
Supplementary material 

In our pre-registered proposal of the current study, we had indicated that we would submit our data 
to parametric tests (reported in the main manuscript). We had also planned to analyse the data using 
a drift diffusion model to gain deeper insights into how extended learning and memory differences 
affect the self-prioritisation effect. One of our goals was to test if the differences between associations 
and conditions can be attributed to perceptual or cognitive processes. Here, we report our attempts 
to implement such a model. 

A drift diffusion model (DDM) makes superior use of the data available in an experiment where 
accuracy and reaction times are used as measures of performance in a 2AFC task (Voss, Nagler, & 
Lerche, 2013). Instead of analysing only means or medians of performance (RTs, accuracy), DDMs use 
the entire reaction time distributions and also take into account both correct and incorrect responses. 
A range of parameters can be estimated from these distributions that can potentially provide insight 
into which cognitive processes are influenced by the experimental manipulation. 

We had planned to fit a ‘hierarchical drift diffusion’ model (HDDM; Wiecki, Sofer, & Frank, 2013) to 
our data. As the usage of HDDMs is relatively new in experiments investigating the effect of self-
prioritisation, we wanted to follow 2 complementary approaches: a bottom-up data-driven 
exploratory approach and a top-down hypothesis-driven approach. For both approaches we used the 
HDDM toolbox (Wiecki et al., 2013) to estimate the drift rate v (average slope of the diffusion 
process), the threshold separation a, the starting point z and the duration of the non-decisional 
process 𝑡𝑡0. Based on the design of our experiment and to be able to estimate a possible bias in the 
responses we utilised the ‘stimulus coding’ method. In this method, the HDDM fits the data using the 
two response decisions (match and non-match) as the opposing decision boundaries. Here, the 
interpretation of a shift in starting point (z, or bias) towards one of the boundaries (e.g. non-match) is 
more meaningful and has a more straightforward interpretation, than in the alternative ‘accuracy 
coding’ method in HDDM, where the opposing boundaries are correct or incorrect answers. 

Top-down approach 

For the top-down approach, we wanted to test two hypotheses. Firstly, our hypothesis that the 
differences in the response patterns are driven by memory suggests a difference in the threshold 
separations (a) between the different shape-identity associations. We expect the threshold separation 
in the self-association condition to be higher than for the other associations. Although this on its own 
would slow down responses, it would also make the responses less susceptible to noise during 
information accumulation leading to higher accuracy for the self-related than for other related 
associations (Sui, He, & Humphreys, 2012).A similar difference is also expected for the condition 
where memory is manipulated through exposure, with a larger threshold separation when exposure 
during learning was high, compared to medium and low. We would also expect a reduced difference 
between self- and other-related associations in the extended learning conditions. Secondly, to account 
for the reported differences in reaction times (and to overcome the effect of the proposed differences 
in threshold separation) the self-prioritisation effects could be due to a decisional bias (indicated by 
differences in the starting point z) or differences in (perceptual) information accumulation (indicated 
by differences in the drift rate v). That is, RTs could be slower for the non-self related associations 
because of a starting point closer to the lower boundary (bias towards responding non-match) or due 
to a shallower drift rate (slower information accumulation). We additionally restricted the number of 
models to those that estimate z for each of the different associations (you, friend and stranger). This 
restriction is motivated by a finding of differences in bias across association types that was recently 
reported in a study that applied HDDM to a shape-detection-task under continuous flash suppression 
(Macrae, Visokomogilski, Golubickis, Cunningham, & Sahraie, in press). Based on these hypotheses, we 



limited the tested models to those that estimate the parameters z, a and v for each of the different 
shape-label conditions.  

In such models, the tested variable (or variables) would be allowed to vary across the three identity 
conditions (self, friend, stranger), and a single value would be estimated across all three conditions for 
the other variables. That is, in a model that includes parameters a and z these two parameters would 
be estimated separately for the three identity conditions, but v and t0 would be estimated over all 
identities. The model with the best fit to the data is then used to analyse differences between the 
different identities. The various models can be compared using the respective Deviance Information 
Criterion (DIC) values, which incorporates the models’ goodness-of-fit to the data and the number of 
parameters included in the model. The better a model’s fit to the data and the fewer the parameters it 
estimates, the lower its DIC value will be. A difference (reduction) in the DIC value of 2-6 points is 
positive evidence that one model is better than the other, 6-10 is strong evidence and more than 10 is 
very strong evidence (Kass & Raftery, 1995). We only considered models as superior when the DIC 
change exceeded 10 points. The tested models with their respective fits (DIC values) are shown in 
table 1. 

Supplementary table 1: Tested models for each of the learning conditions following the hypothesis driven approach. Asterisks 
indicate non-convergence of the model based on R-hat convergence statistics. 

Learning 
condition 

standard Shape-identity Shape-label-identity Shape-non-word 

Model (DIC) a, v, z* (243) a, v, z (-7950) a, v, z (-8633) v, z (-3531) 
v, z (895) v, z (-7698) v, z (-8526) a, v, z (-3466) 
a, z (1473) a, z (-7591) a, z (-8475) a, z (-3232) 
z (1484) z (-7413) z (-8211) z (-3187) 

 

However, the model that yielded the best fit (a, v, z) in 3 of the four learning conditions did not 
converge for the standard learning condition, which we had planned to compare to the other 
conditions. Further, the second-best model (v, z) in the standard condition had a much weaker fit (DIC 
higher by more than 600 points). Moreover, it would have excluded one of the key parameters (a). 
Therefore, this model was not considered suitable to test our hypotheses.  

Bottom-up approach 

Here, the entire range of models that estimate distinct combinations of various parameters (a, v, z and 
t0) was tested. Table 2 shows the DIC values for the 3 best fitting models per learning condition. 

Supplementary table 2: Models with best fit for each of the learning conditions following the bottom-up approach. Asterisks 
indicate non-convergence of the model based on R-hat convergence statistics. 

Learning 
condition 

standard Shape-identity Shape-label-identity Shape-non-word 

Model (DIC) a, v, 𝑡𝑡0*  (243) a, v, z, 𝑡𝑡0* (-8258) a, v, z, 𝑡𝑡0 (-9201) a, v, z, 𝑡𝑡0* (-3945) 
a, v, z, 𝑡𝑡0  (287) a, v, 𝑡𝑡0 (-8147) a, v, 𝑡𝑡0 (-9334) a, v, 𝑡𝑡0 (-3780) 
v, z, 𝑡𝑡0  (433) a, v, z (-7959) a, z, 𝑡𝑡0 (-8777) v, z, 𝑡𝑡0 (-3655) 

 

To analyse the effect of the various learning conditions on the estimated parameters, we had planned 
to compare parameter estimates from the same model which was also among the three best fitting 
models in each of learning conditions (e.g. a, v, 𝑡𝑡0 or a, v, z, 𝑡𝑡0). However, we could not perform these 
comparisons, as for one or more of the learning conditions, these models did not converge (𝑅𝑅� 
convergence statistic) or did not include a parameter in one of the learning conditions (e.g., the model 
v, z, t0 was not among the top 3 best fitting model for the two extended learning conditions). Note 
that convergence was tested for the shape-identity, shape-label-identity and the shape-non-word 



conditions only if the model converged in the standard condition, as this would be considered the 
baseline for testing our hypotheses. 

One possible reason for a lack of convergence could be too few error trials. Accuracy in our 
experiment was generally high, and was even higher in the extended learning conditions compared to 
the standard learning conditions, with a number of participants performing error free for one or more 
of the associations. The accuracy data can be seen in supplementary figure 1.  

  

 

 

 

 

 

 

 

 

 

 
 

Although, we were unable to draw any conclusions from fitting HDDMs to our data, we will briefly 
present the findings of the a, v, z, 𝑡𝑡0 model for the standard learning condition below, as these might 
be of interest for further research.  

During the experiment, all trials with reaction times shorter than 200ms or longer than 1100ms (time 
outs) were repeated to ensure sufficient amounts of data for modelling; 11.5% of trials were affected. 
The software was then set to remove 5% of the data as outliers. To model Bayesian posterior 
distributions, a Markov Chain Monte Carlo with 10,000 bootstraps was used. The first 1,000 
bootstraps were discarded as burn in samples. 

Supplementary table 2: Pairwise comparisons for the estimated parameters based on the different identities. 
Note that a value for 𝑝𝑝𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 of 0.5 would indicate full overlap of the estimated distributions of the two 
parameters and values of 0 or 1 indicate that the estimates do not overlap at all.  

Parameter Comparison 𝒑𝒑𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩  

Threshold separation (a)     you > friend .927 
    you > stranger .956 
friend > stranger .609 

Non-decisional processes (t0)     you > friend .491 
    you > stranger .369 
friend > stranger .372 

Drift rate (v)     you > friend .993 
    you > stranger .995 
friend > stranger .547 

Starting point (z)     you > friend >.999 
    you > stranger >.999 
friend > stranger .622 

Supplementary figure 1: Accuracy data per learning condition and association* for the match-trials (left) and the non-match-
trials (right). Lines show the median. Shaded areas indicate the full range (light) and the inter-quartile range (dark). Note that 
values that fall outside the range (1.5-times IQR beyond the 25th and 75th percentiles, respectively) are considered outliers. 
*y: you, f: friend and s: stranger; numbers give the repetition during learning for the different shape-non-word pairs.  

 



 

The posterior distributions for all parameters are plotted in supplementary figure 2. Parameters were 
estimated separately for the different identities. Supplementary table 3 shows the pairwise 
comparisons between the posterior distributions for each of the parameters. These data show that 
associations related to the self are processed in distinct ways compared to associations not related to 
the self. The threshold separation a was larger for the self-related trials than for the other related 
trials. A larger threshold separation reduces the influence of noise and increases the probability of a 
correct response (Ratcliff & Tuerlinckx, 2002). For all identities, the starting point z was elevated 
suggesting a bias towards responding ‘match’. This was more pronounced for the self-related trials 
than for the other related trials. A bias in this direction leads to shorter reaction times in the match- 
compared to the non-match trials. Additionally, the drift rate was higher for the self-related trials, 
than for the friend- and the stranger-related trials. A higher drift rate (steeper slope) again leads to 
shorter reaction times. Interestingly, there was no difference in non-decisional processes, such as 
motor response requirements. These data may explain the higher accuracy (larger threshold 
separation) and at the same time shorter reaction times (faster (perceptual) evidence accumulation), 
especially in the match-trials (starting point shifted towards ‘match’) for self-related association. 
However, as this is based on the model with the best fit that did converge, not on the model with the 
best fit overall, this interpretation should be considered with caution. 

  

Supplementary figure 2: Posterior distributions for the standard learning condition. Parameters were estimated using HDDM 
where the parameters a, v, z, 𝑡𝑡0 estimated seperatly for the three identities (you, friend and stranger) 
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