of
fixations human observers needed to make to find the
target was closely matched by the ideal observer model,
in which successive fixations were selected based on
reducing uncertainty about the target’s location, taking
into account search history and target visibility across
the visual field. The efficiency of human search (at least,
in search for a Gabor patch hidden in 1/f-noise)
suggests this as a plausible mechanism for selecting
fixations during search. Further evidence for an
optimal strategy comes from Ma, Navalpakkam, Beck,
Van Den Berg, and Pouget (2011) who found that
human observers are near-optimal in a visual search
task with line segments, and presented a neural
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network implementation of near-optimal search based
on probabilistic population coding.

While this modeling framework is attractive, there
are several issues. The computations driving each
fixation are complex, and depend on a fairly precise
representation of one’s own acuity over the visual field
for a wide range of possible target/background
combinations. One might therefore question the
assumption that these computations are undertaken to
determine the location of each of the 3–4 fixations
made on average every second during visual search.
More importantly, Morvan and Maloney (2012)
demonstrated that human observers are not able to use
information about visual sensitivity in the periphery to
rationally plan even a single saccade to the optimal
location in a target discrimination task. In their
experiment, the observer simply has to select a location
from which to detect a target that can appear with
equal probability in one of two possible locations. If
the locations are relatively close together, a location in
between will maximize the probability of detecting a
target appearing in either location. When the targets
are too far apart to reliably detect the target from a
point equidistant between them, the rational strategy is
to look directly at one of the two possible target
locations. Inconsistent with optimal viewing strategies,
however, the observers did not systematically modify
their choice about where to fixate according to the
distance between the possible target locations. This
striking failure of optimality has recently been repli-
cated in a larger sample and generalized to other
decisions in addition to eye movements (Clarke &
Hunt, 2016. Further work from Nowakowska, Clarke,

and Hunt (2017) used a simple visual search display (an
array of line segments) in which the target was easy to
find (pop-out) when present in one half of the display,
and hard to find when in the other. The optimal search
strategy in this scenario is to search the difficult half of
the display: If the target was present in the easy half,
the observer would be able to find it using peripheral
vision. Whereas a minority of observers followed this
search strategy, the majority exhibited large deviations,
searching both halves equally, or even fixating the easy
half and neglecting the difficult half of the display.
These results are consistent with Morvan and Malo-
ney’s explanation for the contradiction between their
results and the predictions of Najemnik and Geisler’s
(2008) optimal model: They propose that heuristics
guide saccade planning. Heuristics include basic
oculomotor biases such as a tendency to make saccades
of particular amplitudes, and/or to particular regions of
a display, or in particular sequences, depending on the
current task.

This idea has recently been formalized in a model by
Clarke, Green, Chantler, and Hunt (2016), who
demonstrate that a stochastic search model based on a
memoryless random walk can find a target in noise in a
similar number of fixations to human observers. The
key component of this model was the use of the
empirical distribution of saccades: For each saccade the
model randomly samples a saccade from distributions
estimating the likelihood a human observer made a
saccade from (xiþ1, yiþ1) to (xi, yi). It is clear from
Figure 1 that the distribution of saccade end points
varies considerably depending on where the saccade is
launched from. Thus, a model that accounts for these

Figure 1. Saccade landing positions from fixations that were in different sections of the screen. Data from each plot has been

separated into fixations in nine spatial bins, with the screen being divided into thirds in both horizontal and vertical aspects.
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launch-site dependent differences in exploration biases
has the potential to offer a better account of viewing
behavior. This stochastic model differs from the
random baseline implemented by Najemnik and Geisler
(2008), in which they randomly selected each fixation
location from all possible points in the display, because
it incorporates basic oculomotor heuristics that guide
the eyes, without the need for complex computation of
peripheral sensitivity or target location probability.

This stochastic search model is related to the more
general topic of saccadic biases. Recent work in this
area by Le Meur and Coutrot (2016) independently
arrived at a very similar model to Clarke et al. (2016)
while investigating context-dependent and spatially
variant viewing biases. Both their model and the
Stochastic Search model partitioned the data into k3 k
subsets (Le Meur & Coutrot, 2016, used k ¼ 3 while
Clarke et al., 2016, used k¼ 5) and then used
nonparametric methods to model the distributions. In
this paper, we reimplement and generalize this idea
with a model named Saccadic Flow, and examine the
extent to which it is useful as a prior for analyzing eye
movements made with more natural (photographic)
stimuli over a range of different tasks.

The central bias

There is a strong tendency for people to look close to
the center of pictures (Canosa et al., 2003; Clarke &
Tatler, 2014; Tatler, 2007; Tatler, Baddeley, & Gil-
christ, 2005) and videos (Loschky, Larson, Magliano,
& Smith, 2015; Tseng, Carmi, Cameron, Munoz, & Itti,
2009) presented on computer screens. There have been
a number of suggestions for why this might be, the
simplest being that the center of the stimulus array is
the best place to look to make use of parafoveal vision.
Another possible explanation for this effect is that the
muscles of the eye show a preference for the ‘‘straight
ahead’’ position, recentering in the orbit of the eye
socket for most comfortable contraction of the ocular
muscles—an orbital reserve (Fuller, 1996). As most
scene viewing experimental set-ups stabilize the head to
increase the accuracy of the eye tracking, and most
scenes are presented in the center of computer displays,
such a recentering mechanism would mean that the
center of images would indeed be preferentially
selected. However, when scenes are scrambled into four
quadrants, fixations are located near to the center of
each quadrant, rather than the display center (Stainer
et al., 2013), suggesting that the central tendency is
responsive to the scene itself rather than to the frame of
the monitor upon which the scene is displayed.

Another possible explanation for the central fixation
bias is that it represents a response to photographer bias
in scenes, as photographers tend to frame their shots to

include the most important content in the center of the
scene. However, when Tatler (2007) presented scenes
where the image features were biased towards the edge
of the scene, the central fixation bias persisted. The
final possibility is that as a consequence of repeated
exposure to photographer bias, the center of scenes is
simply where people are trained to look at images
(Parkhurst, Law, & Niebur, 2002). Such learning of
spatial probabilities of targets can explain why, for
example, people tend to look around the horizon when
searching for people in natural scenes (Birmingham,
Bischof, & Kingstone, 2009; Ehinger, Hidalgo-Sotelo,
Torralba, & Oliva, 2009; Torralba, Oliva, Castelhano,
& Henderson, 2006). Expecting to find interesting
content in the center of scenes might be a consequence
of this hypothesis typically being correct.

Irrespective of why it occurs, Clarke and Tatler
(2014) showed that the characteristics of the central
bias are remarkably consistent across a series of eye
movement databases over tasks such as free-viewing,
visual search, and object naming. They proposed a
simple, standardized central baseline based on a
multivariate Gaussian, and demonstrated that it
outperforms similar measures previously used in the
literature.

Other behavioral biases in saccades

While the central bias has attracted the most
attention (at least in terms of models of visual
attention), a number of other biases have been
documented. These are discussed below.

Horizontal saccades:

Several researchers have noted that when viewing
scenes there is a higher proportion of eye movements in
horizontal directions than vertical or oblique move-
ments (e.g., Foulsham, Kingstone, & Underwood,
2008; Gilchrist & Harvey, 2006; Lappe, Pekel, &
Hoffmann, 1998; Lee, Badler, & Badler, 2002; Tatler &
Vincent, 2008). There are a number of possibilities as to
why this tendency exists. Firstly, there may be a
muscular or neural dominance making oculomotor
movements in the horizontal directions more likely.
Secondly, the characteristics of photographic images
may mean that content tends to be arranged horizon-
tally by the photographer. In such situations, horizon-
tal saccades may be the most efficient way to inspect
scenes. Thirdly, using horizontal saccades in scene
viewing might be a learned strategy. Observers may
learn the natural characteristics of scenes based on
previous experience, and therefore demonstrate an
increased likelihood of moving in the horizontal
direction. A final explanation is that this tendency is a
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consequence of the aspect ratio of visual displays,
which normally allow for larger amplitude saccades in
the horizontal than in vertical directions (von Wartburg
et al., 2007). Results from Foulsham et al. (2008) and
Foulsham and Kingstone (2010) suggest that the
outline of the displayed scene has a marked effect on
saccade directions during viewing. Indeed, Foulsham et
al. (2008) found that when the orientation of an image
is rotated, the distribution of saccade directions follows
the orientation of the scene. Furthermore, when a scene
is presented in a circular aperture, the tendency to make
horizontal saccades disappears, being replaced by a
tendency to make vertical saccades relative to the image
orientation (Foulsham & Kingstone, 2010). However,
when using fractal images (where images do not have
an obvious orientation), observers tend to make
horizontal saccades, regardless of the angle that the
image is presented. These findings suggest that direc-
tional biases in saccades are influenced not only by the
shape of the displayed scene but also by its content.

Coarse-to-fine:

Another robust pattern in human saccadic behavior
is the tendency to make large eye movements after the
initial scene onset, and smaller saccades as the trial
unfolds (Antes, 1974; Over, Hooge, Vlaskamp, &
Erkelens, 2007; Pannasch, Helmert, Roth, Herbold, &
Walter, 2008). This is often accompanied by an increase
in fixation durations, and is framed as a move from
ambient to focal processing (Follet, Le Meur, &
Baccino, 2011; Unema, Pannasch, Joos, & Velichkov-
sky, 2005; Velichkovsky, Rothert, Kopf, Dornhöfer, &
Joos, 2002). Godwin, Reichle, and Menneer (2014)
successfully replicated these findings, but they offered
an alternative explanation, namely that this behavior is
driven by stochastic factors that govern eye move-
ments.

Leftwards bias:

Several studies have shown that observers exhibit a
bias to fixate the left half of a stimulus over the right
(Brandt, 1945; Learmonth, Gallagher, Gibson, Thut, &
Harvey, 2015; Nuthmann & Matthias, 2014; Ossandón,
Onat, & König, 2014; Zelinsky, 1996). This effect falls
under the more general spatial attention bias of
pseudoneglect (Bowers & Heilman, 1980), which also
affects tasks such as line bisection. The leftwards bias is
typically short-lived, affecting only the first couple of
saccades after scene onset, and whereas it is robust, it is
comparatively weak compared to other biases in scene
viewing. For example, Dickinson and Intraub (2009)
found 62% of initial saccades were directed to the left
half of the image during free viewing. There is some

evidence that this bias is related to native reading
direction (Friedrich & Elias, 2014).

Saccadic momentum and inhibition of return:

Several studies have described sequential dependen-
cies during free viewing that bias saccades to repeat the
same vector and amplitude (known as saccadic
momentum) and to bias saccades away from returning
to previously visited targets (known as inhibition of
return). Although both of these phenomena bias
fixations away from previously fixated locations, they
differ in that inhibition of return is bound to a location
in the search array; i.e., it is coded in object-based or
spatiotopic coordinates (e.g., Krüger & Hunt, 2013),
while saccadic momentum has been characterized as a
basic tendency to repeat the same motor program
(Wang, Satel, Trappenberg, & Klein, 2011). Inhibition
of return, unlike saccadic momentum, is task-depen-
dent (Dodd, Van der Stigchel, & Hollingworth, 2009)
and is disrupted by removing the scene or inhibited
object (Klein & MacInnes, 1999; Takeda & Yagi,
2000). MacInnes, Hunt, Hilchey, and Klein (2014)
observed both of these mechanisms operating during
free visual search of a complex scene, but presumably
only saccadic momentum would be consistently ob-
served for all tasks and images.

The present study

These biases, and in particular the central bias, are
important to take into account when evaluating the
performance of models of fixation location, and
investigating relationships between eye movement data
and other factors. The main contribution of this
manuscript is to introduce the saccadic flowmodel. This
can be thought of as a generalization of the central bias:
Instead of simply characterizing the image-independent
probability of fixating (xi, yi) we model the conditional
probabilities p(xi, yijxi–1, yi–1), i.e., the probability of
making a saccade from to (xi, yi) given we are currently
fixating (xi–1, yi–1).

In Modeling biases we describe the saccadic flow
model and an improved version of the central bias
model. The model’s ability to account for eye
movements during scene viewing is evaluated over 15
previously published datasets. These cover a range of
types of images and viewing tasks. In Using biases we
demonstrate how the central bias and saccadic flow can
be used to improve analysis and visualization methods.
In particular, we present bias-weighted gaze land-
scapes, and demonstrate an interaction between the
likelihood of a saccade under different bias models and
bottom-up visual salience. Finally, we investigate the
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shortcomings of these generative models by comparing
synthesized data to human eye movements.

Modeling biases

In this section, we (a) update the central bias model
of Clarke and Tatler (2014) to make use of a truncated
Gaussian distribution that allows us to take the image
boundaries into account; (b) explore the strength of the
leftwards bias in relation to the central bias; and (c)
describe the saccadic flow model.

Modeling methods

Here, we give an overview of the methods and data
used for the saccadic flow modeling.

Datasets

We used a number of previously published datasets,
covering a range of tasks, images, and experimental set-
ups. This variety allows us to produce a model that will
generalize well to other datasets. The models were
trained on eight of the ten datasets used in Clarke and
Tatler (2014). We chose to remove the data from Asher,
Tolhurst, Troscianko, and Gilchrist (2013) from our
training set as the images have an aspect ratio of 5:4,
whereas the rest of the data in our training set has an
aspect ratio of 4:3. The pedestrian search dataset
(Ehinger et al., 2009) was removed from the training set
as previous analysis (Clarke & Tatler, 2014) shows that
it is biased compared to the other datasets analyzed.

Both of these datasets were used as test sets to evaluate
how well our models generalize.

We also added four new datasets to the ten used by
Clarke and Tatler (2014). These were used to test the
model.

� Jiang, Xu, and Zhao (2014) collected data from 16
observers viewing 500 natural scenes containing
crowds of people (aspect ratio 4:3).
� Clarke, Chantler, and Green (2009) investigated
visual search for a target on a homogeneous
textured background (i.e., target in noise). This
dataset differs from the previous in that there is no
semantic image content in the scene, and the
stimuli had a 1:1 aspect ratio.
� Greene, Liu, and Wolfe (2012) released a dataset of
observers viewing square grayscale photographs.
� Borji and Itti (2015) recently released a very large
(’ 650,000 fixations, 2,000 images) dataset col-
lected over twenty different stimulus types. Given
the size of this dataset, and the wide-screen 16:9
aspect ratio, the evaluations on this dataset are
presented separately, and split by stimulus class.

This gives us a relatively homogeneous training set, and
a more heterogeneous test set. Hence, good perfor-
mance on the test sets will likely be indicative of a
generalizable result. An overview of the datasets used is
given in Tables 1 and 2.

Preprocessing

As with Clarke and Tatler (2014), we normalized all
fixations to the image frame, keeping the aspect ratio
constant: that is, (x, y) � (–1.–1) 3 (–a, a) with
typically a ¼ 0.75. The initial saccades after image

Observers Images Task Display duration

Clarke et al. (2013) 24 100 Object naming 5000 ms

Yun, Peng, Samaras, Zelinsky, and Berg (2013)—SUN 8 104 Image description 5000 ms

Tatler et al. (2005) 14 48 Memory Variable

Einhäuser, Spain, and Perona (2008) 8 93 Object naming 3000 ms

Tatler (2007)—free 22 120 Free viewing 5000 ms

Judd et al. (2009) 15 1003 Free viewing 3000 ms

Yun et al. (2013)—PASCAL 3 1000 Free viewing 3000 ms

Tatler (2007)—search 30 120 Visual search 5000 ms

Clarke et al. (2009) 7 360 Visual search Variable

Ehinger et al. (2009) 14 912 Visual search Variable

Asher et al. (2013) 25 120 Visual search Variable

Jiang et al. (2014) 16 500 Free viewing 5000 ms

Borji and Itti (2015) 120 4000 Free viewing 5000 ms

Mills et al. (2011) 53 67 Various 6000 ms

Koehler et al. (2014) 80 800 Various 2000 ms

Table 1. Summary of the 15 datasets used throughout this study. Note: The top eight datasets were used to train the model, whereas
the bottom seven were used only for evaluation.
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onset (9.1% of the data) were excluded, giving us a
total of 159,226 saccades. Saccades with a start or end
point falling outside of the image frame were also
removed.

When fitting saccadic flow models, we mirrored the
set of fixations, by adding in horizontally and
vertically reflected copies of the data. This has two
advantages: First, it is an easy way to make the
saccadic flow bias symmetric in the horizontal or
vertical directions. This is similar to how the central
bias was defined by Clarke and Tatler (2014). Second,
it increases the amount of data available for fitting by
a factor of four. This is important as (due to the
central bias) there are relatively few saccades that
originate from the corners of the images. By equating
all corners, we can pool the data and obtain more
stable estimates for the underlying distribution. The
downside of mirroring saccades in this manner is that
our model of saccadic flow will be insensitive to the
leftwards bias in natural scene viewing (Nuthmann &
Matthias, 2014). However, as this accounts for a
relatively small proportion of the overall variance in
the data (Left versus right), we view this as an
acceptable tradeoff. Similarly, as we do not factor in
the timecourse of the scan-path, we will not capture
coarse-to-fine dynamics (saccadic amplitude tends to
decrease with time from stimulus onset).

Truncated central bias

As the first step in modeling saccadic flow, we will
update the central bias from Clarke and Tatler (2014)
and use a truncated normal distribution. This is

straightforward. Refitting a multivariate Gaussian to
the data reduces the deviance in the central bias model
by 4.4%. Using a truncated Gaussian gives us an
improvement of 12%. We can round the truncated
Gaussian model to l¼ (0, 0), with a covariance matrix
of (0.32, 0; 0, 0.144) with no loss of precision. That is,
this is identical to Clarke and Tatler (2014) except
with r ¼ 0.32 rather than 0.22. We will use the
abbreviations CT2014 and CT2017 to refer to these
models.

Left versus right

As mentioned above, the downside of mirroring the
saccades in our dataset is that our bias model will be
symmetric and will be unable to exhibit the leftward
bias observed in human fixation data. Here, we
investigate the size of the leftwards bias (in the
unmirrored data) by plotting how the distribution of
horizontal fixation location varies with fixation number
(Figure 2). We can see that while we do have a
leftwards bias in our data, it is a small effect that only
lasts for the first five fixations after scene onset.
Furthermore, there is no sign of an asymmetry in the
vertical direction. Fitting an ANOVA to predict the x
coordinates of the fixations, given the fixation number,
produces adjusted R2¼0.004. If we limit our analysis to
the first five fixations in each scan-path, this only
increases to adjusted R2¼ 0.01. The small size of the R2

in both instances suggests that by ignoring the left-
wards bias, we lose little explanatory power. This
brings the advantage of then allowing us to treat
everything as symmetrical, which simplifies the model

Eye tracker Viewing distance Screen size Image size Viewing angle Chin rest

Clarke et al (2013) EyeLink II 50 cm 21’’ 800 3 600 31 3 25 deg no

Yun et al (2013)- PASCAL EyeLink 1000 ? ? ? ? ?

Tattler et al (2005) EyeLink I 60 cm 17" 800 3 600 30 3 22 deg no

Einhauser et al (2008) EyeLink 1000 80 cm 20" 1024 3 768 29 3 22 deg yes

Tattler et al (2007)- free EyeLink II 60 cm 21" 1600 3 1200 40 3 30 deg no

Judd et al (2009) ? 2 feet 19" 1024 3 768 ? yes

Yun et al (2013)- SUN EyeLink 1000 ? ? ?? ? ?

Tattler et al (2007)- search EyeLink II 60 cm 21" 1600 3 1200 40 3 30 deg no

Clarke et al (2009) Tobii x50 87 cm 20" 1024 3 1024 16.7 3 16.7 deg yes

Ehinger et al (2009) ISCAN RK-464 75 cm 21" 800 3 600 23.5 3 17.7 deg yes

Asher et al (2013) & EyeLink 1000 55 cm ? 1024 3 1280 37.6 3 30.5 deg yes

Jiang et al (2014) & Eyelink 1000 57 cm 22" 1024 3 768 38.8 3 29.1 deg ?

Borji and Itti (2015) Eyelink 1000 106 cm 42" 1920 3 1080 45.5 3 31 deg yes

Mills et al (2011) EyeLink II 44 cm ? ? 16.9 3 22.8 deg no

Koehler et al (2014) Eyelink 1000 40 cm ? 800 3 600 15 3 15 deg no

Table 2. Details of the experimental setups in each of the 15 datasets analysed in the present study. Notes: We provide only
information reported in the original articles. Question marks indicate information not reported in the original article. *For the Judd et
al. dataset, images varied in pixel dimensions but the majority were at 1024 3 768.
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and increases the amount of data available (by
mirroring fixations).

Saccadic flow

Saccadic flow can be thought of as a generalization
of the central bias, and is illustrated in Figure 1. Instead
of computing the distribution of all saccadic endpoints
in a dataset, we look at the distribution of saccade
endpoints given the start points, i.e., for a saccade from
(x0, y0) to (x1, y1) we want to model p(x1, y1jx0, y0).

Modeling

To characterize how the distribution of saccadic
endpoints varies with the start point, we used a sliding
window approach. All saccades that originated from
an n3n window were taken and used to fit a truncated
multivariate Gaussian distribution using the
tmvtnorm library for R. This window was moved in

steps of s ¼ 0.01 from [–1, –0.75] to [1–n, a–n].
Windows containing less than 250 datapoints were
discarded. We experimented with varying the window
size (n � {0.05, 0.1, 0.2}). However, as this parameter
was found to have a negligible result, we only report
the results for n ¼ 0.05.

Multivariate polynomial regression was then used to
fit fourth-order polynomials to each of the parameters.
As polynomial regression performs poorly in the
presence of outliers, we will also use robust estimation
(rlm from the MASS library). This will stop the model
fits being overly influenced by outlier points from the
image boundary. Figure 3 shows how the parameters
for the truncated multivariate Gaussian distributions
vary over horizontal position for a selection of vertical
positions. The regression coefficients (given in supple-
mentary materials) allow us to estimate the conditional
probability of a saccade to (x1, y1) given the starting
fixation (x0, y0). As the robust estimation methods give
a far better fit to the data, we will use this version of the
model and discard the polynomial regression version.

Figure 2. Boxplots showing the distribution of horizontal and vertical fixations by fixation number in the merged training set.

Figure 3. How the truncated Gaussian parameters vary with saccadic starting location. Dotted line shows polynomial regression fits;

solid line shows robust polynomial regression.
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Evaluation will be done using bootstrapping (100
repetitions with N¼ 1000). Not only does this allow for
confidence intervals to be estimated for our result, but
it also allows us to sidestep the problems of using
datasets of very different sizes: Likelihood scores are
heavily influenced by the number of points included in
the analysis, so having this fixed at N¼ 1000 means we
can compare across datasets more meaningfully. We
chose to evaluate how well the various models work by
simply calculating the likelihood, p(datajmodel), for
each dataset, and reporting the difference in log
likelihood between a uniform distribution and our
models. As the number of datapoints is much larger
than the number of parameters, log likelihood ap-
proximates AIC. We also report a receiver operator
curve, ROC (Green & Swets, 1966), analysis in which
we look at how often saccades land within the most
likely x% of the prediction maps from the different bias
models. This analysis was done on the complete
datasets without bootstrapping.

Results

How well does this model account for the fixations in
our datasets? Figures 4 and 11 compare how well the
different models outperform a uniform distribution in
terms of log-likelihood. We can see that in all cases, the
flow model offers a much larger improvement over a
uniform distribution than either central bias model.
The differences between the two central biases is much
smaller, but in general, we can see that using a
truncated distribution (to correctly take the image
boundaries into account) offers a small improvement
over the Clarke and Tatler (2014) bias.

It is interesting to note that the flow model still does
a good job of accounting for the distribution of
saccades in datasets (those involving visual search) in
which the central bias is outperformed (in terms of log-
likelihood) by the uniform distribution, chiefly the data
from Asher et al. (2013), Clarke et al. (2009), Tatler
(2007). We can see a very similar pattern of results in
the ROC analysis in Figure 5.

The effect of task

We now examine how the ability of saccadic flow to
explain different scan-paths depends on the observers’
task. We will make use of datasets from Mills,
Hollingworth, Van der Stigchel, Hoffman, and Dodd
(2011) and Koehler, Guo, Zhang, and Eckstein (2014).
To look at task effects we computed the mean log
likelihood over each scan-path in these datasets (see
Figure 6). We can see that while task has a slight
influence over the mean log likelihood for a scan-path,
there is a large degree of overlap in the distributions.
Additionally, we can see that the relative likelihood of

Figure 4. Modeling results. We can see that the flow model

offers a much larger improvement in terms of log-likelihood

than either of the central bias models. This holds even in

datasets which do not show a strong central bias.
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scan-paths made during visual search compared to
other tasks varies between datasets. These results
suggest that at least for the datasets considered here,
the extent to which saccadic flow is able to explain the
observed scan-paths is not strongly influenced by the
observer’s task.

Saccadic flow and underlying physiology

The saccadic flow model that we develop and
evaluate here is a statistical model developed based on
fitting empirical data. As such it does not make explicit
any underlying physiological constraints or neuro-
physiological architecture. However, by constructing
the model from observed data, these underlying
constraints are necessarily present in the statistical
model that we present here. The anisotropies in saccade
directions that underlie the construction of the saccadic
flow model are likely to reflect a combination of
responses to the image and physiological constraints
imposed by the arrangement and action of oculomotor
muscles (Smit, Van Gisbergen, & Cools, 1987; Viviani,
Berthoz, & Tracey, 1977). Similarly, the skew in
saccade amplitudes toward favoring small amplitude
saccades may reflect aspects of the drop off in acuity
limits with distance into the peripheral retina. Thus
while these biomechanics and neurophysiological fac-
tors are not explicit in saccadic flow, they necessarily
inform the construction and thus any predictions
arising from the model.

Using biases

This section makes use of an improved central bias
model and the saccadic flow model (described in
Saccadic flow). The new central bias model is similar to
the model presented by Clarke and Tatler (2014),
except for using a truncated Gaussian distribution to
take the image boundaries into account. We present
three examples of how these bias models can be used as
priors in order to weight fixations, based on the fact
that Flow produces likelihoods for any given fixation
given the current fixation. First of all, we will
demonstrate how we can weight fixations in gaze
landscapes (also known as hotspot maps or heatmaps)
to reduce noise and to give an improved visualization
of the image regions participants looked at more than
expected. Secondly, we examine whether saccadic flow
can be used to better understand the contribution of
low-level features on fixation selection, and potentially
lead to better evaluation of such computational
saliency models. Finally, we demonstrate how flow can
be used to generate a series of saccades, and compare
these to observed human saccades. Being able to

Figure 5. ROC analysis comparing the flow model to the central

bias.
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generate realistic synthetic datasets is useful to create
an image-independent baseline with which to examine
spatial maps of prediction using signal detection theory
(see Clarke & Tatler, 2014).

Gaze landscapes

One technique that is commonly used to visualize the
spatial allocation of gaze is to create ‘‘heatmap’’ plots
where color or luminance is used to indicate the density
of fixation on those locations (Figure 7, column 2). A
potential problem with visualizing data in this way is
that such maps represent all fixations as being of equal
importance. For example, a location that is fixated for
one second would be weighted equally with fixations
that lasted half that time. If we want to make an
assumption that fixation duration is intimately linked
with the importance of that fixation (i.e., we will look
longer at more informative information), then we can
change our visualization to weight fixations by their
duration (Figure 7, column 3). However, this weighted
heatmap still fails to distinguish fixation behavior likely
to arise from image independent biases like the central
fixation bias from fixation behavior likely to reflect
meaningful interrogation of, and response to, the
viewed content.

An advantage of the Clarke and Tatler (2014) model
and the saccadic flow model presented here is that we
can represent fixations by the likelihood that they
would occur based on the predictions of the models.

Because the models reflect image-independent behav-
ioral and oculomotor biases, fixations not predicted by
these models might involve more high-level mecha-
nisms. For example, given a tendency to fixate in the
center of the scene, we might consider saccades to
noncentral locations to be less predicted and therefore
more likely to be image- or task-related. In Figure 7
(column 4 and 5) we present some overlaid heatmap
data from the Clarke et al. (2013) dataset, where
fixations are weighted by the inverse probability of
them occurring based on the models of central bias and
saccadic flow. These figures reveal that representing
data in this manner can allow us to visualize
information that was important enough to disrupt these
biases. In other words, these visualizations remove
some of the image-independent biases, and reveal the
more important image dependent information.

The top row of Figure 7 demonstrates that weighting
the fixations by the central bias and flow model both
reduce the importance of some fixations. The central
bias model punishes fixations near the center of the
image, while the flow model punishes fixations that
were well predicted by the oculomotor biases of the
saccadic flow model. Conversely, the models reward
unlikely fixations. The second row reveals an instance
of where the car to the left received fewer fixations than
the pub sign, but that these fixations are boosted in the
central bias and saccadic flow models where ‘‘unlikely’’
saccades were made to this location. In the third and
fourth rows, there are examples of images with
important content near the center of the photograph.

Figure 6. The influence of task on the extent to which saccadic flow can explain scan-paths for the (a) Koehler et al. (2014) and (b)

Mills et al. (2011) datasets.
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This illustrates how the central bias model can
sometimes overcompensate and reduce the influence of
fixations in the center of pictures that have important
content located there. Given the tendency for photog-
raphers to center their photographs around important
content, reducing the weight of fixations to the castle in
the painting (row 3) and the girl’s face (row 4) would
perhaps overly punish centrally biased photographic
composition. With the flow model, however, these
areas are still represented, as observers made saccades
to these regions that were unlikely to be driven by
behavioral biases.

Removing biases when examining image-
dependent information

By considering saccades in light of the probability
that they were generated by image-independent biases,
we can gain further insights into the image-dependent
features that are important in attracting fixation. One
feature that has been shown to correlate with fixation is
visual salience (Parkhurst et al., 2002). However, others
have argued that this tendency is driven by the
correlation between salient objects and their semantic
interest (Henderson, Castelhano, Brockmole, & Mack,
2007), with interesting objects tending to be placed near
to the center of photographs (Tatler, 2007). Oculomo-
tor biases which favor a central tendency would predict
the same fixation placement regardless of the distribu-

tion of salient objects in the image (Tatler & Vincent,
2009). Here, we can examine this question by looking at
the relationship between saccade probability and the
ability of different conspicuity maps to predict fixation.
We can therefore examine how the effect of visual
salience observed in eye movement analysis is related to
the behavioral biases of eye movements.

We compared the proportion of fixations that fell in
the brightest 20% of pixels for salience maps to the
likelihood of fixations from the flow and central bias
models. Fixations were separated for each image into
bins of 5% from the least likely to the most likely to be
generated based on salience. We then examined what
proportion of each of these bins were in the brightest
20% of salience maps using the Adaptive Whitening
Saliency (AWS; Garcia-Diaz, Leborán, Fdez-Vidal, &
Pardo, 2012), RARE (Riche et al., 2013) and Graph-
based visual saliency (GBVS; Harel, Koch, & Perona,
2006) algorithms. We selected AWS and RARE as they
are the two best performing salience models according
to the MIT Saliency Benchmark (Bylinskii et al.; Judd,
Durand, & Torralba, 2012) with publicly available
code, and GBVS as it contains a bias towards the center
caused by summing neighboring pixel values across the
spatial prediction map. Figure 8 reveals that the
likelihood of making a saccade based on both the
central bias and the flow model is highly related to
salience in both AWS and RARE, with low-likelihood
saccades being less likely to be to a salient region.
Saccades that are very unlikely to be generated based

Figure 7. Examples of fixation heatmap plots from Clarke et al. (2013). The same fixations are presented where the Gaussian at each

fixation is weighted by the duration of the fixation, the center bias model from Clarke and Tatler (2014), and the saccadic flow model

presented in this paper.
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on the oculomotor tendencies of eye movement (both
flow and central bias) are therefore also less well
explained by salience. Of the 5% of fixations that were
most likely from saccadic flow, 60% of fixations fell in
the 20% thresholded region of the AWS map. However,
of the 5% of fixations that were least likely from
saccadic flow, only 40% of fixations fell in this region.
This means that it may be important to consider, and
potentially remove, behavioral biases when attempting
to predict fixation selection using feature-based models
to ensure that any benefit in predictive power cannot be

explained by behavioral biases correlating with sa-
lience. When examining a model that contains an
inherent central bias (GBVS), we can see that weighting
fixations by the Clarke and Tatler (2014) central bias
model is highly related to the performance of GBVS in
predicting fixation selection.

Saccadic flow as a generative model

Another use of the saccadic flow model is that it
allows us to make spatial maps that relate to the
probability of all saccades within a scene based on the
current position. For example, Figure 9 shows that for
three fixations in different locations within a scene, flow
will make different spatial predictions of the next
saccadic landing position. We can use this method to
generate sequences of synthetic scan-paths. Here, we
compare the distributions of these generated scan-paths
with empirical scan-paths to determine which aspects of
human saccadic behavior are not captured by ourmodel.
To do this, we will create a merged dataset of fixations
from the eight training datasets (175,000 fixations,
including initial fixations, in total over 16,000 trials), and
then generate a matched synthetic dataset such that the
number of fixations in each trial is identical.

We can see fromFigure 10a and b that both the central
bias and the saccadic flow model do a good job of
capturing the distribution of fixation locations over the x
and y axes. While it is not surprising that the central bias
closely matches the empirical distributions (as this is
exactly what it has been fitted to), it is interesting that
saccadic flow does just as good a job. Hence, the central
bias can be thought of as a property of saccadic flow, and
does not need to be accounted for separately.

When compared to the empirical distributions, both
the central bias and saccadic flow appear to be slightly
biased towards making fixations to the extreme edges
of the image. This suggests that the truncated Gaussian
distribution does not quite capture the effects of the
image boundary on fixation selection and there is some
additional aversion to fixating close to the screen edge.

Another discrepancy between the synthetic and
empirical distributions can be seen with saccadic
amplitudes. While the flow model is a better fit to the
human data than the central bias, it still underestimates
the proportion of very short saccades (Figure 10c).

Figure 8. Saccades binned by probability of them occurring in

5% bins against the proportion of those fixations that fell in a

20% thresholded region of AWS, RARE and GBVS salience maps.

Figure 9. Example spatial prediction maps for all potential saccade locations from three different fixation positions (black circles) to

demonstrate how flow’s predictions differ across the extent of a scene.
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Interestingly, the flow model does manage to capture
the initial increase in saccadic amplitudes after scene
onset (Figure 10d), but it does not explain the
subsequent coarse-to-fine dynamics that are seen in the
empirical scan-paths.

Summary

We have demonstrated different ways biases such as
saccadic flow and the central bias can be used in eye
movement research. They can be used as a prior on the
probability of making saccades to different regions of
the image, allowing us to then more clearly visualize the
image-dependent behavior. We have also shown that
the likelihoods of fixations under the bias models are
related to features such as salience. The interpretation
of visual salience as a predictive model of fixation
selection can therefore be informed by considering how
likely a saccade is to be generated by these models.
Finally, we can also use the bias distributions to
generate synthetic data that can be used as control
points in ROC analysis, and to explore which aspects of

human saccadic dynamics are not captured by the
simple flow model.

Discussion

There has been much effort to generate a predictive
model of human eye movements (Bylinskii et al., Judd,
Ehinger, Durand, & Torralba, 2009). We propose the
saccadic flow model as a robust prior for the image-
independent saccadic behavior that is evident when
people look at pictures (Tatler & Vincent, 2009). Our
Saccadic Flow model provides a better account of eye
movement behavior across 15 published datasets than
the original Clarke and Tatler (2014) Central Bias
model, and a new version of this model using truncated
multivariate normal distributions. We find that Sac-
cadic Flow accounts for eye movements across many
different tasks and image types. As saccade probabil-
ities across a scene can be predicted by Saccadic Flow,
we therefore provide a method of modeling oculomotor
biases that can be included in combined models of eye

Figure 10. Blue: human; red: central bias; and green: saccadic flow. Top row: Comparison of x and y fixation positions between human

fixations and synthetic points generated from the central bias and flow model. Bottom row: We can see that the flow model

consistently makes saccades with a slightly larger amplitude than do human observers. Distances are expressed relative to the width

of the image. Best fit line in (d) fitted with loess regression. All distances are given in normalized units in which the width of an image

is 2 (see Modeling methods).
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guidance, much as Torralba et al. (2006) and Ehinger et
al. (2009) use context maps to predict where people will
search for people.

Using saccadic flow

There are two ways in which models of eye
movements may benefit from including such informa-
tion. First, models may include saccadic flow in their
calculation of spatial prediction. Understanding where
someone is currently fixating in an image appears to
dramatically influence where they will go next; as this

saccadic flow can be parametrically estimated from any
point on an image, it can be used to weight models of
low-level (i.e., visual conspicuity) and high-level (i.e.,
semantic interest) features. Thus, whether someone
fixates one of two equally conspicuous, equally
interesting objects may be simply determined by the
way that the eyes tend to move.

The second potential utility of saccadic flow is to
generate realistic control fixations with which to
evaluate observed fixation data. In this way, saccadic
flow can be thought of as a partner to the Clarke and
Tatler (2014) central bias, and we expect that in some
cases, the simpler central bias will be sufficient (for

Figure 11. Modeling results for the Borji and Itti (2015) data. We can see that the flow model offers a much larger improvement in

terms of log-likelihood than either of the central bias models.
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example, when examining the overall distribution of
fixations rather than the sequence of saccades).
However we have demonstrated that while the flow
model requires more parameters—we use 16 coeffi-
cients to track how each of the five truncated Gaussian
parameters vary as a function of (x, y), although many
of them are ’ 0—it generalizes well from one dataset to
another and is a far better baseline for modeling a scan-
path than the central bias.

In the present paper, we have provided illustrative
examples of how saccadic flow can be used to improve
our understanding of eye guidance in scene viewing.
Heatmaps that account for fixation likelihood under
the behavioral biases captured in saccadic flow better
reflect the image-dependent biases. Using these to base
subsequent analysis of scene content at these locations
or of differences in fixation behavior under different
tasks allows the researcher to focus analytical efforts on
the viewing behavior that is unlikely to arise from
image-independent biases in how observers move their
eyes. Given the prominence of image-independent
biases in observed eye movement behavior (Tatler &
Vincent, 2009), removing these biases appropriately
from analyses is important for effective evaluation of
changes in behavior arising from viewed content or
behavioral task. Similarly, any attempt to model the
involvement of factors such as image salience in eye
guidance, should remove image-independent biases
from modeling efforts in order to appropriately
evaluate the role of any features under investigation. At
present, the utility of removing the central bias from
such modeling efforts is widely recognized (Borji & Itti,
2013; Tatler, Hayhoe, Land, & Ballard, 2011), but we
have shown in the present work that saccadic flow
offers an even better explanation of underlying biases
in fixation behavior. Using saccadic flow to remove
image-independent biases from datasets of eye move-
ments will be an important improvement for testing
existing models of fixation selection, and for better
developing new models. Thus while the present work
does not provide a direct answer to what factors govern
scene inspection, it provides a vital tool for the field to
allow this question to be addressed more effectively and
appropriately than is currently possible.

Comparisons to existing models

Tatler and Vincent (2009) have previously demon-
strated that representing saccade probabilities based on
the oculomotor biases in eye movements can account
for human fixation behavior during free-viewing
reasonably well. Here we extend this concept to
spatially adapt the prediction of saccade depending on
where in a scene the preceding fixation lies. This is an
important step, as it aligns the concept of behavioral

biases in eye movement with the central bias (Tatler,
2007), whereby saccades are likely to be directed
towards the center of the image. An advantage over the
simpler central bias of Clarke and Tatler (2014) is that
Saccadic Flow does not suppress fixations in the center
of the screen (where interesting content tends to lie),
and sets of saccades generated from the Saccadic Flow
model will produce the same centrally biased tendencies
as observed fixations.

The work presented here improves on recent models
by Clarke et al. (2016) and Le Meur and Coutrot (2016)
by offering a parametric model that avoids coarsely
partitioning the data into large bins. We have
demonstrated that the Saccadic Flow model generalizes
well to unseen test datasets, although this is likely to
hold only for stimuli that are broadly similar to the
images used to train the model (photographs of natural
and manmade scenes). As we move away from
photographic images to stimuli such as computer
interfaces, we would expect the Flow model to offer a
poor account of the data (Le Meur & Coutrot, 2016).
While we have shown that the model performs well
over a small range of tasks (free-viewing, scene
description, object naming, and visual search), we do
observe differences in the log-likelihood when different
tasks are carried out while viewing the same images.

Limitations of saccadic flow

There are several limitations to our modeling work.
Firstly, by using a truncated Gaussian, we are unable to
capture the skewed nature of the distribution of
saccades originating from the corners (see Figure 1).
We experimented with fitting a skew-normal distribu-
tion using the sn package for R, but met with limited
success due to having to deal with the image
boundaries. We expect image boundaries is one of the
reasons why our saccadic flow model generates
saccades with, on average, greater amplitudes than
those seen in empirical distributions. The second
simplification we make is to not take the leftwards
biases in saccadic behavior into account. However, our
results suggest that this factor has a relatively small
effect on saccades, and is important only for the first
couple of saccades. Similarly, our model does not take
into account coarse-to-fine biases. Across scene view-
ing, human fixations tend to increase in duration, and
saccade amplitudes tend to decrease as the observer’s
understanding of the image changes (Antes, 1974).
Finally our model only considers the immediately
preceding fixation as having an effect. This is likely to
be an oversimplification of saccadic programming,
given evidence in the literature that previous saccades
and fixations influence saccade generation via processes
such as saccadic momentum or inhibition of return
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(MacInnes et al., 2014). With sufficient data, the
modeling framework here could be extended to take the
previous n fixations into account. It should be noted,
however, that the likely impact of these theoretical
concepts upon the flow model is unclear: Indeed failing
to account for saccadic history may not be important
for modeling some aspects of human search behavior
(Clarke et al., 2016). The current implementation of
saccadic flow also offers an opportunity to empirically
assess the likely contribution of such factors as it offers
a means to assess the likelihood of repeating a saccade
(saccadic momentum) or returning to a previous
location (inhibition of return).

Conclusions

Behavioral biases in eye movement are prevalent
during scene viewing. Our saccadic flow model allows
calculation of saccade likelihood across an image based
on empirical data of how the eye tends to move in many
different scene viewing conditions, with flow providing
a strong fit to several datasets. There are a number of
ways that flow can be developed, and we propose that
gaining a better understanding of the saccadic biases
underlying fixation behavior can only be a positive for
our search to understand why people look where they
look. Whereas the central bias model may be a better
choice in some contexts (i.e., when the analysis is in
terms of unordered fixation coordinates), we recom-
mend using saccadic flow where possible. Flow
consistently explains more variance than uniform and
CT2014/17 models while also accounting for the central
bias. This suggests that our model is robust, general-
izable, and should be of use to researchers interested in
eye movements in a variety of scene-viewing paradigms.

Keywords: eye movements, central tendency, salience
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