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Abstract 

Introduction: Colorectal cancer (CRC) is a common type of cancer with a relatively poor 

survival rate.  The survival rate of patients could be improved if CRC is detected early.  

Biomarkers associated with early stages of tumour development might provide useful tools 

for the early diagnosis of colorectal cancer. 

Area covered: Online searches using PubMed and Google Scholar were performed using 

keywords and with a focus on recent proteomic studies.  The aim of this review is to highlight 

the need for biomarkers to improve the detection rate of early CRC and provide an overview 

of proteomic technologies used for biomarker discovery and validation.  This review will also 

discuss recent proteomic studies which focus on identifying biomarkers associated with the 

early stages of CRC development. 

Expert opinion: A large number of CRC biomarkers are increasingly being identified by 

proteomics using diverse approaches.  However, the clinical relevance and introduction of 

these markers into clinical practice cannot be determined without a robust validation process.  

The size of validation cohorts remains a major limitation in many biomarker studies. 
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1. Introduction 

CRC is a common type of malignancy which is the second leading cause of cancer 

related death in developed countries [1, 2].  The survival rate of CRC patients varies 

significantly based on the stage of the disease at the time of presentation.  The 5-year survival 

rate of CRC can be as high as 90% for patients with localised disease, declining to around 

70% for patients with regional metastasis and 15-20% for patients with distant metastasis [3].  

Therefore, improved survival rates could be achieved by detecting CRC early when treatment 

is more effective.  The detection of colorectal adenomas before the development of invasive 

malignancy may also significantly reduce the risk of CRC and related deaths [4, 5, 6].  

However, there is considerable molecular heterogeneity in the development and progression 

of CRC as multiple molecular pathways are involved [7].   

The early stages of CRC development are not often associated with specific 

symptoms, with some experiencing no symptoms at all [8].  Common symptoms associated 

with CRC include rectal bleeding, abdominal pain, weight loss and changes in bowel habit 

[9].  However, only a small minority of patients with these symptoms are diagnosed with 

CRC [10].  Therefore, population-based screening programs may help in reducing the risk 

and mortality rates of CRC in part by detecting and removing adenomas [11, 12].  Screening 

programmes generally rely on risk factors, usually age, to determine which individuals to 

screen [13].  However, the influence of screening programs for CRC on survival is still being 

debated [14, 15]. 

The main methods used in CRC screening programmes are faecal tests (e.g. guaiac- 

based faecal occult blood test (FOBT), immunochemical faecal occult blood tests (FIT) and 

faecal multi-DNA tests) and colorectal endoscopy (e.g. colonoscopy and/or flexible 

sigmoidoscopy).  Currently, lower gastrointestinal endoscopy is the optimal method of 
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detection and removal of colorectal adenomas.  According to a recent study, the risk of CRC 

can be reduced by 30% using a sigmoidoscopy based screening trial even though only the 

rectum and sigmoid colon are visualised by sigmoidoscopy [16].  However, colorectal 

endoscopy is invasive, relatively risky (e.g. colon perforation and anaesthetic complications) 

and expensive [17, 18].  Furthermore, a significant number of adenomas may be missed due 

to factors related to endoscopic procedure (observation technique of endoscopist, bowel 

preparation and colonoscopic insertion time) and adenoma (size, number, shape and 

anatomical location) [19, 20].  Another challenge is which adenomas should be 

removed/monitored since only a small proportion of adenomas progress to malignancy [21].  

Currently, the risk of malignant transformation is mainly determined by histopathological 

assessment of polyp size, degree of epithelial cell dysplasia and “villousness” [22].   

Faecal based tests are cheaper, less invasive and possibly more convenient than 

colorectal endoscopy.  However, the low specificity of the FOBT, the high number of false 

positives and associated follow-up colonoscopies have raised doubts over its clinical utility as 

a screening method [23].  The FIT addresses the main analytical problems associated with the 

FOBT since there is no need for repeated sampling, there are no dietary restrictions and it has 

a superior sensitivity [24].  Nevertheless, similar to FOBT, the performance of FIT is 

compromised by the presence of non-bleeding neoplasms and bleeding non-neoplastic 

conditions [25, 26].  Another clinically approved method for detecting CRC is multi-targeted 

DNA testing which detects altered DNA markers in cells shed into the stool.  Although this 

test has shown better sensitivity for detecting early CRC and adenomas compared with FIT, 

the specificity of DNA-based tests was inferior to that of FIT [27].  Therefore, non-invasive 

detection tools which identify high-risk adenomas and early carcinoma are still needed.  
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2. Proteomic biomarkers 

Proteomics describes a wide range of technologies used for large-scale identification, 

measurement, characterisation and analysis of proteins.  Proteomics can be classified into 

many branches based on the overall objective and technology of proteomic applications 

(Figure 1).  The majority of biomarker studies use quantitative mass spectrometry-based 

technologies for the identification and profiling of disease-associated or disease-specific 

protein markers.   

The detection and quantification of low-abundant proteins can be challenging in 

serum samples because of highly abundant and complex mixture of major proteins such as 

albumin and immunoglobulins [28].  However, the sensitivity of proteomics has significantly 

improved due to better sample preparation, advances in current technologies and the 

introduction of new ultrasensitive technologies such as single cell-quantum dot platform [29-

32].   

A biomarker refers to any measurable molecule that reflects normal or abnormal 

biological conditions [30].  Different types of molecules can be classified as biomarkers 

which can be evaluated in specific types of sample using different technologies (Figure 2).  

Biomarkers can be utilised in screening, diagnosis, prognosis, predicting therapy and 

monitoring the progression of CRC [33].  While mass spectrometry-based proteomics is 

mainly used for the discovery of a large number of protein targets, antibody-based techniques 

are generally essential for the validation of any potential biomarker targets [34-36]. 

 

3. Recent proteomic studies for the early detection of colorectal neoplasia 

Recent proteomic studies were evaluated in terms of assessed protein targets, 

proteomic methods, validation process, size and quality of sample cohorts, limitations and 
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potential clinical impact.  Based on this evaluation, individual studies were selected for 

discussion to highlight key findings and potential limitations.  The studies, their biomarker 

targets, proteomic technologies used, patient cohorts and commentary on study selection have 

been detailed in supplementary information Methods S1 and Table S1.  Blood-based samples 

(serum and plasma), tissue samples, urine and faecal samples and colorectal tumour models 

(animal models and organoid culture) will be reviewed.   

 

3.1. Blood-based biomarkers 

 Blood is potentially the ideal sample type for early detection markers since samples 

can be obtained in a straightforward manner at minimal cost, minimal risk and most 

importantly in a less-invasive manner compared to existing detection methods for example 

colonoscopy [18].  Moreover, standardised protocols for collecting and processing blood 

samples can easily be implemented. However, the detection of low abundance proteins 

remains a challenge. 

A potentially useful screening tool for early diagnosis of CRC is the identification of 

serum-based autoantibodies [37].  Tumour-associated autoantibodies are produced by the 

immune system as a reaction to the presence of abnormal molecules linked to the presence of 

a tumour, known as tumour-associated antigens (TAAs).  The identification of these 

molecules in serum samples is mainly achieved through proteomic-based technologies such 

as ELISA and protein microarrays [38].  For instance, eight TAAs, which were identified 

previously by protein microarray-based methods, were selected to test their combined ability 

to detect CRC by a multiplex beads assay using a well-characterised sample cohort 

containing 307 samples; 135 CRC (stage I=35, stage II=25, stage III=46 and stage IV=29), 

65 other cancer types, 14 inflammatory bowel disease and 93 healthy controls [39].  Out of 
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the eight TAAs, a panel of six TAAs (general transcription factor IIB, EGF-like repeats and 

discoidin I-like domains 3, HCK proto-oncogene, pim-1 proto-oncogene, serine/threonine 

kinase 4 and tumour protein P53) diagnosed CRC with 66% sensitivity at 90.0% fixed 

specificity [39].  Using a similar approach, a panel of tumour-associated autoantibodies (anti-

TP53, anti-IMPDH2, anti-MDM2 and anti-MAGEA4) detected early CRC with a sensitivity 

of 26% (95% CI, 13–45%) and advanced adenomas with a sensitivity of 20% (95% CI, 13–

29%) at a specificity of 90% [40].  The discovery cohort comprised of sera samples of 124 

healthy controls and 352 CRC (stage I=96, stage II=102, stage III=105 and stage IV=49) and 

the validation cohort included 100 healthy controls, 29 non-advanced adenomas, 99 advanced 

adenomas and 45 CRC (stage I=18, stage II=5, stage III=19 and stage IV=3) [40].  Although 

sensitivity of only 20% is a major limitation [40], both studies present a potentially useful 

approach whereby multiple TAAs or autoantibodies can be assessed simultaneously to detect 

early colorectal neoplasms [39, 40].  However, the main limitation in both studies was the 

size of patient cohorts used to validate the results.  There is still a need for additional 

validation using large and well-characterised cohorts.  Furthermore, the clinical utility of 

multiplex bead assays needs to be verified in external laboratories and needs to be compared 

to established screening tools before it can be considered for use in clinical practice.   

Selected/multiple reaction monitoring-mass spectrometry (S/MRM-MS) is 

increasingly used as a technology for validating preliminary proteomic discoveries.  For 

example, targeted multiplex MRM-MS assay was used to test a number of protein targets 

associated with early CRC [41].  The biomarker targets were identified by literature mining 

of publically available research data.  The MRM assay was optimised to enable the analysis 

of 187 protein targets using liquid chromatography mass spectrometry (LC-MS) [41].  The 

discovery cohort included 69 healthy controls and 69 CRC cases (stage I=13, stage II=35, 

stage III=15 and stage IV=6), while the validation cohort included 68 controls and 68 CRC 
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cases (stage I=16, stage II=35, stage III=14 and stage IV=3).  Stage I and II cases were 

detected with 91% overall accuracy using a protein panel that included 13 targets; alpha-1-

acid glycoprotein 1, alpha-1 antitrypsin, amylase alpha 2b, clusterin, complement c9 , enoyl-

CoA hydratase 1, ferritin light chain, gelsolin, osteopontin, selenium binding protein 1 , 

seprase, spondin 2 and tissue inhibitor of metalloproteinases 1 [41].   

The suitability of MRM/SRM targeted proteomics as a discovery and validation 

platform was confirmed by another study [42].  Different protein signature associated with 

early CRC (caeruloplasmin, serum paraoxonase/arylesterase 1, serpin peptidase inhibitor 

clade A, leucine-rich alpha-2-glycoprotein and tissue inhibitor of metalloproteinases 1) was 

identified in plasma samples using LC-MS and validated by SRM-MS [42].  To identify an 

optimal protein signature this study followed a detailed analytical approach; initial discovery 

by LC-MS, screening discovery by SRM-targeted MS, training and validation steps using 

SRM-MS and algorithmic analysis (the patient cohort used in each step is detailed in Table 

S1).  Both studies have shown that SRM/MRM can be used for testing multiple protein 

targets and may potential be a useful technology in the clinical practice [41, 42].  However, 

the detection accuracy of SRM assay using a protein biomarker signature was 72% [42] 

which was not superior to established CRC screening tests such as the FIT (around 80% 

detection accuracy) [43].  Furthermore, the clinical utility of MRM-based assay is still 

hindered by lack of standardisation, complex and laborious sample preparation, high cost, 

low sensitivity and peptide specificity [44].  Therefore, there is a need for further 

optimisation and validation of the findings using larger cohorts of participants.  

Evaluating multi-protein combinations is a strategy that is being increasingly used in 

many biomarkers studies.  Two potentially useful marker panels for the detection of CRC and 

advanced adenomas were identified and validated by ELISA using well-characterised patient 

cohort which included plasma samples of 150 CRC (stage I=34, stage II=51, stage III=34 and 
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stage IV=31), 151 advanced adenomas and 301 healthy controls [45].  The patient cohort was 

divided into equal discovery and validation cohorts.  Advanced adenomas were defined as “1 

or more of adenoma size ≥1 cm, sessile serrated polyp ≥1 cm, adenoma with ≥25% villous 

histologic features and adenoma with high-grade dysplasia”.  This study evaluated 28 

proteins which were identified as potential markers for early CRC in previous research using 

MRM-targeted MS as discussed above [41].  The optimum performance (diagnostic 

performance of around 82%) in detecting CRC was observed using a protein panel which 

included carcinoembryonic antigen, seprase, serpin A3, macrophage migration inhibitory 

factor, complement component 3, complement component 9, p-selectin glycoprotein ligand 1 

and cathepsin D [45].  Advanced adenomas were detected (diagnostic performance of around 

65%) using a panel of four proteins consisting of cathepsin D, clusterin, growth 

differentiation factor 15 and serum amyloid A1 [45].  Nevertheless, the validation cohort was 

not independent (i.e. internal validation) and included only a small number of samples.  

Furthermore, there was no rationale for the inclusion of advanced stage CRC as the main 

focus was the detection of early colorectal neoplasms.  Therefore, these findings require to be 

validated on larger independent patient cohorts comprised of early CRC cases.  

Inconsistencies in the findings of different proteomic studies are still being observed 

as highlighted by the following studies.  Using isobaric tag for relative and absolute 

quantitation-mass spectrometry (iTRAQ-MS), three serpin family proteins (serpin A1, serpin 

A3 and serpin C1) were identified as being differentially expressed in serum samples of CRC 

(stage I=2, stage II=2, stage III=4 and stage IV=7) and adenomas (n=15) compared to healthy 

controls (n=15) [46].  The results were confirmed by ELISA using serum samples of 21 

healthy controls and 19 CRC patients (stage I=2, stage II=5, stage III=5 and stage IV=7).  An 

increase in the serum levels of serpin A1 and serpin A3 were observed in CRC patients 

compared to healthy controls, whereas the level of serpin C1 was lower in CRC patients [46].  
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The diagnostic accuracy of these markers was 97% for serpin A1, 82% for serpin A3 and 

97% for serpin C1.  However, these findings are inconsistent with a previous study which 

measured serpin A3 by ELISA using plasma samples from 311 CRC patients (Dukes A=53, 

Dukes B=128, Dukes C=107 and Dukes D=23) and 359 healthy controls [47].  This study did 

not observe a significant change in the plasma level of serpin A3 in CRC patients compared 

to healthy controls.  Further analysis by immunohistochemistry on paired normal colon and 

CRC tissue samples (Dukes A=17, Dukes B=45, Dukes C=33 and Dukes=9) showed a 

decrease in the expression of serpin A3 in the early stages of CRC while it increased in the 

higher stages [47].  Similarly, the level of serpin A1 was associated with advanced stages of 

CRC, when analysed by immunohistochemistry using 522 CRC samples (lymph node stage: 

N0=278 and N1-2=244) [48].  Therefore, serpin A1 and serpin A3 proteins might not be 

suitable markers for the diagnosis of early CRC.  Furthermore, larger patient cohorts are 

needed for validating these preliminary proteomic findings. 

More robust findings may be achieved by using a combination of technologies for 

biomarkers discovery and validation.  Biomarker targets associated with CRC were also 

identified using a combination of proteomic (LC-MS) and metabolomic technologies (ultra-

high performance liquid chromatography (UHPLC-MS) and gas chromatography (GS-MS)) 

[49].  Pyruvate kinase isoenzyme type M2 (M2-PK), gamma enolase, serotonin and 14-3-3 

family members were all identified as potential markers for CRC detection.  The discovery 

cohort included plasma samples of 16 CRC patients (stage III=8 and stage IV=8) and 10 

healthy controls [49].  The results were confirmed by ELISA analysis using plasma samples 

from 40 CRC patients (10 for each stage), adenomas (n=20) and healthy controls (n=20).  

Moreover, immunohistochemical analysis of 14-3-3 epsilon (24 CRC tissue cores with 

corresponding normal) showed there was an increased expression of this protein in malignant 

tissue compared to normal colonic tissue.  Although this study presented interesting findings, 
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further validation is required because the sample size was small (n=40) especially for stage I 

and stage II CRC cases.  Additional investigation is especially needed for serotonin and 14-3-

3 proteins and gamma enolase, whereas the potential of M2-PK as a marker for detecting 

early CRC has been extensively studied [50, 51].   

An interesting biomarker candidate for the early detection of CRC is microtubule 

associated protein RP/EB family member 1 (MAPRE1) which has been identified in several 

studies [52-55].  A combination of LC-MS, antibody array (plasma samples: 60 healthy 

controls, 60 adenomas and 60 CRC) and immunohistochemistry assessment of fixed tissues 

(20 healthy controls, 10 adenomas and 66 CRC) was used to determine the association 

between MAPRE1 and early CRC (Table S1) [52].  The expression of MAPRE1 was found 

to be higher in both adenoma and CRC when compared to healthy controls.  Furthermore, a 

combination of MAPRE1 with carcinoembryonic antigen and adenylate kinase 1, tested by 

antibody array, revealed promising results in diagnosing adenoma and early CRC [52].  The 

increased levels of MAPRE1 (in tissues and plasma) and the relationship between this marker 

and early CRC have been previously reported in several studies [53-55].  Nevertheless, 

additional investigation of the role of MAPRE1 in the early stages of CRC development is 

required. 

 

3.2. Tissue-based biomarkers 

Tissue samples can be a useful platform for discovery and initial validation of novel 

biomarkers because large cohorts of well characterised tissue samples are readily available 

[56].  Moreover, formalin fixed tissue samples have become increasingly more suitable for 

proteomic analysis because of advances in proteomics especially improvements in the 

extraction of proteins from formalin fixed wax embedded tissue samples [57].   
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 Protein markers associated with early CRC were identified by LC-MS based 

proteomics using fixed tissue samples consisting of 36 CRC (pT1N0=16 and pT2N0=20), 20 

normal colon samples and 20 diverticulitis inflammatory controls [58].  The validation by 

immunohistochemistry was performed using 20 healthy controls, 20 diverticulitis controls, 20 

low grade adenomas, 20 high grade adenomas and 100 CRC (pT1N0=20, pT2N0=20, 

pT3=20 and pT4=20).  Half of the pT3 and pT4 samples had lymph node metastasis and four 

samples had metastasis to other organs.  The results showed that there was a significant 

increase in expression of kininogen-1, transport protein Sec24C and olfactomedin-4 in the 

early stages of CRC compared to that of normal and inflammatory tissues [58].  A similar 

trend towards increased expression (mainly weak and moderate immunostaining) was also 

observed in high-grade adenomas compared to lower grade adenomas and normal tissues.  

This study has therefore identified three markers associated with early CRC and has shown 

that fixed tissue sample can be a valuable source for proteomic discovery studies.  The 

increased expression of transport protein Sec24C in early CRC is a novel finding that 

necessitates further investigation.  The other two markers, olfactomedin-4 and kininogen-1, 

have been previously implicated in early CRC [59, 60].  The increased expression of 

olfactomin-4 in early CRC was detected in a previous study using proteomic-based analysis 

(iTRAQ labelling and matrix assisted laser desorption ionization time-of-flight (MALDI-

TOF/TOF- MS)) of tissue samples [59].  The proteomic findings were validated by 

immunohistochemistry on 30 adenomas and 84 CRC (stage I=26, stage II=14, stage III=25 

and stage IV=19).  Hence, olfactomedin-4 might be a potential candidate for early detection 

of CRC especially since it is also secreted [61].  Similarly, serum levels of kininogen-1 were 

analysed using MALDI-TOF/TOF-MS and validated by ELISA and immunohistochemistry 

[60].  The results indicated kininogen-1 might be a useful marker for the early detection of 

CRC with a diagnostic accuracy of around 66%-70% [60].  This is consistent with previous 
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research, which indicated that the level of kininogen-1 was higher in advanced adenomas and 

carcinomas compared to healthy samples [62].  Although promising, further investigation and 

validation of the role of olfactomedin-4 and kininogen-1 in early carcinoma are still needed 

since little is known about their roles in CRC.  

 In addition to fixed tissue, fresh-frozen tissue samples are often used in proteomics.  

A significant change in the expression of five proteins (S100 calcium-binding protein A9 

(S100A9), annexin A3, nicotinamide phosphoribosyltransferase, carboxylesterase 2 and 

calcium activated chloride channel A1) was detected in CRC tissues when compared to 

normal colonic tissues [63].  The biomarker targets were identified by performing iTRAQ-

MS on 24 fresh-frozen tumour tissues with corresponding normal tissues and by gene 

microarray analysis of 52 pairs of normal and tumour tissues (stage I=4, stage II=17, stage 

III=27 and stage IV=4).  The results were validated by immunohistochemistry using 18 pairs 

of fixed normal and tumour tissues (stage I=2, stage II=6, stage III=9 and stage IV=1) and by 

ELISA using serum samples from 76 healthy controls and 100 CRC cases (stage I=12, stage 

II=38, stage III=25 and stage IV=25).  The serum levels of S100A9 and annexin A3 were 

significantly higher in CRC patients compared to healthy controls.  This is consistent with a 

recent paper which reported that S100A9 was upregulated in CRC tissues [64].  Furthermore, 

S100A9 showed a promising performance in differentiating CRC patients from healthy 

controls (75% sensitivity) by ELISA using 60 serum samples (40 CRC cases and 20 

controls) [65].  There is a limited literature on the role of annexin A3 in early stages of CRC 

development, although there have been many previous reports on the potential role of other 

annexins (e.g. annexin A2, annexin A4, annexin A5) in tumour development, drug resistance, 

therapy and prognosis [66-68].  Nonetheless, a likely limitation of the study by Yu, Li and 

co-workers [63] was the size of validation cohort (76 controls and 100 CRCs).  A further 

limitation in the cohort used for ELISA validation was the significant difference in age 



14 
 

between healthy controls (median age=50 years old) and CRC patients (median age=61 years 

old).  Therefore, although this study presented an effective approach utilising both proteomics 

and genomics for the identification of protein biomarkers, there is still a requirement to 

validate the results using much larger cohorts.  Additionally, functional assessment of these 

proteins in the pathogenesis of CRC is also required. 

Biomarkers can also be identified by iTRAQ-LC-MS analysis of cancer-associated 

fibroblasts obtained from tumour tissues and corresponding normal tissues (n=12) [69].  The 

results were validated by IHC on 121 colon cancer tissues (stage I=31, stage II=53, stage 

III=9 and stage IV=28), quantitative PCR on 70 colon cancer samples (stage I=8, stage II=26, 

stage III=22 and IV=14) and using external gene expression datasets (GSE17538, 232 colon 

cancers (information about tumour stage not stated); GSE33113, 90 stage II colon cancers 

and GSE12945, 21 stage III colon cancers) [69].  Lysyl oxidase-like 2 (LOXL2) was 

identified as a promising biomarker for risk classification in early stage CRC patients [69].  

LOXL2 was also associated with survival and recurrence, and demonstrated predictive value 

for adjuvant therapy in stage II colon cancer.  Although the main focus was on identifying 

prognostic markers, the study presented a valuable approach for proteomic analysis of 

fibroblasts from the stromal compartment of tumours [69].  

 

3.3. Faecal and urine-based biomarkers 

 Urine and faeces are potentially useful samples for early detection markers since they 

can be obtained in a straightforward and non-invasive manner.  Nonetheless, the availability 

of large and well-characterised patient cohorts may be lacking compared to tissue-based 

samples.  
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 Faecal M2-PK is one of the most promising marker for early detection of CRC.  

According to a meta-analysis of eight clinical studies including 2,654 participants, the M2-

PK test demonstrated a pooled sensitivity of 79% and specificity of 80% [70].  However, the 

main limitations of studies included in the meta-analysis were a significant number of false 

positives in some studies, lack of standardisation in cut-off values, selection bias of 

participants and heterogeneity of patient/participant cohorts.  Moreover, the sensitivity of the 

M2-PK test for adenomas is still debatable [71].  Therefore, to accurately assess the potential 

of M2-PK as a marker for early CRC, the diagnostic performance of M2-PK need to be 

evaluated using a large screening population. 

 Clinically useful markers can also be identified in urine samples using mass 

spectrometry technology.  A recent study showed there was a relationship between high-risk 

adenomas and the levels of prostaglandin metabolites (PGE-M) which was measured using 

LC-MS [72].  The patient cohort comprised of 420 healthy control patients, 130 low-risk 

adenoma patients and 290 high-risk adenoma patients.  This finding is consistent with other 

proteomic studies that examined urinary PGE-M using the same analytical method [73, 74].  

Nevertheless, further validation of the results is still required since PGE-M is implicated in 

other malignancies and is also associated with a number of other inflammatory conditions 

[75].  Furthermore, since the study by Bezawada and co-workers [72] did not include CRC 

samples, evaluation of PGE-M in CRC samples is needed. 

3.4. Colorectal tumour models 

 Obtaining sequential clinical samples of tumour at intervals reflecting the progression 

of colorectal neoplasm is generally not considered ethical. Although analysis of other types of 

biological samples (e.g. blood, urine and faeces) obtained serially from patients with 

colorectal neoplasia maybe possible.  Therefore, tumour models, especially in vivo models, 
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offer an opportunity for dynamic characterisation of the molecular changes that occur in 

various stages of tumour development.  

The proteome and transcriptome profiles of fourteen organoids (7 colorectal tumours 

and 7 healthy controls) derived from seven patients were analysed using LC-MS and 

Affymetrix Human Gene 2.0 ST arrays [76].  Organoids were cultured in special medium 

after colonic crypts were isolated from surgically resected tissues of untreated colorectal 

cancer patients.  Data analysis showed 78 proteins were upregulated and 227 were 

downregulated in tumour organoids compared to healthy ones, although only 22 proteins 

showed similar expression profiles at the transcript level (the proteins are listed in Table S1) 

[76].  In another study, quantitative LC-MS analysis of membrane-enriched protein 

fractions derived from colonic organoids identified tyrosine pseudokinase (PTK7) as a 

marker associated with self-renewal and re-seeding capacity of colonic stem cells (Table S1) 

[77].  This indicates that organoids could be a useful in vitro model which facilitates 

biomarker discovery through manipulation and analysis of tumour at different stages of 

development.  Furthermore, a personalized patient-specific organoid proteome profile can be 

used to better understand the early molecular changes in CRC.  Future studies may yield 

promising findings especially if a larger number of organoids representing different stages of 

CRC development (normal colonic epithelium, adenoma and early carcinoma) are included in 

the analysis.  However, further verification of the suitability of this model is necessary 

considering the small number of organoids used.  Moreover, validation of the results using 

clinical samples is needed as the organoids are cultured in a medium (rich in growth factors) 

different from the in vivo microenvironment of tumour.  The laboratory processing time of 

colonic crypts is a key factor which can significantly change the RNA and protein expression 

profiles of tissues [78].     
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 Protein markers associated with early stages of CRC progression have been also 

identified by proteomic analysis of a CRC mouse model (Apc multiple intestinal neoplasia (min)/+, a 

nonsense mutation of the adenomatous polyposis coli (APC) gene) [79].  APCmin/+ mice and 

wild type mice of 8, 13, 18 and 22 weeks old were sacrificed for proteomic analysis.  Tumour 

interstitial fluids and sera from the mice were analysed by iTRAQ-MS and verified by 

targeted MRM-MS [79].  The results indicated that the early stages of CRC development 

were associated with a significant increase in the levels of six serine proteases 

(chymotrypsin-like elastase 1 (CELA1), chymotrypsin-like elastase 2A (CEL2A), 

chymotrypsinogen B (CTRB1), trypsin 2 (TRY2), trypsin 4 (TRY4) and chymotrypsin like 

(CTRL)) [79].  The increased levels of these proteins in CRC was confirmed by MRM assay 

using sera of CRC patients (n=30) and healthy individuals (n=30).  The combination of 

CELA1 and CTRL detected CRC with 90% sensitivity and 80% specificity.  The 

overexpression of CELA1 and CTRL in CRC was also confirmed by immunohistochemistry 

on tissue microarray comprising 80 pairs of CRC tissues (majority of CRCs were stage II and 

stage III, Table S1) and corresponding normal tissues.  Therefore, this study has presented a 

robust approach whereby novel protein markers associated with early CRC can be identified 

using tissue interstitial fluids.  However, further investigation of the roles of serine proteases 

in early CRC is necessary since only a small number of clinical samples were used to validate 

the results.  The serine proteases are members of a large family of proteolytic enzymes which 

have been implicated in tumour invasion and metastasis through their roles in digestion and 

cleavage activity of proteins such as matrix proteins [80, 81].   

 Tissue and faecal samples from CRC animal models could also be used to identify 

new biomarkers paving the way for subsequent validation on corresponding human samples 

[82].  For example, a number of proteins, including haemoglobin, haptoglobin, hemopexin, 

alpha-2-macroglobulin and cadherin-17, were identified by nanoflow reversed-phased LC–
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MS/MS analysis of faecal samples from APCmin mouse [83].  However, validation of the 

results using human samples remains essential.   

 

4. Conclusions 

There is still a need for sensitive, easily measured, reliable and cost-effective 

biomarkers for the early diagnosis of CRC.  Proteomics is generating a rich database for 

potential biomarkers that are refining our understanding of important molecular pathways 

involved in the early stages of CRC development.  However, it is still unclear when or if any 

of these targets will be translated into clinically useful tools for the early detection of CRC. 

 

5. Expert Commentary 

A major limitation in many proteomic studies is the small number of samples used in 

validating the results.  The use of large, well-characterised and statistically adequately 

powered patient cohorts is essential for robust validation.  Another potential limitation 

observed in a large number of studies was the composition of both the discovery and 

validation cohorts.  Although the inclusion of advanced CRC cases can be useful, the focus of 

early biomarker studies should be on adenomas and stage I and stage II CRCs. 

The analysis of controls versus early neoplasm samples is typically essential to the 

discovery and validation of early detection biomarkers.  Therefore, the findings of biomarker 

studies can be influenced by the method of selecting and clinically classifying control 

samples (e.g. self-reported asymptomatic individuals or individuals with normal 

colonoscopy).   
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A significant proportion of studies have identified protein targets and recommended 

them as markers for early detection of CRC mainly based on two criteria; the markers were 

differentially expressed in CRC compared to normal colonic mucosa and they had a 

reasonable diagnostic accuracy.  However, few studies have actually compared the 

performances of markers with existing screening tests (e.g. FOBT).  For markers to have the 

potential of being introduced to clinical practice, their performance should be at least non-

inferior and ideally superior to existing screening tools.  

Although similar proteomic technologies are used, different proteins are frequently 

being identified as potential biomarkers for the same disease.  This may be attributed to 

variations in processing of samples, size and quality of sample cohorts, type of samples, 

analytical platforms, data processing and interpretation methods [84, 85].  The reproducibility 

of proteomics could be enhanced if studies follow a standardised experimental approach and 

adhere to best practice guidelines.  Moreover, the introduction of automated algorithms for 

data analysis and quality control will further improve the consistency of proteomic results 

[86, 87].   

Although genomics and transcriptomics have been a major platform for biomarker 

discoveries, protein biomarkers are still necessary because they provide reflection on the 

physiological state of the cell and the phenotype of particular diseases [30].  Integration of 

genomics and proteomics data can provide better characterisation and understanding of the 

molecular events underlying CRC development and progression and this is reflected in the 

consensus molecular subtypes classification [7].  CRC develops through multiple pathways 

which contribute to the significant clinical variability between patients [7].  Therefore, a 

single biomarker is unlikely to have sufficient sensitivity or specificity for use as a screening 

tool for CRC [88].  Combining biomarkers could improve their clinical discriminative and 
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diagnostic value synergistically.  This is reflected by the increasing number of proteomic 

studies which have focused on biomarker panels rather than a single marker. 

The majority of proteomic technologies are still research-oriented and their precise 

relevance in clinical practice still needs to be established [89].  Nonetheless, new 

technologies such as SRM/MRM-MS and multiplex beads assays have shown a realistic 

translational capability [29].  For these assays to be incorporated in clinical practice, there is 

still a need for extensive assessment in multiple centres and where applicable these assays 

need to be compared to relevant clinically established assays (e.g. ELISA).   

 

Five-year view 

In the next few years, more protein biomarkers associated with early detection of 

CRC will be identified and validated by proteomics.  However, the clinical potential of 

markers will not be fully determined without significant improvements in the validation 

process.  New advancements in proteomic technologies may be integrated in studies of 

cancer-biomarkers.  The quality of biomarker discoveries possibly will improve as more 

studies will try to address problems in study design, sample preparation, size and quality of 

patient cohort and protocol standardisation.  Large and multidisciplinary research projects 

combining proteomics and other complementary technologies such as transcriptomics may 

become more common. 

Key issues 

• CRC is major disease with relatively high mortality rate. 

• The early detection of CRC may significantly improve the survival rate of CRC. 

• Protein biomarkers can be used as a screening tool to detect CRC at early stages. 

• Proteomics technologies enable the identification of a large number of protein 
biomarkers for early CRC detection. 
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• Many protein biomarkers have been identified in blood-based samples, tissue samples 
and cell lines. 

• Clinical and non-clinical samples (e.g. in vitro tumour models and animal tumour 
models) are used in proteomic analysis. 

• There are weaknesses in the validation process in a large number of proteomic 
studies. 

• Continued advancements in sample processing, detection technologies and 
computational analysis will gradually address the challenges in proteomics.  
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Figure legends 

Figure 1: Overview of proteomic technologies. Abbreviations: FRET, fluorescence resonance 

energy transfer; SPR, surface plasmon resonance; TAP-MS, tandem affinity purification-mass 

spectrometry; MALDI-TOF, matrix assisted laser desorption ionization time-of-flight; LC-

MS, liquid chromatography–mass spectrometry; S/MRM-MS, single/multiple reaction 

monitoring tandem mass spectrometry; iTRAQ, isobaric tags for relative and absolute 

quantitation; ICATs, isotope-coded affinity tags; TUBEs, tandem-repeated ubiquitin-binding 

entities; RPPA, reverse phase protein array; IHC, immunohistochemistry; ELISA, enzyme-

linked immunosorbent assay. 

 

Figure 2: Overview of screening biomarkers and their main aims in CRC, types of biomarker, 

methods of detection and types of bio-specimen. Abbreviations: IHC, immunohistochemistry; 

FISH, fluorescence in situ hybridization; HPLC, high-performance liquid chromatography; 

MALDI-TOF, matrix assisted laser desorption ionization time-of-flight; LC-MS, liquid 

chromatography-mass spectrometry; S/MRM-MS, single/multiple reaction monitoring 

tandem-mass spectrometry; DIGE, difference gel electrophoresis; PCR, polymerase chain 

reaction; ELISA, enzyme-linked immunosorbent assay. 

 

 

 

 



Proteomics

Functional
Aim: interactions between proteins and other 
molecules

Technology: TAP-MS, two hybrid/protein 
complementation assays, FRET and SPR

Aim: the tertiary structure of 
proteins

Technology: x-ray crystallography 
and NMR spectroscopy

Structural

Cellular

Technology: X-ray Tomography and
optical fluorescence microscopy

Aim: location and protein 
interactions during key cellular 
events

Bioinformatics
Aim: amino acids sequence, 
functional domains, localisation 
prediction and homology analysis

Technology: algorithmic software

Aim: posttranslational modification 

Protein modification

Technology: MALDI-TOF 
(phosphorylation), lectin affinity 
chromatography (glycosylation) and 
TUBEs (ubiquitination)Discovery/Quantitative

Technology: LC-MS, ICATs-MS, iTRAQ-MS, 
SRM/MRM-MS, ELISA, IHC and RPPA

Aim: identification proteins and characterisation 
of differential expression of proteins



►Screen healthy (high risk) individuals
►Detection of adenomas with high risk of malignancy 
►Detection of early carcinoma (stage I and stage II)

Early CRC-Biomarkers

Type

Aims

Detection method Bio-specimen

►Proteins
►DNAs and RNAs
►Carbohydrates and 
Metabolites

►Blood, sera and plasma
►Tissue, faeces and urine
►In vitro tumour model 
or animal model

►Proteomic: DIGE, HPLC, LC-MS, MALDI-
TOF, S/MRM-MS and antibody based 
(IHC, ELISA and protein microarrays)
►Genomic: PCR, FISH, mRNA expression 
profiling and whole genome sequencing



Supplementary Information 

 

Methods S1.  

Research criteria 

 PubMed and Google Scholar searches were performed using key words “biomarker, 

colorectal cancer, early colorectal cancer, early diagnosis, proteomics, proteome, screening”, within 

the title, abstract and/or text.  Only English language publications from 2014 onwards were selected 

(Table S1).  However, to discuss the findings of some of these studies reference has been made pre 

2014 studies.  References identified in retrieved articles were further screened for potentially 

relevant studies.  Only studies utilising clinical human samples in the discovery and/or validation 

phase were selected (the only exception to this was studies using organoid model, to highlight the 

potential of this new technology).  The full texts of selected articles were reviewed, and a decision 

on their eligibility for inclusion was then made based on; biomarker targets, proteomic 

technologies, study design, analytical approach, validation process, limitations and potential clinical 

impact.  Although there was no specific criterion for the size of patient cohorts, the focus was on 

studies with larger samples and better characterised .   

 

 

 

 

 

 

 

 



 

Table S1.  Summary of proteomic studies, biomarker targets and their patient cohorts. 

Target(s) 
Discovery Validation 

Commentary Ref 
Method(s) Sample Method(s) Sample 

General transcription factor IIB, EGF-like repeats 
and discoidin I-like domains 3, HCK proto-
oncogene, pim-1 proto-oncogene, serine/threonine 
kinase 4 and tumour protein P53 

Targets were identified by previous studies 
using protein microarray-based methods 

Multiplex beads 
assay and 
ELISA 

Sera: 135 CRC (stage I=35, stage II=25, 
stage III=46 and stage IV=29), 65 other 
cancer types, 14 inflammatory bowel 
diseases and 93 healthy controls 

Illustrated the potential 
of autoantibodies as 
CRC markers, 
presented a useful assay 
for assessing biomarker 
panel and used a large 
and well-characterised 
patient cohort 

[39]   

Autoantibodies against tumour-associated antigens: 
inosine monophosphate dehydrogenase 2, MAGE 
family member A4, MDM2 proto-oncogene and 
tumour protein P53 

Multiplex 
serology, a 
fluorescent 
bead-based 
GST capture 
immunosorb
ent assay 

Sera: 124 normal and 352 
CRC (stage I=96, stage 
II=102, stage III=105 and 
stage IV=49) 

Multiplex 
serology, a 
fluorescent 
bead-based GST 
capture 
immunosorbent 
assay 

Sera: 49 CRC (high-grade dysplasia=4, 
stage I=18, stage II=5, stage III=19 and 
stage IV=3), 100 normal, 29 non-
advanced adenomas and 99 advanced 
adenomas 

Illustrated the potential 
of autoantibodies as 
CRC markers, 
presented a useful assay 
for assessing biomarker 
panel and used a large 
and well-characterised 
patient cohort 

[40] 

Alpha-1-acid glycoprotein 1, alpha-1 antitrypsin, 
amylase alpha 2b, clusterin, complement c9, enoyl-
coa hydratase 1, ferritin light chain, gelsolin, 
osteopontin, selenium binding protein 1, seprase, 
spondin 2 and tissue inhibitor of metalloproteinases 
1 

Targeted 
multiplex 
MRM-MS 
assay 

Plasma: 69 healthy controls 
and 69 CRC cases (stage I=13, 
stage II=35, stage III=15 and 
stage IV=6) 

Targeted 
multiplex 
MRM-MS assay 

Plasma: 68 controls and 68 CRC cases 
(stage I=16, stage II=35, stage III=14 and 
stage IV=3) 

Demonstrated the 
benefit of targeted MS 
as a validation 
technology for protein 
biomarker panel 

[41] 



Caeruloplasmin, serum paraoxonase/arylesterase 1, 
serpin peptidase inhibitor clade A, leucine-rich 
alpha-2-glycoprotein and tissue inhibitor of 
metalloproteinases 1 

LC MS/MS  

 

 

Targeted 
LC-MS 
(SRM)  

Discovery: tissues, 16 CRC 
(stage I=10, stage II=2, stage 
III=2 and stage IV=2) with 
adjacent normal mucosa 

 

Screening: plasma, 19 CRC 
(stage I=12, stage II=3, stage 
III=3 and stage IV=1) 

Targeted LC-
MS (SRM) 

Training: plasma: 23 non-advanced 
adenomas, 11 hyperplastic polyps, 66 
normal and 100 CRC (missing =3, stage 
I=32, stage II=26, stage III=31 and stage 
IV=8) 

Validation: plasma: 4 advanced 
adenomas, 2 benign adenomas, 1 
dysplastic polyp, 6 diverticular disease, 4 
Crohn, 50 healthy and 202 CRC (stage 
I=43, stage II=58, stage III=49 and stage 
IV=52) 

Demonstrated the 
potential of targeted 
MS as a validation tool 
and used a robust study 
design with patient 
cohorts reflecting 
different stages of CRC 
development  

[42] 

CRC detection panel: carcinoembryonic antigen, 
seprase, serpin A3, macrophage migration 
inhibitory factor, complement component 3, 
complement component 9, p-selectin glycoprotein 
ligand 1 and cathepsin D 

Adenoma detection panel: cathepsin D, clusterin, 
growth differentiation factor 15 and serum amyloid 
A1 

ELISA 

Plasma: 75 CRC (stage I=17, 
stage II=30, stage III=16 and 
stage IV=12), 75 advanced 
adenomas and 150 healthy 
controls 

ELISA 

Plasma: 75 CRC (stage I=17, stage 
II=21, stage III=18 and stage IV=19), 76 
advanced adenomas and 151 healthy 
controls 

Validated markers 
(identified by study 
above [41]) using 
clinically established 
assay (ELISA) 

[45] 

Serpin A1, serpin A3 and serpin C1 iTRAQ-MS 

Serum: 15 CRC (stage I=2, 
stage II=2, stage III=4 and 
stage IV=7) and 15 adenomas 
and 15 healthy controls  

ELISA 
Serum: 21 healthy controls and 19 CRC 
(stage I=2, stage II=5, stage III=5 and 
stage IV=7) 

Used a representative 
cohort, however small 
number of samples was 
used especially for 
stage I CRC 

[46] 

Pyruvate kinase isoenzyme type M2, gamma 
enolase, serotonin and 14-3-3 family members 

LC-MS/MS, 
UHPLC-MS 
and GC-MS 

 

Plasma: 16 CRC (stage III=8 
and stage IV=8) and 10 
healthy controls 

ELISA 

 

IHC (14-3-3 
epsilon) 

Plasma: 40 CRC (10 for each stage), 
adenomas (n=20) and healthy controls 
(n=20) 

24 CRC tissue cores with corresponding 
normal (tumour stage not provided) 

Multiple technologies 
were used to evaluate 
and validate promising 
CRC biomarkers, 
however patient cohorts 
were small 

[49] 



Microtubule-associated protein, RP/EB family, 
member 1 (MAPRE1) LC/MS-MS  

Plasma: 60 adenomas, 60 CRC 
(stage I= 11, stage II= 19, 
stage III= 21 and stage IV=9) 
and 60 healthy controls.  
Mouse model and cell lines  

Antibody array 

 

IHC 

Plasma: 60 adenomas, 60 CRC (stage 
I=11, stage II=19, stage III=21 and stage 
IV=9) and 60 healthy 

20 normal colonic tissues, 10 adenomas, 
and 66 CRC (tumour stage not provided) 

Interesting protein 
target with high 
potential, multiple 
technologies were used 
to evaluate and validate 
the results, although 
patient cohorts were 
small 

[52] 

Tissues-Based markers  

Kininogen-1, transport protein Sec24C and 
olfactomedin-4 LC-MS 

Fixed tissues of 36 early CRC 
(stage pT1N0=16 and stage 
pT2N0=20), 20 controls and 
20 diverticulitis inflammatory 

 

IHC 

Fixed tissues of 20 healthy controls, 20 
diverticulitis controls, 20 low grade 
adenomas, 20 high grade adenomas and 
112 CRC (high-grade dysplasia=12, 
stage pT1N0=20, stage pT2N0=20, stage 
pT3=20 and stage pT4=20) 

Kininogen is a 
promising target, 
highlighted the 
applicability of 
proteomics on fixed 
tissue and used patient 
cohorts reflecting 
different stages of CRC 

[58]   

S100 calcium-binding protein A9 (S100A9), 
annexin A3, nicotinamide 
phosphoribosyltransferase, carboxylesterase 2 and 
calcium activated chloride channel A1 

 iTRAQ-LC- 
MS 

 

Gene 
microarray, 
Affymetrix 
U133plus2.0 

24 pairs of fresh-frozen CRC 
(stage I=6, stage II=6, stage 
III=6 and stage IV=6) and 
normal tissues 

52 pairs of fresh-frozen CRC 
(stage I=4, stage II=17, stage 
III=27 and stage IV=4) and 
normal tissues 

  

ELISA 

 

 

IHC 

Serum:76 healthy controls and 100 CRC 
(stage I=12, stage II=38, stage III=25 and 
stage IV=25) 

 

18 pairs of CRC (stage I=2, stage II=6, 
stage III=9 and stage IV=1) and normal 
tissues 

Used multiple 
technologies and 
different sample types, 
but number of stage I 
CRCs was small  

[63] 



Lysyl oxidase-like 2  iTRAQ –LC-
MS 

Cell lines: SW480, SW620, 
KM12C, and KM12SM 
 
 
Tissues: 12 matched colon 
cancer (stage: II=5 and stage 
III=7) 
 

 
PCR 
 
 
IHC 
 
 
Gene expression 
database 

Tissues: 70 colon cancer (stage I=8, stage 
II=26, stage III=22 and IV=14)   
 
Tissues: 121 colon cancer (stage I=31, 
stage II=53, stage III=9 and stage IV=28)  
 
Tissues: three external cohorts: 232 colon 
cancer (tumour stage was not provided), 
90 stage II colon cancers and 21 stage III 
colon cancers) 

Presented a robust 
model for assessing 
fibroblast-associated 
proteins using multiple 
technologies  

[69]   

Faecal and urine-based biomarkers  

Faecal pyruvate kinase isoenzyme type M2 (M2-
PK) Meta-analysis of eight clinical studies including 2,654 participants 

Highlighted the 
potential of faecal M2-
PK as a screening 
marker for early CRC 

[70] 

Prostaglandin E2 (PGE2) metabolite: 11 alpha-
hydroxy,9,15-dioxo-2,3,4,5-tetranor-prostane-1,20-
dioic acid 

LC/MS 
Urine: control=420, low risk 
adenoma=130 and high-risk 
adenoma=290   

NA NA 

One of the few 
proteomic studies that 
used urine samples 
from a large and well 
characterised cohort 

[72]  

Colorectal tumour models  

Synaptotagmin 7, ras-related protein rab-27b, 
coagulation factor iii, chloride intracellular channel 
5, kin of IRRE like, dual oxidase 2, 
carcinoembryonic antigen related cell adhesion 
molecule 7, mucin 12, v-set and immunoglobulin 
domain containing 2, microtubule associated 
protein 2, mucin 4, calpain 8, beta-1,3-
galactosyltransferase 5, macrophage stimulating 1 
receptor, myosin 1C , shroom family member 3, 
AHNAK, plastin 1, heparan sulfate proteoglycan 2, 
filamin binding lim protein 1 and dedicator of 
cytokinesis 5 and gelsolin 

LC-MS 
14 organoids: 7 CRC (stage 
not provided) and 7 healthy 
controls 

Affymetrix 
Human Gene 2.0 
ST arrays 

14 organoids: 7 CRC (stage not 
provided) and 7 healthy controls 

Illustrated the benefits 
of organoids as a CRC 
model for proteomic 
analysis and biomarker 
discovery in CRC 

[76] 



Protein tyrosine pseudokinase PTK7 Quantitative 
LC-MS 

3 organoids cultured in stem 
cell supporting medium versus 
3 organoids cultured in 
differentiation supporting 
medium (epidermal growth 
factor and Noggin [EN])  

CRC patients (stage not 
provided) 

IHC 

 

Quantitative 
real-time PCR 

1 normal human colonic mucosa 

 

2 organoids cultured in stem cell medium 
versus 2 organoids cultured in 
differentiation medium (epidermal 
growth factor and Noggin [EN]) 

 

Highlighted the 
benefits of organoids in 
biomarker discovery 

[77] 

Chymotrypsin-like elastase 1 (CELA1), 
chymotrypsin-like elastase 2A (CEL2A), 
chymotrypsinogen B (CTRB1), trypsin 2 (TRY2), 
trypsin 4 (TRY4) and chymotrypsin like (CTRL) 

iTRAQ-MS 
APCmin/+ mice and wild type 
mice of 8, 13, 18 and 22 weeks 
old 

Targeted MRM-
MS 

 

IHC (CELA1 
and CTRL) 

Sera 30 CRC (tumour stage: T2=4, 
T3=15 and T4=11, nodal stage: N0=15 
and N1-2=15) and 30 healthy individuals  

80 pairs of CRC tissues (tumour stage: 
T1=2, T2=12 and T3=39 and T4=27, 
nodal stage: N0=38 and N1-2=42) and 
corresponding normal tissues 

Used multiple 
technologies on 
different types of 
sample and presented a 
proteomic model for 
analysing tumour 
interstitial fluids 

[79]   

References are listed in the main manuscript.  Abbreviations: IHC, immunohistochemistry; ELISA, enzyme-linked immunosorbent assay; UHPLC-MS, Ultra high-performance 
liquid chromatography tandem mass spectrometry; LC-MS, liquid chromatography–mass spectrometry; iTRAQ, isobaric tags for relative and absolute quantitation; GC-MS, Gas 
Chromatography Mass Spectrometry; Targeted LC-MS (SRM/MRM), Targeted mass spectrometry based on selected/multiple reaction monitoring. 
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