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Abstract 

 

For over a decade, geoarchaeological methods such as multi-element analysis and soil 

micromorphology have been used to identify and interpret activity areas on archaeological 

sites. However, these techniques, along with others such as magnetic susceptibility, loss on 

ignition, and microrefuse, artefact and bone distribution analyses are rarely integrated in the 

study of a single site, even though they provide very different and potentially complementary 

data.  This paper presents a comparative study of a wide range of geoarchaeological methods 

that were applied to the floors sediments of a Viking Age house at the site of Aðalstræti 16, 

in central Reykjavík, Iceland, along with more traditional artefact and bone distribution 

analyses, and a spatial study of floor layer boundaries and features in the building. In this 

study, the spatial distributions of artefacts and bones could only be understood in the light of 

the pH distributions, and on their own they provided limited insight into the use of space in 

the building. Each of the sediment analyses provided unique and valuable information about 

possible activity areas, with soil micromorphology proving to have the greatest interpretive 

power on its own. However, the interpretation potential of the geochemical methods was 

dramatically enhanced if they were integrated into a multi-method dataset.  
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 1. Introduction 

 

The understanding of the spatial organisation of activity areas is of prime importance to the 

archaeological interpretation of settlement sites. It provides information about how 

individuals, households and communities organised the wide range of social and economic 

practices that constituted daily life, how they perceived and managed different types of waste 

products, and what living conditions were like in and around their dwellings and work places. 

To identify activity areas archaeologists not only use features such as hearths, cooking pits, 

storage pits and middens, and the spatial distributions of artefacts and bones, but increasingly 

they are making use the most minute residues of human and animal activities: microrefuse 

(bones and artefacts under 1-2 mm in size), plant phytoliths, organic residues and associated 

elements and isotopes that accumulated on presumed occupation surfaces (e.g. Sampietro and 

Vattuone, 2005; Shahack-Gross et al., 2008; Smith et al., 2001; Sullivan and Kealhofer, 

2004; Terry et al., 2004; Vizcaíno and Cañabate, 1999; Vyncke et al., 2011). Samples for 

these micro-residue studies are normally in the form of loose bulk samples in which the 

occupation deposits are homogenised, even though it has long been recognised that 

occupation surfaces are usually palimpsests, comprising the residues of multiple, super-

imposed events (Malinsky-Buller et al., 2011). 

 

The interpretation of artefact, microrefuse, and geochemical distributions on archaeological 

sites is dependent on a clear understanding of the complex depositional and post-depositional 

processes that created and subsequently impacted the occupation deposits under study (Carr, 

1984; LaMotta and Schiffer, 1999; Wandsnider, 1996). Human actions frequently result in 

the deposition and/or removal of particular artefacts and residues, especially objects over 1-2 

cm in size, which are commonly kicked aside, removed during cleaning, or dumped or 

cached during site abandonment (Lange and Rydberg, 1972; Stevenson, 1982; Tani, 1995; 

Wilk and Schiffer, 1979). There is also a wide range of natural processes that alter the 

composition of occupation deposits over time as they become subject to the same physical, 

chemical, and biological processes affecting local landforms and soils (e.g. Johnson and 

Hansen, 1974; Rolfsen, 1980; Schiffer, 1996; Stein, 1983). It is therefore essential to develop 

a framework for interpreting activity areas that incorporates an assessment of cultural and 

natural processes that may have affected the formation of occupation surfaces. The ability of 

soil micromorphology to resolve minute lenses representing super-imposed events and to 

identify post-depositional processes has been well attested (e.g. Macphail and Crowther, 
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2007; Matthews et al., 1997; Milek, 2012; Milek and French, 2007; Shahack-Gross et al., 

2005; Shillito et al., 2011), but the method continues to be underused in comparison to 

geochemical methods.  

 

In order to assess the relative contributions that artefact and bone distributions and different 

geoarchaeological analyses can make to the interpretation of site activity areas, an 

interdisciplinary study was conducted on a house dated to the late 9th and 10th century AD, 

which was excavated in central Reykjavik at Aðalstræti 16 (formerly 14-18) (Fig. 1). The 

house was well preserved, and its turf walls, internal features (hearth, post holes), and 25 

distinct floor layers were readily identified in the field (Fig. 2; Roberts et al., 2003; 

Snæsdóttir, 2004). The distributions of artefacts and bone fragments, organic matter and 

carbonates (loss on ignition), pH, soluble salt content (electrical conductivity), magnetic 

susceptibility, and multiple elements (ICP-AES), were compared to each other and to the 

results of soil micromorphology, in order to evaluate the relative contribution that each 

technique made individually, and as part of an integrated dataset, to the interpretation of the 

use of space in the Viking Age house. 

 

2. Study Area 

 

Aðalstræti 16 is situated 1.95-2.15 m above sea level, at the base of a moderately steep slope 

that rises to the west. The climate in Reykjavik is cool and wet, with an annual mean 

temperature of 5°C (-0.4°C in January, 11.2°C in July) and an average of 805 mm of rainfall 

per year (Þórarinsson 1987, 8). The site was well drained, however, because it was located on 

an ancient pebble beach on which a thin andosol (2-4 cm) had developed, derived from 

aeolian silt and fine sand of volcanic origin. Both the in situ andosol below the house and its 

turf walls contained the so-called landnám tephra layer, which had erupted from the 

Veiðivotn system in either AD 871±2 (GRIP ice core; Grönvold et al., 1995) or AD 877±4 

(GISP2 ice core; Zielinski et al., 1997), providing a terminus post quem for the site. AMS 

dates on eight charred barely grains (Hordeum Sativum) from the hearth fills indicate that the 

site could have been occupied no later than AD 890 (Sveinbjörnsdóttir et al. 2004), and the 

datable artefacts from the floor of the house, including a polychrome glass bead (Callmer 

Type B6100) and a glass vessel fragment with 'grape' decoration, support a late 9th-10th 

century date (Hreiðarsdóttir 2005; Mehler 2002). The house used in this study had suffered 

only minor damage of its walls from the foundation trenches of 19th-century factory 
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buildings, but an annexe that abutted the southern end of the building was severely truncated 

by later building activity and only fragments of its walls and its central hearth had survived 

(Nordahl 1988).  

 

3. Methods and Materials 

 

3.1. Excavation and Sampling 

 

Each of the 25 occupation layers found between the post-abandonment turf roof/wall collapse 

and the underlying in situ soils was recorded separately and sampled on a 1 m grid (Fig. 3; 

Table 1). Small bulk samples (c. 200 ml) for geochemical and magnetic analyses were taken 

from each grid square, while the remainder of the sediment in each square was taken for 

floatation and wet sieving with 1 mm mesh. All bone material over 1 mm in size was counted 

and identified if possible (Tinsley and McGovern, 2002; see Supplementary Data Table 1). 

Artefacts found during excavation were 3D recorded, and those found during wet sieving 

were given the coordinate of the centre of the grid square. The house was excavated in a 

checkerboard pattern using sextants, and eight undisturbed block samples for 

micromorphological analysis were taken from the exposed sections using 12x6x5 cm 

aluminium tins (ff. Courty et al. 1989) (Fig. 3). 

 

3.2. Sediment analyses 

 

Bulk samples were air dried, gently powdered with a mortar and pestle, and sieved to remove 

inclusions larger than 2 mm. Loss on ignition was conducted at 550 ºC and 950ºC following 

Nelson and Sommers (1996). Magnetic susceptibility was tested in 10 ml plastic pots using a 

Bartington MS2 magnetic susceptibility meter with a low frequency sensor. Electrical 

conductivity and pH were tested in triplicate on three separate subsamples using DiST WP3 

and pHep 3 meters immersed in 10:25 ml soil:water suspensions and the mean values were 

accepted as representative of that grid square. Inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) was conducted on the <180 µm fraction digested with nitric acid–

aqua regia. This near-total digestion regime was chosen because Icelandic andosols have very 

strong P fixation, necessitating the analysis of total P (Arnalds et al., 1995). The geochemical 

data are summarised in Table 2, and the complete dataset, including grid coordinates, is 

provided in Supplementary Table 1. 
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Statistical analyses using SPSS were employed to examine the probability distributions of the 

geochemical data, correlations between different element concentrations, and correlations 

between element and soluble salt (EC) concentrations (Table 3). Spearman's rank correlation 

coefficient (rs) for non-parametric data was chosen as the most reliable correlation statistic 

because only some of the probability distributions approximated the normal curve while 

others were positively skewed. Interpretations of geochemical data were aided by a survey of 

the physico-chemical properties and possible sources of elements, as well as a survey of the 

elements that had previously been identified in modern reference materials (Supplementary 

Data Tables 3-4).  

 

Micromorphology samples were dried using acetone replacement of water, impregnated with 

crystic polyester resin and thin sectioned following the method of Murphy (1986). Thin 

sections were first scanned on a flatbed scanner and then analysed with petrographic 

microscopes at magnifications ranging from x4-250 with plane-polarized light (PPL), cross-

polarized light (XPL) and oblique-incident light (OIL) following Bullock et al. (1985) and 

Stoops (2003). Key micromorphology descriptions are summarised in Table 4, and full 

descriptions of all micromorphology samples are provided in Supplementary Data Table 2. 

The identification of anthropogenic materials such as bone, dung, and ash was aided by 

modern reference collections (Supplementary Data Table 5). 

 

3.3. Data presentation 

 

Geochemical data and artefact locations were plotted using ArcGIS. Fourteen of the 36 

elements determined by ICP-AES had clustered, non-random patterning (Al, Ba, Ca, Cu, Fe, 

K, Mg, Mn, Na, Ni, P, S, Sr, Zn), of which Ba, Ca, Cu, Mg, P, K, Na, Sr and Zn were 

selected for presentation here due to their potential contribution to the interpretation of 

activity areas. A few floor layers overlapped in, and in this case, for ease of presentation, the 

uppermost sample from the affected grid square was chosen for display. Although 

geochemical data are often graphically represented by surface contours based on data 

interpolations, this study presents point data because numerous floor contexts are displayed at 

the same time, and data from different contexts cannot be interpolated. After experimenting 

with different ways of binning geochemical values in the GIS, it was noted that the standard 

deviations from the mean, rather than the raw values, showed more pronounced patterning 
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(greater differences in symbol sizes), and this was therefore the preferred method for 

graphical presentation of the ICP-AES data in Figs. 6-8. The raw data are presented in Table 

2 and the complete original dataset is available in Supplementary Data Table 5. 

 

4. Results 

 

4.1. Field evidence for activity areas 

 

The house at Aðalstræti 14-18 was 16.70 m long and 3.74-5.81 m wide, with 1.27-1.72 m 

thick turf walls faced with stones (Figs 2-3). There was one entrance towards the northern 

end of the eastern long wall and a narrower one in the southwest corner of the house. The 

northeast entrance was stone-paved, and an antechamber was later added to it that extended 

the length of the entrance passage to 4.8 m. Within the entrances were alignments of post 

holes, and the fact that context boundaries respected these alignments suggests that the posts 

supported partition walls separating small entrance rooms – possibly acting as wind breaks. 

Context boundaries also respected an area in the northwest corner where there were three 

rows of stake and post holes oriented perpendicular to the western long wall, and an area in 

the southeast corner where there was a row of post holes perpendicular to the southern end 

wall; both corners therefore appear to be discrete spaces surrounded by partition walls. The 

large central hearth was lined with curb stones and contained a flat stone slab that had been 

blackened, reddened, and cracked by heat. There was a rectangular setting of four stake holes 

towards the northern end of the hearth, which may represent a wooden superstructure that had 

been suspended over the fire, perhaps for a grill or spit. The post hole cluster south of the 

central hearth probably represents a series of post replacements, while most posts were in 

rows parallel to the long walls of the house, dividing the space into three aisles (Fig. 3). 

 

The occupation deposits varied considerably in colour, texture and inclusions, enabling 25 to 

be distinguished (Table 1). The layers in the central aisle were very compacted and rich in 

charcoal and ash, suggesting the spreading and trampling of hearth waste in this space. 

Context 844, in the northwest corner of the building, was noted to be particularly organic. In 

the middle of the western side aisle the occupation deposit was so thin and patchy that no 

context was recorded, and the excavators suggested that this area might have been covered by 

a wooden platform.  
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4.2. Artefact and bone evidence for activity areas 

 

The distribution of artefacts and bones in these occupation layers provided additional 

information about the locations of activity areas (Fig. 4). There was a concentration of 

artefacts such as beads, nails, a spindle whorl and a fragment of vessel glass (rare in the 

Viking Age) around the central hearth, suggesting this was a focus for daily activities. The 

quartz stones east of the hearth might have been used as gaming pieces for the Viking Age 

board game hnefatafl, which is known from medieval written sources (e.g. Friðþjólf's Saga, 

Hervör's Saga, Saga of Gunnlaug Serpent-Tongue). Clusters of jasper flakes and strike-a-

lights around the northern half of the hearth provide a good indication of where the fire was 

lit. The piece of pumice, the knife and the spindle whorl in the eastern side aisle suggest that 

this may have been a sitting and working area, while the four loomweights clustered in the 

southern part of the western side aisle suggest the location of an upright loom. The cluster of 

quartz stones in a post hole in the northeast corner can be interpreted as a foundation or 

closing deposit rather than an every-day activity area. 

 

In the eastern side aisle northeast of the hearth there was a cluster of unburnt bones, which 

could have been the location of a butchery area, but they could also have been placed there 

for storage or disposal after the meat had been consumed. Every part of the house except for 

the western side aisle appears to have received the deposition of hearth waste and burnt 

bones. The largest cluster of burnt bones outside the hearth was at the southwest entrance, 

indicating that hearth waste was deliberately dumped or swept there.  

 

4.3. Geochemical evidence for activity areas  

 

4.3.1. pH 

 

Conditions in the central hearth and the deposits around it were alkaline (pH 7-8), and most 

of the floor deposits were neutral to alkaline (Fig. 5a). Since pure water in equilibrium with 

atmospheric CO2 has pH 5.6, the hearth and floor deposits with pH  >5.6 acted as a base, 

contributing alkali salts such as Ca2+, Na+, Mg2+, or K+ to the soil solution. A common source 

of alkali salts in domestic contexts is wood ash (Evans and Tylecote, 1967; Pierce et al., 

1998), and inclusions of wood charcoal were also found in most of the floor deposits in 

variable quantities, suggesting that wood ash was spread from the hearth throughout the 
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building. The distribution of alkaline pH values, like the distribution of burnt bones, which 

travelled with the hearth waste, is therefore not indicative of specific activity areas in the 

building but of a floor maintenance practice that involved the intentional spreading of ash – a 

practice used until the early 20th century in Iceland to keep floors dry and smooth (Milek 

2012). 

 

While most grid squares contained sediment that was neutral or alkaline, there were several 

grid squares with extremely low pH values (4.5-5.0), notably a 1 m wide strip south of the 

hearth. This strip was located below a 19th-century foundation trench that had contained wet, 

organic sediment, and its pH can be attributed to the accumulation of organic acids. Any bone 

originally deposited in this area had little chance of surviving (Fig. 4c).  

 

4.3.2. Electrical conductivity 

 

The electrical conductivity of the floor sediments was generally very low, but context 871, in 

the southeast corner, had electrical conductivity values ten times higher than most other 

contexts, indicating very high nutrient or soluble salt levels (Fig. 5b). Since soluble salts are 

susceptible to leaching, the original concentrations must have been even higher. Identification 

of the salts present required elemental analysis (section 4.3.5.). 

 

4.3.3. Loss on ignition  

 

Organic matter content estimated by loss on ignition at 550ºC was significant throughout the 

occupation deposits (Fig. 5c). Concentrations were notably high in the central aisle around 

and north of the hearth (12-25%), in the northwest corner of the building (19-22%) and 

especially in the eastern side aisle (22-25%), indicating the locations of activities, flooring 

materials or organic furnishings (e.g. bedding material) that resulted in accumulations of 

organic matter. Since ignition at 550ºC combusts both charred and uncharred organic 

remains, and both plant- and animal-derived materials, interpretations about specific activities 

or furnishings required additional data from micromorphological analysis (section 4.4.).  

 

Carbonate content measured by loss on ignition at 950ºC was highest in the hearth (c. 4%), 

where it was probably derived from CaCO3  in wood ash and calcined bones (Canti, 2003). 

Individual grid squares in the eastern and southern edges of the building where carbonates 
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were also in the region of 3-4% (Fig. 5d) are probably also places where wood ash and 

calcined bones were concentrated, an interpretation supported by the distribution of burnt 

bones (Fig. 4d). 

 

4.3.4. Magnetic susceptibility 

 

High magnetic susceptibility values were limited to sediments in and adjacent to the hearth, 

with slightly elevated values also present in the eastern side aisle next to the hearth (Fig. 6a). 

Since wood ash, charcoal and bone are not magnetic, the magnetic enhancement of the hearth 

ash indicates the presence of soil particles, pebbles and/or iron nodules that were 

magnetically enhanced by heating. This suggests that peat and/or turf was used as fuel in 

addition to wood or that heated soil material from the base of the hearth was mixed with the 

ash residues sampled in and near the hearth. 

 

4.3.5. Multi-element analysis 

 

Levels of P, Ca, K, Mg, Zn, Ba, and Sr were highest in the central hearth deposits at three or 

more standard deviations above the mean (Figs 6-7). However, all of these elements also had 

elevated concentrations in the central isle around and north of the hearth, and in the eastern 

side aisle east of the hearth, in areas that also have significant organic matter content. These 

elements are either plant macronutrients or are trace elements commonly present in ground 

water (Sr), which are taken up by plants and pass through the food chain to animals (Suppl. 

Data Table 3). They are incorporated into hard and soft organic tissues and are present in 

elevated levels on archaeological sites wherever plant or animal tissues or their ashes are 

deposited (Wilson et al., 2008; Misarti et al., 2011). The metals Cu and Ni, which had the 

same distribution as organic matter and its associated elements, had clearly followed the same 

depositional pathways (Figs 8b-c). 

 

The multi-element data were interrogated by the visual comparison of distribution maps and 

statistical correlations in order to determine which soluble salts might be responsible for the 

high electrical conductivity values in the southeast corner of the house (context 871). None of 

the element distribution plots were identical to the EC distribution, but Ca and Na both 

showed slight elevations in this area, and Mg was higher overall in the southern end of the 

house than in the northern (Figs 6b-d, 8a). Spearman’s rank correlation coefficient (rs) 
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showed a strong positive correlation between EC and Mg, which was statistically significant 

at the 0.01 level (Table 3), and which points towards the presence of Mg2+ salts. However, 

some common salts, such as chloride (Cl-), bicarbonate (HCO3-), ammonium (NH4
+), nitrate 

(NO3
-), and nitrite (NO2

-), cannot be detected by ICP-AES. 

 

4.4. Micromorphological evidence for activity areas 

 

4.4.1. North end 

 

Analysis of thin section AST01-80 confirmed the high organic content noted in context 844 

in the field and in the loss on ignition data, and provided more information about its origin. 

Four separate lenses were identified in thin section (Suppl. Table 2.14), and although these 

had been heavily reworked by soil fauna, it was possible to see the original horizontal 

bedding of the organic matter in localised areas (Fig. 9a). The uppermost and lowermost 

lenses of the occupation deposit, 844.1 and 844.4, were stained dark brown by organic acid 

pigmentation and contained 20-30% dark brown, partially decomposed plant matter and 10-

30% phytoliths (Table 4). The phytoliths included short, broken strands of articulated silica 

skeletons that are distinctive of grasses that have been chewed by animals, indicating the 

presence of herbivore dung (Fig. 9b). Any faecal spherulites, if produced, did not survive. 

Faecal spherulites have not been found in any reference dung samples or stabling deposits in 

Iceland, and they are either not produced in Iceland or were rapidly dissolved by liquid 

excreta (Canti, 1999). 

Lens 844.3 was composed primarily of phytoliths and very pale brown amorphous 

organic matter, and also contained 2-5% charcoal, 2-5% small bone fragments and an 

unusually high concentration of fungal spores (2-5%) (Fig. 9a). The bone fragments were 

smaller than 5 mm and highly weathered, with abundant pits and cracks and class 0-1 

weathering rims (cf. Bullock et al., 1985). The presence of minute, chemically weathered 

bone fragments, the yellowish/pale brown colour of the fine organo-mineral matrix in which 

they were embedded, and the abundance of fungal spores and phytoliths (some in discrete 

aggregates) suggest that this layer contained a mixture of omnivore and herbivore dung, 

while the charcoal indicates that wood ash was occasionally sprinkled here. Lens 844.2 was a 

thin lens of turf containing the landnám tephra layer. This lens had not been identified in the 

field, and may have been a localised inclusion. If the turf was intentionally deposited, it may 

have served as bedding material.  
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4.4.2. Central aisle 

 

The layer captured in sample AST01-71, just north of the hearth, contained only 2-5% 

charcoal and it did not contain any of the ash or burnt bone that had characterised the central 

aisle contexts in the field, microrefuse and chemical analyses (Table 4). Where it was thin 

sectioned, floor context 864 contained 40-50% amorphous, decomposed organic matter, an 

unusually high concentration of fungal spores (5-10%), and a high proportion of phytoliths 

(40-50%). About 20% of the layer consisted of small (<5 mm) grey aggregates of phytoliths, 

which were tightly packed together in randomly oriented, short, articulated segments 

characteristic of sheep or goat dung (Fig. 9c). The deposit did not show any evidence of 

compaction by trampling and is therefore interpreted as the remains of dung that had been 

stored next to the hearth for use as fuel.  

 

4.4.3. Central hearth 

 

The two thin sections taken from the hearth deposits, samples AST01-74 and AST01-

75, contained lenses with either high concentrations of charcoal or the microcrystallitic 

CaCO3 granules and rubified iron nodules characteristic of peat and turf ash, as well as lenses 

that contained a mixture of both wood and peat ashes (Table 4; detailed descriptions and 

interpretations in Suppl. Data Tables 2.7-2.10). In the alkaline environment of the hearth, the 

CaCO3 aggregates normally associated with charcoal should have survived, and the low 

frequency of these aggregates in thin section may be indicative of low-temperature burning 

(<400°C) (Simpson et al., 2003). In sample AST01-71, there was a lens of burnt fish bone 

that lay at the boundary between contexts 802 and 831. It is possible that some of the burnt 

bones in these ash layers were a product of accidental loss during cooking, but most of the 

bone was probably intentionally thrown into the fire once the meal was consumed as a 

convenient and sanitary method of waste disposal (Tinsley and McGovern, 2002).  

 

4.4.4. Western side aisle 

 

Sample AST01-67 was taken from the western side aisle, where occupation deposits 

were so thin and patchy that no floor layer was recorded in the field. In thin section, however, 

it was possible to see a very thin occupation deposit below the turf collapse: an organic silt 
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loam about 1 cm thick, containing 5-10% charcoal and <2% bone and burnt bone (Fig. 9d, 

Table 4, Suppl. Data Table 2.1-2.2). The deposit had been heavily reworked by soil fauna, 

but even where the original fabric had survived bioturbation, neither the organisation nor the 

microstructure of the sediment showed any evidence of compaction by trampling. This 

provided independent support for the interpretation derived initially from the field evidence, 

that there had been a raised wooden platform in this area. 

Sample AST01-79 captured a small context, 851, which was very heterogeneous, 

containing an abundance of charcoal (20-30%) and amorphous organic matter (30-40%), as 

well as ash (2-5%), burnt bone (2-5%), and bone (<2%) (Fig. 9e). The sediment was porous 

and uncompacted, and contained relatively large, randomly oriented charcoal fragments (up 

to 7 mm), suggesting that the layer had not been trampled. It could not have been the product 

of a one-off dumping event, since there was a lens of very coarse sand and fine gravel 

running through the middle of this layer, but it could have accumulated away from the main 

pathway of foot traffic, either underneath or up against a piece of furniture. The horizontal 

displacement of artefacts by kicking and scuffing, their accumulation on the edges of floors 

and pathways, and their tendency to accumulate against physical barriers, have been observed 

in ethnoarchaeological and experimental studies (e.g. Nielsen, 1991; Stockton, 1973; Wilk 

and Schiffer, 1979).  

 

4.4.5. Eastern side aisle 

 

The floor deposit in the eastern side aisle, context 868, was described in the field as a 

mixture of brown, black, and grey silt and ash containing only rare charcoal and burnt bone 

fragments. In thin section AST01-68, however, this layer was composed of a very highly 

compacted organic silt loam, with horizontally bedded lenses of organic matter, articulated 

phytoliths, and dark greyish brown organic silts (Fig. 9f). Although it contained the odd 

charcoal fragment (<2%), the occupation deposit captured in this particular sample did not 

contain any ash. Instead, it consisted almost entirely of herbaceous plant matter (e.g. grass) 

that had been heavily compacted and had decomposed, undisturbed, in situ. It may be 

interpreted as compacted bedding material. 

 

4.4.6. Southwest entrance 
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Sample AST01-94 was taken from deposits that filled the southwest entrance. The 

uppermost layer in the sequence in the door consisted of medium brown clayey silt with 

inclusions of the landnám tephra layer and occasional charcoal flecks (context 763; Table 4). 

In the field, this layer was interpreted as turf collapse, but in thin section the lowermost part 

of it was made up of numerous compact lenses of waterlain silty clay, plant matter, organic 

soils, wood ash, and peat ash (Suppl. Data Tables 2.17-2.18). Below this occupation deposit 

the reddish brown soil (context 824) had also been reworked by water, consisting of multiple, 

fine lenses of well-sorted silt in fining-up sequences such as those typically found in puddles.  

 

5. Discussion 

 

5.1. Interpretation of the use of space in the Viking Age house based on integrated data 

 

In this 10th-century house, activity areas and associated occupation deposits were 

divided between three aisles defined by rows of roof-supporting posts, as well as three main 

functional areas: a multi-functional central living room that was centred on the hearth, and 

two areas with more specialised functions in the narrow ends of the building (Fig. 10). 

Linking these three main functional areas was the central aisle, which contained very 

compacted sediments and had clearly been the main corridor for foot traffic down the length 

of the building. This central aisle had received inputs of organic matter and ash, abundant 

charcoal and burnt bone inclusions, and chemically it was characterised by elevations in a 

suite of elements associated with organic matter and its ash.  

While some of the ash in the floor sediments could be from accidental spillage from 

the hearth and the movement of material by sweeping and trampling, the ubiquity of burnt 

bones and charcoal throughout the building, including the entrances and areas that had been 

separated from the central living room area by partition walls, suggests that ash was carried 

around the house and deposited deliberately. Although modern analogues must be used 

critically, it is worth noting that in 19th- and early 20th-century Iceland ash was commonly 

deposited on the floors of turf houses and animal buildings in order to keep them dry and to 

fill in holes (Milek, 2012). The fine particle size of ash residue enables it to serve as an 

insecticide, and because it is absorbent it can protect wooden posts and furnishings from 

fungal decay (Hakbijl, 2002).  

The central hearth was the main source of light and heat in the building and must have 

been the focus for all winter/evening cooking, eating, handcrafts, and social activities. The 
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find spots of the jasper strike-a-lights and flakes indicate that the fire was lit from its northern 

end. Several different fuels were used, the most important being birch wood and peat, but 

crumbs of sheep/goat dung found in the thin section taken from the floor just north of the 

hearth suggest that dung was also used as a fuel. Bones were frequently tossed into the fire 

after the meat or fish was consumed, which would have had the dual effect of feeding the fire 

and disposing of bone waste hygienically.  

On both sides of the hearth the side aisles contained sitting and sleeping spaces. In the 

western side aisle this was probably in the form of a raised wooden platform, under and 

against which hearth and food residues accumulated but were left untrampled. The cluster of 

abandoned loomweights on the south end of this platform suggests that an upright loom had 

been located on top of or beside it. In the east side aisle, there was a bed of compacted hay, 

which, judging from the straight, well-defined context boundaries, had probably been 

contained by a wooden sill. The artefacts found in the eastern side aisle, such as the pumice, 

spindle whorl and knife, suggest that everyday craftwork took place on this grassy seat. The 

cluster of quartz pebbles found in the eastern side aisle also remind us that social activities 

such as gaming probably took place in this central living room.  

In the northwest corner of the house, herbivore excrement identified in thin section 

indicates that the rows of posts observed in the field defined stalls for housing a few small 

cows, sheep and/or goats. The presence of omnivore excrement containing small, 

weathered/digested bone fragments suggests that people might sometimes have used this 

corner as a lavatory as well. The charcoal inclusions in this deposit indicate that ash was 

occasionally sprinkled here to absorb moisture or odours. The turf fragment found in this 

deposit hints at the possible use of turf for animal bedding, as was common in other parts of 

the North Atlantic region until the early modern period (Fenton, 1978). 

In the southeast corner of the house there was a small alcove where the floor deposit 

contained exceptionally high concentration of salts. Besides the phosphates and nitrates that 

could have been associated with ash residues and decomposing organic matter – which were 

actually found in much higher concentrations elsewhere in the house – the salts in this area 

could have been derived from sea water, seaweed (and its ash), or urine. While urine is 

especially rich in N2  it also contains c. 2% Cl-, K+, SO4
2-, PO4

3-, and Na+. Sea water and its 

associated products and plants are especially rich in Na+ and Cl- and also contain Mg2+, SO4
2-, 

Ca2+, K+, and HCO3
-. The fact that there is a strong positive correlation between the high 

electrical conductivity values and magnesium in this deposit suggests that it is sea salt, 

seaweed, or seaweed ash that were stored and/or used in this corner.  
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Salt had various practical uses in Viking Age Iceland. Sea salt obtained by 

evaporating sea water or burning seaweed may have been used as a preservative for butter, 

meat, or fish (Shetelig and Falk, 1937, 311). However, from the Viking Age to the present, 

fish in Iceland has usually been preserved by drying or smoking, and meat has been preserved 

by smoking or pickling in sour whey (Amundsen, 2004; Krivogorskaya et al., 2005). 

Ethnographic sources suggest that seaweed ash mixed with water, which produces alkaline 

lye, was commonly used in the North Atlantic region for cleaning and dyeing wool and 

fulling cloth until the early 20th century (Buckland and Perry, 1989; Jochens, 1995, 135-140; 

Shetelig and Falk, 1937, 332-336; Stead, 1981, 1982). One possible explanation for the high 

concentration of salts in the southeast corner of the house is that seaweed ashes and water 

were used in this area to wash or dye wool. 

 

5.2. Evaluation of individual geoarchaeological techniques and the integrated approach 

 

This study of the occupation deposits in the Viking Age house in Reykjavík illustrates 

the potential of a multi-method, integrated approach to the study of activity areas on 

archaeological sites. The distributions of artefacts and bones, long recognised as being 

affected by cleaning and abandonment behaviours and scavenging by dogs, are of course also 

very dependent on soil preservation conditions, which in turn depend on the pH of the soil 

solution (in the case of bones and bone artefacts), and its salt content (in the case of metals). 

It is standard practice to take pH spot tests on a site, but this study has demonstrated how 

variable pH and salt content (EC) can be across a site due to the variable composition of 

occupation deposits (e.g. plant matter will increase acidity, while wood ash will increase 

alkalinity), as well as post-depositional conditions (e.g. the quantity and pH of percolating 

water). These results suggest that on any site where artefact or bone distributions are used to 

identify and interpret activity areas, pH and EC must be tested systematically (e.g. by 

sampling on a grid) in order to fine-tune interpretations to micro-scale preservation 

conditions. 

In this case study, artefact and bone distributions used on their own provided only 

limited insight into the use of space in the building. Burnt bone and charcoal distributions 

may be used as proxies for ash dumps on the floors of the house, and provide information 

about floor maintenance activities rather than the use of space. There is no question that with 

a critical evaluation of the reliability of artefact find spots, certain types of artefacts, such as 

those associated with craft production (e.g. loomweights, spindle whorls or pumice in this 
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Viking Age context), fire-starting (e.g. jasper or flint flakes), or gaming can provide a rich 

source of information about the likely locations of these activities. However, the floors of 

buildings are not always rich in artefacts, many types of artefacts cannot provide information 

about activities (e.g. beads, nails) and find spots may frequently be judged to be unrelated to 

locations of use. In this study, geoarchaeological techniques played an essential role in the 

identification and interpretation of activity areas, sometimes confirming the field evidence, 

and sometimes contradicting it, or deriving new information that had not been detected in the 

field. 

In this study, magnetic susceptibility provided little new information about activity 

areas, merely confirming that in situ burning only took place in the central hearth. Likewise, 

loss on ignition at 950ºC confirmed that the hearth contained a concentration of wood ash 

(CaCO3), and showed how wood ash and calcined bone had been distributed around the 

building – a distribution that overlapped with that of burnt bones. Loss on ignition at 550ºC 

quantified the organic matter and charcoal that had been observed in the field, and pinpointed 

the parts of the house that had received the greatest inputs of this organic material (the central 

aisle, the eastern side aisle, and the northwest corner). However, the nature and origin of the 

organic matter, and the specific activities that took place in these areas, could not be 

determined by this technique. Likewise, electrical conductivity identified an activity area in 

the southeast corner that had resulted in a concentration of soluble salts, which in this case 

had not been identified in the field, but the types of salts cannot be determined by this 

technique. While these rapid and inexpensive methods provide a spatial overview of the 

locations of activity areas and spatial variations in preservation conditions, additional, 

spatially overlapping data are required to interpret the original inputs and thereby the 

activities that created them. 

Multi-element analysis and the determination of statistically significant correlations 

were instrumental for the interpretation of the types of salts found concentrated in the 

southeast corner of the building, in this case linking them to sea salts. In addition, the 

overlapping distributions of the plant macronutrients P, Ca, K, Mg, Zn, Ba, the trace element 

Sr, and the micronutrients Ni, Cu, all of which are taken up by plants and transferred through 

the food change to animals, lent further support to the understanding of where there were 

concentrated inputs of organic matter and ash, which had initially been based on field 

descriptions and loss on ignition at 550ºC. However, because almost all types of decomposed, 

charred, and ashed organic matter will result in the elevated concentrations of these elements, 

and different activities do not have precise chemical fingerprints, multi-element analysis 
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alone does not enable a precise identification of the inputs or the types of activities that 

occurred in the identified activity areas (see also Wilson et al. 2008). Moreover, because the 

preservation potential of different types of elements is highly dependent on the pH of the soil 

solution, the presence of the fixing agents needed to prevent the leaching of some elements 

(e.g. P fixed to clay, Fe or Ca), and because of preferential loading and possible trapping of 

elements such as Ca, P, Sr and Zn in charcoal or bone (Wilson et al., 2008), the interpretation 

of multi-element concentrations must always include a critical assessment of the overlapping 

data on pH levels, clay content, and the concentrations of other elements, charcoal and bone.  

In this study, multi-element analysis on its own gave no indication of herbivore and 

carnivore excrement in the northwest corner of the house, which were clearly identified in 

thin section. Phosphorus levels in this area were either at the mean or were elevated above it 

by only one standard deviation, and the nutrient levels (EC) here were low. Because this 

deposit was dominated by decomposed organic matter and contained little soil, there was a 

lack of clay or iron to which phosphorus could fix, and since pH levels were 6-7, phosphorus 

in this area could have remained in mobile ionic form and leached fairly rapidly. In this case 

study, the identification of animal and human excrement and the interpretation of the animal 

stalls in the northwest corner of the building were achieved only through soil 

micromorphological analysis, with no contribution from multi-element analysis or any of the 

other geochemical techniques.  

Of the geoarchaeological methods employed to detect activity areas in this case study, 

micromorphological analysis had the greatest interpretive power on its own. Most 

importantly for this study, in thin section it was possible to identify and quantify different 

types of organic matter (e.g. phytoliths of grass/hay, charred and uncharred wood and plant 

remains, animal excrements, etc.), thus enabling the identification of the stabling area, the 

area north of the hearth where sheep/goat dung was stored for fuel, and the grass/hay bedding 

in the sitting/sleeping area in the eastern side aisle. The identification of uncompacted 

microstructures in thin section also supported the interpretation of an untrampled area in the 

western side aisle that had been protected by a raised platform. In thin section it was also 

possible to identify the specific types of ashes (e.g. wood ash, peat ash) contained in the 

central hearth, and to identify waterlain deposits in the southwest entrance area, which had 

not been identified in the field. The application of soil micromorphological analysis to the 

study of activity areas is limited by the fact that block samples cannot feasibly be taken 

systematically across house floors. However, this case study demonstrates that targeted 
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micromorphology sampling could be of utmost importance to the successful interpretation of 

site activity areas.  

 

6. Conclusion 

 

The results of this integrated geoarchaeological study were fundamental to the 

interpretation of the 10th-century building at Aðalstræti 16, in Reykjavik, and have been 

incorporated into the museum exhibit built around the preserved foundations of the house 

(Reykjavík 871±2: The Settlement Exhibition). However, the implications of this comparative 

analysis of geoarchaeological methods can be applied to the study of activity areas on 

archaeological sites anywhere in the world.  

All of the geoarchaeological analyses used in this study enhance field descriptions by 

verifying or fine-tuning field interpretations, quantifying the components identified in the 

field, showing the degree to which composition and preservation conditions vary across a 

single context, and in some cases providing new information about sediment characteristics 

that cannot be observed in the field. However, while each sediment analysis provides unique 

and valuable information about activity areas, used individually their interpretive power is 

limited. In particular, geochemical methods such as loss on ignition and multi-element 

analysis are effective at pinpointing the locations of activity areas that received elevated 

inputs of fresh, charred, and/or ashed organic materials, but due to the wide range of possible 

sources of organic matter, carbonates, and elements, it is not possible to make direct links 

between the spatially identified activity areas and specific inputs or activities.  

The use of multiple, overlapping datasets dramatically increases the interpretation 

potential of geochemical methods by allowing the determination of correlations between 

them and the critical assessment of factors that could have affected distribution patterns. 

Multi-element distributions in particular can only be interpreted following an assessment of 

the degree to which the compositions of different deposits might have had an effect on 

element leaching, binding (e.g. to clay, iron, calcium) or trapping (e.g. by charcoal or bone). 

The most effective way to detect and interpret activity areas on archaeological sites is to 

integrate as many complementary methods as possible, using multiple geochemical methods 

to identify the possible locations of activity areas, followed by soil micromorphological 

analysis to provide detail about the composition, organisation and compaction of the 

components in each of the identified occupation deposits.  
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Figure and Table Captions 

 

Table Captions 

 

Table 1 

Descriptions of the occupation deposits used in this study with associated bulk samples for 

geochemical analyses and block samples for micromorphological analysis. 

 

Table 2 

Geochemical, loss-on-ignition, and magnetic susceptibility data. 
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Table 3 

Correspondence analysis based on Spearman’s rho (rs) for electrical conductivity (EC) and multi-

element values. 

 

Table 4 

Summary micromorphology descriptions of the occupation deposits, with representative 

descriptions of the overlying turf collapse layers (units 747, 792, 858) and underlying soil and 

tephra layers (units 824, 910, 913) shaded grey. 

 

 

Figure Captions 

 

Fig. 1.  The location of the Viking Age house (a) in Iceland, (b) in Reykjavík, and (c) on 

Aðalstræti (drawing by Óskar G. Sveinbjarnarson).   

 

Fig. 2. The Viking Age house at Aðalstræti 16 (formerly 14-18) under excavation, showing 

(a) the floor layers exposed in 2001 (facing north) and (b) the porch structure discovered 

when the excavation area was extended in 2003 (facing southeast). 

 

Fig. 3.  Plan of the house at Aðalstræti, showing the internal features of the house, the floor 

layers selected for geochemical analysis and the locations of micromorphology samples 

(drawing by Howell M. Roberts, Karen B. Milek and Óskar G. Sveinbjarnarson). 

 

Fig. 4. Distributions of (a) artefacts, (b) stone manuports and jasper flakes, (c) bones, and (d) 

burnt bones on the floor of the Viking Age house. Note that bone distribution data is 

excluded from context 844, in the northwest corner of the house, because the bones from this 

context were accidentally lumped together in a single bag. 

 

Fig. 5. Distributions of (a) pH, (b) electrical conductivity, (c) percent loss on ignition at 

550°C, and (d) percent loss on ignition at 950°C. 

 

Fig. 6. Distribution of (a) magnetic susceptibility, (b) barium, (c) calcium, and (d) copper. 

 

Fig. 7. Distributions of (a) magnesium, (b) phosphorus, (c) potassium, and (d) sodium. 

 

Fig. 8. Distributions of (a) strontium, and (b) zinc. 

 

Fig. 9. Photomicrographs (PPL) of (a) micromorphology sample 80, context 844.3, showing 

a localised area with horizonally bedded bone, plant mater, and phytoliths surrounded by 

sediment disturbed by soil fauna, (b) micromorphology sample 80, context 844.4, showing 

truncated, articulated phytoliths typical of herbivore dung, (c) micromorphology sample 71, 

context 864, showing the tightly packed, randomly oriented segments of articulated 

phytoliths typical of herbivore dung, (d) micromorphology sample 67, showing charcoal, 

bone and decomposing plant matter in an area where there no floor context was identified in 

the field, (e) micromorphology sample 79, context 851, showing uncompacted and relatively 

large fragments of charcoal, bone and burnt bone, and (f) micromorphology sample 68, 

context 868, showing very compacted, horizontally bedded lenses of phytoliths and 

decomposing plant matter. b: bone, bb: burnt bone, ch: charcoal, o: amorphous organic 

matter, ph: phytoliths, v: void. 
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Fig. 10. Interpretive plan of the Viking Age house on Aðalstræti, showing the original house 

and the later additions. 

 

 

Supplementary Data Tables and Figure Captions 

 

Supplementary Data Table 1 

Complete bone, bulk soil analyses and ICP-AES dataset, with grid coordinates to enable the 

data to be imported into a GIS and re-analysed (Excel spreadsheet). 

 

Supplementary Data Table 2 

Full descriptions and interpretations of all micromorphology samples. 

 

Supplementary Data Table 3 

Properties and possible sources of the elements used in this study. 

 

Supplementary Data Table 4 

Elements identified in modern reference materials. 

 

Supplementary Data Table 5 

Micromorphological characteristics of modern reference materials used for this study. 

 

 

Supplementary Figure 1 

Georeferenced house plan on the Reykjavik grid (AutoCAD drawing). May be imported into 

a GIS and used to re-analyse the data provided by Supplementary Data Table 1. 

 

 

 

 

 


