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Detailed analysis of dynamic fungal cell wall components is crucial to our understanding of fungal systematics and the biology and 
physiology of fungal growth. In fungal pathogens this is of particular importance in examining their response to stress. However, 
current methodologies do not permit fast and accurate or quantitative analysis of cell wall carbohydrate components. Here, we provide 
a novel method permitting simultaneous quantitative analysis of the major cell wall components of Candida species relying on triple-
staining with fluorescent labeling of chitin, β-glucans and mannans. Quantification is based on flow cytometry whereas qualitative 
analysis can be performed by direct imaging using fluorescence microscopy. We validated the method by determining the in vitro 
responses of different Candida species to the challenge of antifungal treatment with caspofungin. The assay facilitated rapid analysis 
of adaptive changes in cell wall composition upon caspofungin-induced damage. The method can be exploited for comprehensive 
quantitative analysis of Candida cell wall components, with relevant implications for clinical diagnosis of fungal infections in general. 
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Candida species represent the most prevalent opportunistic fungal pathogens associated with mortality rates as high as 30-40% in 
the immunocompromised clinical setting [1-5]. Although Candida albicans is still the most common yeast pathogen, other Candida 
species such as C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, C. lusitaniae, C. guilliermondii and C. auris have emerged as 
important pathogens. The emergence is partly attributable to prophylactic treatment strategies, and poses a challenge for effective 
therapy due to inherent resistance to a number of antifungal agents [1,6-21].

The fungal cell wall is the first point of contact with the host, and therefore a key player in resistance and virulence. It mediates 
adherence to host tissues, antigenicity and modulation of the immune response [22-24]. The Candida cell wall is a complex and 
dynamic structure composed of an inner chitin layer, adjacent to an outer glucan layer containing β-(1,3)-glucan and highly 
glycosylated mannoproteins. These are predominantly linked to the β-(1,3)-glucan framework via GPI-remnants connected to 
β-(1,6)-glucan linkers [22,24-34]. The fungal cell wall responds to and counteracts environmental stresses or damage by dynamic 
remodeling of its composition, and therefore plays a key role in immune recognition, fitness and resistance to antifungal drugs, 
such as echinocandins [35-39]. Several studies in murine models of candidemia using C. albicans showed increased representation 
of β-glucan and chitin in the cell wall during infection and drug treatment [39-45].

Echinocandins are antifungal agents displaying high efficacy against most Candida species [46-48]. They act by inhibiting the 
enzyme β-(1,3)-glucan synthase Fks1, thereby preventing assembly of the β-glucan layer. As a consequence, the cell wall is 
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Candida strains used in this study are listed in Table 1. Strains were grown overnight in sterile-filtered yeast extract peptone 
dextrose (YPD) medium at 30 °C with agitation at 220 rpm. The cultures were subsequently diluted in fresh YPD medium to an 
OD600 of ~0.3. After 4 h of incubation at 30 °C with agitation at 220 rpm, caspofungin (Merck & Co., Whitehouse Station, NJ) was 
added at the concentrations indicated in Table 1 and Figure S1 (1/12.5 of the corresponding Minimal Inhibitory Concentration 
(MIC)). The cultures, untreated or treated with caspofungin, were incubated for an additional 3 hours, and were then harvested 
by centrifugation at 0.4 g for 2 min. Cell pellets were washed once with 2 mL of 1x phosphate-buffered saline (PBS – NaCl, KCl, 
Na2HPO4, KH2PO4, dH2O, pH 7.4) and then resuspended with 500 µL of 1x PBS. Aliquots of 100 µL were transferred to fresh 
Eppendorf tubes, and the cells were harvested by centrifugation at 0.8 g for 2 min for subsequent single- or triple-staining of the 
cell wall components. Amber Eppendorf tubes were used for fluorescent staining to prevent dye degradation by exposure to light, 
while unstained controls were processed in standard Eppendorf tubes. The cell wall components were either stained individually 
or sequentially (β-glucans >mannans >chitin), if triple-staining was performed, as outlined below. All centrifugation steps for cell 
collection were performed at 0.8 g for 2 min.

Strains, Growth Conditions and Preparation for Staining

weakened, rendering the cells more susceptible to lysis [46-49]. However, inhibition of a cell wall component can lead to defense 
mechanisms with compensatory enhancement of other cell wall components, repair and remodeling triggered by the Protein 
Kinase C (PKC) cell wall integrity pathway, including modification of the chitin layer [18,35,36,45,50,51]. The response increases 
echinocandin tolerance both in vitro and in vivo [18,36,45]. Quantitative analysis of Candida cell wall components has therefore 
become an important parameter in the assessment of stress responses potentially mediating resistance to antifungal therapy. 
Current methodological approaches rely on alkaline, acidic or enzymatic cell wall disruption to obtain individual components 
or isolated analysis of chitin and derivatives by spectroscopic methods [52-54,56]. Such approaches demand complex and time-
consuming analytical methods such as high-performance anion-exchange chromatography and pulsed amperometric detection 
(PAD) [35,36,52,53,57-59]. 

Only recently, flow cytometry-based methodologies have emerged, enabling quantitative carbohydrate analysis of certain cell wall 
components [42,60-63]. However, current methods do not permit comprehensive analysis of all major cell wall components in a 
single assay. In addition, the analysis of live cells has not been possible. Here, we present a triple-staining flow cytometry-based 
method to determine the quantitative composition of the entire fungal cell wall. Six clinically relevant and phylogenetically diverse 
Candida spp., including C. albicans, C. glabrata, C. krusei, C. parapsilosis, C. lusitaniae and C. guilliermondii were employed to 
validate the method, demonstrating that exploitation of flow cytometry enables rapid and inexpensive quantitative analysis of all 
carbohydrate cell wall components. 

Materials and Methods

Caspofungin 
Stress (ng/mL)

MIC
 Caspofungin (µg/mL)DesignationStrain

2.50.03125SC5314 (77)C. albicans

100.125ATCC2001 (www.atcc.org)C. glabrata

50.0625ATCC6258 (www.atcc.org)C. krusei

200.25ATCC22019 (www.atcc.org)C. parapsilosis

50.0625KK007 (clinical isolate)C. lusitaniae

200.25KK167 (clinical isolate)C. guilliermondii

Table 1: Candida strains, Minimal Inhibitory Concentrations (MICs) and caspofungin-stress concentrations used

Candida cells were resuspended in 1 mL of cold (4 °C) flow cytometry (FC) blocking solution consisting of 0.5% Bovine Serum 
Albumin (BSA), 5% HI-rabbit serum (Anti-rabbit IgG, New England Biolabs), 5 mM EDTA, and 2 mM NaN3 in 1x PBS by 
incubation for 30 min in a sample mixer (Hula Mixer, Invitrogen) at room temperature (RT). Cells were then collected by 
centrifugation and washed three times by resuspending in 1 mL of cold FC washing solution consisting of 0.5% BSA, 5 mM EDTA, 
and 2 mM NaN3 in 1x PBS. The cells were collected by centrifugation. The Fc: Dectin-1 protein [Fc (human): Dectin-1 (mouse) 
(recombinant.), Adipogen] diluted to a final concentration of 1 µg/ml in FC blocking solution was used for binding of β-glucans. 
An aliquot of 100 µL was used to resuspend the cells, and the solution was incubated for 60 min on ice. Cells were then collected 
by centrifugation and washed three times with 1 ml of cold FC washing solution. A 1:200 dilution of Alexa Fluor 488-conjugated 
anti-human IgG Fc antibody (Fc+488; Biolegend) was prepared in FC blocking solution. A total of 200 µL of this solution was 
then used to resuspend the cells, followed by incubation for 45 min on ice. Upon Dectin-1/Fc+488 binding, cells were collected by 
centrifugation, and washed three times with 1 ml of cold FC washing solution.

Staining of β-Glucans

All centrifugation steps for cell collection described were performed at low speed (0.8 g) for 2 min. To avoid cell agglomerates, 
a solution of Tween 20 (0.05%) in 1x PBS or resuspension in FC buffer (1x PBS; 0.5 M EDTA; 0.5% BSA; 0.01% Tween 20) 
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was occasionally added. Alternatively, cell clumps were disintegrated by sonication (max power, 3 s) [64]. For experiments not 
requiring visualization and quantification of live cells, fixation with 1% formaldehyde was optionally performed.

Staining of Mannans 

Candida cells were visualized under a confocal laser scanning microscope (CLSM, Zeiss LSM 700). The channels for bright field 
and fluorescence for DAPI, EGFP and TRed were applied to image the cell wall components chitin, β-glucans and mannans, 
respectively. A sample volume of 2.5 µL was pipetted onto a glass slide (VWR, Vienna, Austria) and mixed with 2.5 µL of CFW 
to yield a final concentration of 25 µg/mL. A 1.5 mm cover glass slip (VWR, Vienna, Austria) was placed on top. Imaging was 
performed under constant-time laser exposure for untreated and treated samples. Images were analyzed using the Fiji software 
(Open source Java image processing, NIH image).

A volume of 500 µL Calcofluor White (CFW, fluorescent brightener 28; Sigma) were added to the samples at a final concentration 
of 25 µg/mL, and samples were incubated for 10 min in the dark prior to flow cytometry analysis.

The cell wall components of Candida species including chitin, β-glucans and mannans were quantified by a flow cytometry-based 
approach. Fluorescently-labelled cell wall components were measured in a BD Fortessa cytometer (BD biosciences). Triple-stained 
cells were measured using BV421 (violet laser, 405 nm wavelength, 50 mW power), FITC (blue laser, 488 nm wavelength, 50 mW 
power) and TRed (red laser, 640 nm wavelength, 40 mW power) channels to detect the fluorescence of chitin, β-glucans and 
mannans labelled with CFW, Dectin-1/Fc+488 and ConA-TRed, respectively. Controls included single-stained and unstained 
samples for each species tested: caspofungin-stressed, single-stained cells yielding strong fluorescence signals, and unstressed 
cells without staining. A total of 10,000 cells were analyzed according to the manufacturer’s guidelines. The flow cytometry data 
were analyzed using the Flowjo software (Flowjo LLC, USA, version 7.6.5.) to assess the relative amounts of individual cell wall 
components.

ConcanavalinA Texas Red Conjugate (ConA-TRed) (LifeTechnologies) solution in 1x PBS was adjusted to a final concentration of 
25 µg/mL. A total volume of 1 mL was used to resuspend the cells, and samples were incubated in the dark at 30 °C under shaking 
conditions at 500 rpm on a thermoshaker (Eppendorf) for 45 min. Cells were collected by centrifugation and the pellet was washed 
once with 1x PBS. Cells were finally resuspended in 500 µL 1x PBS and transferred into FC tubes.  

Staining of Chitin 

Measurement of Candida Cell Wall Components by Flow Cytometry

The significance of differences between individual cell wall components of stressed (caspofungin-treated) versus unstressed cells 
was determined by using the T-test with one-tailed distribution for paired samples (Excel software). P values <0.05 were considered 
significant. The calculations were based on three independent biological replicates.

Quantitative Measurement of Cell Wall Components by Flow Cytometry

Fluorescence Microscopy

Statistical Analysis

Results

We modified and improved a flow cytometric methodology for simultaneous quantification of all major cell wall components of 
Candida species. A triple-staining assay was used to fluorescently label chitin, β-glucans and mannans. Chitin was directly labelled 
with Calcofluor White (CFW) (blue color). β-glucans were detected by conjugation of anti-human Alexa Fluor 488 (green color) 
with the protein Fc-Dectin1, and mannans were labelled by conjugating ConcanavalinA to Texas Red (ConA-TRed). The spectral 
overlap of the fluorescent dyes used is limited, thus permitting simultaneous analysis. The efficacy of the method was demonstrated 
by testing six different clinical Candida species, including reference strains of C. albicans, C. glabrata, C. krusei, and C. parapsilosis, 
as well as clinical isolates of C. lusitaniae and C. guilliermondii, for which no commercial reference strains are available. Fungal 
cells were exposed to exogenous stress by treatment with caspofungin at concentrations corresponding to 1/12.5 of the respective 
minimum inhibitory concentration (MIC) values for each strain (Table 1, Figure S1). Fungal cells challenged with caspofungin and 
unstressed controls were stained for chitin, β-glucans and mannans and subjected to subsequent quantitative analysis of individual 
cell wall components by flow cytometry. The differential changes observed in the cell wall composition of chitin, β–glucan and 
mannan are displayed in Figure 1. For all measurements revealing significant differences, the calculated p-values were <0.05. Upon 
caspofungin treatment, C. albicans showed a significant increase of chitin levels (1.6-fold) when compared to unstressed cells, 
whereas no changes in the β–glucan and mannan components beyond the standard deviation were observed (Figure 1A). 

C. glabrata revealed significant enhancement of all three cell wall components after exposure to caspofungin compared to untreated 
controls, (chitin 2.4-fold, β-glucan 1.2-fold, mannan 3.9-fold; Figure 1B), and similar observations were made for C. krusei (chitin 
3.1-fold, β-glucan 1.3-fold; mannan 2.2-fold; Figure 1C). For C. parapsilosis, a significant increase in chitin content was observed 
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upon caspofungin treatment (1.2-fold), while no changes in β-glucan or mannan occurred (Figure 1D). In addition, clinical isolates 
of two Candida species including C. lusitaniae and C. guilliermondii were analyzed. While C. lusitaniae revealed significantly 
increased amounts of chitin (2.7-fold) and β-glucan (1.5-fold) upon caspofungin treatment (Figure 1E), C. guilliermondii showed 
significantly increased proportions of all three cell wall components (chitin 3.3-fold, β-glucan 1.7-fold, mannan 2.3-fold) (Figure 
1F). To correct spectral overlap among the different fluorophores, compensation controls were set up independently for each 
Candida species, using single-stained and unstained samples. These served as a baseline for the assessment of changes in the cell 
wall composition mediated by exposure to caspofungin (Figure S2).

Figure 1: Quantitative analysis of cell wall components in Candida species by flow cytometry. The cell wall components 
chitin, β-glucans and mannans were quantified with a BD Fortessa cytometer using BV421, FITC and TRed lasers, 
respectively. A. C. albicans; B. C. glabrata; C. C. krusei; D. C. parapsilosis; E. C. lusitaniae; F. C. guilliermondii. The plots 
shown reflect unstressed (black peaks) and caspofungin-stressed cells (dashed peaks). Peak shifts on the flow cytometry 
plots from left to right indicate elevated fluorescence intensities reflecting an increase in the respective cell wall component. 
Quantification is indicated in folds of fluorescence intensity, with unstressed control samples set to 1. The data shown 
reflect results of three independent replicates and error bars represent the standard deviation (SD). Horizontal bars with 
an asterisk mark significant differences between stressed cells and controls (p value <0.05)

Triple-staining of Candida cell wall components was assessed by an independent technical approach using fluorescence microscopy. 
In addition to flow cytometric measurement, aliquots of each sample were subjected to imaging by confocal microscopy. 

Fluorescence Microscopy of Candida Species upon Caspofungin Challenge
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Simultaneous triple-staining of chitin, β-glucans and mannans could be visualized in all Candida species tested (Figure 2 and 3). 
Evaluation by microscopy did not permit precise quantitative assessment of cell wall components, but facilitated the imaging of 
changes in cell wall composition triggered by exposure to caspofungin (Figure 2 and 3). 

Figure 2: Confocal microscopy of cell wall components in Candida reference strains. Triple-staining of chitin, β-glucans and mannans 
fluorescently labelled with CFW, Alexa Fluor 488 and TRed, respectively. A. C. albicans; B. C. glabrata; C. C. krusei; D. C. parapsilosis. 
Differential Interface Contrast (DIC) and fluorescent pictures are shown. The designation “unstressed” corresponds to non-treated cells 
whereas “stressed” corresponds to caspofungin-stressed cells. Higher fluorescent color intensity reflects an increase in the respective 
cell wall component. Laser exposure time was kept constant for each individual species. Images were processed using Fiji software. 
Scale bars represent 20 µm
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The fungal cell wall is a point of contact with the host immune system, and plays a key role in responses to various stresses, ranging 
from host factors to antifungal treatment. Modulation of the cell wall composition is an important mechanism affecting the fitness 
of Candida spp. and facilitates the survival of the pathogens or immune evasion. Many studies have therefore focussed on the 
investigation of cell wall changes upon exposure to stress both in vitro and in vivo [1-3,9,29,39,40]. Challenge of C. albicans by 
different echinocandins including caspofungin was shown to result in upregulation of chitin synthesis leading to increased content 
of this constituent in the fungal cell wall [18,32,36]. Indeed, some strains exhibit “paradoxical growth” with enhanced growth 
in the presence of concentrations of caspofungin above the MIC [65-69]. These effects are regulated by activation of multiple 
signal transmission cascades triggered by the MAPK-Hog1/PKC and Ca2+/calcineurin pathways [35]. Increased chitin amounts 
lead to enhanced cell wall resistance, elevated tolerance to antifungal treatment, and escape from the immune system [18,36,45]. 
Treatment with caspofungin and growth on alternative carbon sources can also lead to higher β-glucan content in the cell wall, 
and unmask this layer, exposing it to interaction with dectin-1 [41,42,70-72]. Dectin-1 is a C-type lectin serving as the prime 
β-glucan receptor, which mediates phagocytosis of Candida cells, and stimulates inflammation, T-cell activation and proliferation 
[73-75]. Unmasking of β-glucans can vary during the infectious process [41]. Mannans contribute to masking of the β-glucan layer, 
thereby preventing immune recognition, and elevated contents of this cell wall constituent can therefore promote evasion from 
immune attack [63,75]. Hence, changes in the fungal cell wall composition can mediate differential effects on the overall functional 
properties of the pathogens including their ability to escape from host immune response [76]. While the elevation of chitin and/or 
mannan content would result in increased resistance and improved fungal survival, the net effect of the observed changes involving 
β-glucans is less clear. Since the extent of cell wall modifications and the altered proportion of individual components may provide 
important information on the expected effect of adaptive changes, techniques permitting quantitative analysis of the cell wall 
components can provide important insights into fungal responses to various stresses including antifungal treatment.

Most existing methodologies which include mechanic and chemical disruption of the cells are based on alkaline and acidic hydrolysis 
of the fungal cell wall, and require rather laborious and meticulous controls to ensure complete extraction [35,36,52,53,57]. Flow 
cytometry has more recently been employed for analysis of individual cell wall components [42,60-63]. Here, we present a flow 
cytometry-based methodology facilitating simultaneous quantification of chitin, β-glucans and mannans of different Candida 
species based on triple-fluorescent staining. The use of fluorophores with low spectral overlap permits simultaneous detection of 
all major cell wall components. An important advantage of this method includes the ability to analyze live fungal cells and their cell 
wall modifications occurring upon exposure to specific stresses such as antifungal treatment. The entire procedure including cell 

Figure 3: Confocal microscopy of cell wall components in clinical isolates of Candida species. Triple-staining of chitin, 
β-glucans and mannans fluorescently labelled with CFW, Alexa Fluor 488 and TRed, respectively. A. C. lusitaniae; B. C. 
guilliermondii. Differential Interface Contrast (DIC) and fluorescent pictures are shown. “Unstressed” corresponds to 
non-treated cells whereas “stressed” corresponds to caspofungin-stressed cells. Higher fluorescent color intensity reflects 
an increase in the respective cell wall component. Laser exposure time was kept constant for each individual species. 
Images were processed using Fiji software. Scale bars represent 20 µm

Discussion
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preparation, staining and quantitative readout by flow cytometry with concomitant visualization by fluorescence microscopy for 
simultaneous analysis of two Candida species can be completed within one working day. The applicability of the approach presented 
has been demonstrated for some of the most frequently occurring and clinically highly relevant Candida species, including both 
reference strains and clinical isolates. The method can conceivably be applied to quantitative analysis of cell wall components in 
a broad spectrum of Candida species as well as other Candida-like fungi, and can contribute to improved understanding of stress 
responses in these pathogens, with important implications for research and ultimately for clinical management of fungal infections.
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