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Abstract

Snap-off is a pore-scale mechanism occurring in porous media in which a bubble of non-

wetting phase displacing a wetting phase, and vice-versa, can break-up into ganglia when

passing through a constriction. This mechanism is very important in foam generation

processes, enhanced oil recovery techniques and capillary trapping of CO2 during its ge-

ological storage. In the present study, the effects of contact angle and viscosity ratio on

the dynamics of snap-off are examined by simulating drainage in a single pore-throat con-

striction of variable cross-section, and for different pore-throat geometries. To model the

flow, we developed a CFD code based on the Finite Volume method. The Volume-of-fluid

method is used to track the interfaces. Results show that the threshold contact angle for

snap-off, i.e. snap-off occurs only for contact angles smaller than the threshold, increases

from a value of 28◦ for a circular cross-section to 30-34◦ for a square cross-section and up

to 40◦ for a triangular one. For a throat of square cross-section, increasing the viscosity

of the injected phase results in a drop in the threshold contact angle from a value of 30◦

when the viscosity ratio µ is equal to 1 to 26◦ when µ = 20 and down to 24◦ when µ = 20.

1



Keywords

Numerical simulations, snap-off, contact angle, viscosity ratio, PLIC-VOF

1 Introduction

Multiphase fluid flow in porous media is encountered in many practical engineering prob-

lems, including oil, water and gas flow in petroleum reservoirs, and storage of Carbon

Dioxide (CO2) in deep underground aquifers. There are two types of displacement which

can take place in two-phase systems: drainage, in which the wetting phase (water, in

this work) is displaced by a non-wetting phase (typically a gas, for example CO2), and

imbibition, in which the wetting phase is adsorbed into the porous medium and displaces

the resident non-wetting phase. A dominant pore-scale mechanism occurring when a

non-wetting phase is injected into a reservoir predominanly occupied by a wetting phase,

and vice versa, is the break-up of the injected phase into several ganglia when passing

through a constriction. This mechanism is called ”snap-off” (Roof et al., 1970; Ransohoff

et al., 1987; Gauglitz and Radke, 1990; Kovscek and Radke, 1996; Rossen, 2000). It is

relevant to foam generation processes and capillary trapping of oil or CO2 bubbles during

enhanced oil recovery or geological storage of CO2. Several studies have been conducted

to analyze the snap-off mechanism in order to establish a criterion for its occurrence.

The first quasi-static criterion was derived by Roof et al. (1970) for circular pores and

for perfectly wetting conditions (θ = 0◦). The criterion states that snap-off occurs when

the capillary pressure at the bubble front in the unconstricted pore becomes less than the

local capillary pressure at the throat, i.e. when the following inequality is satisfied:

2

Rp

≤ 1

Rt

+
1

Rzt

, (1)

where Rp and Rt are the pore and throat radii and Rzt is the longitudinal radius of

curvature of the throat. In eq. (1), the left hand side is the mean curvature of the

bubble front in the unconstricted section of the pore while the right hand side is the local

curvature of the throat. Ransohoff et al. (1987) extended Roof’s criterion to variable

cross-sections as follows:

C̃p
Rp

≤ 1

R̃t

+
1

Rzt

, (2)
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where the coefficient C̃p depends on the shape of the cross-section (C̃p=2 for circular, 1.89

for square and 1.77 for triangular), R̃t is the radius of the largest inscribed circle at the

throat and the r.h.s. is the critical curvature for snap-off at the throat, corresponding to

the point of instability where the curvatures at two corners of the cross-section meet. For

long enough throats, the above criterion reduces to

Rp ≥ C̃pR̃t. (3)

This is a purely geometric criterion stating that snap-off occurs when the contraction ratio

CR, defined as

CR =
Rp

Rt

, (4)

satisfies certain conditions. However, geometry-constrained snap-off, governed by Roof’s

criterion, is not the only mechanism for snap-off to occur (Rossen, 2003). Considering

a capillary channel with sinusoidal shape, when the invading fluid becomes continuous

within the channel, its break-up is determined by the imbalance between the pressure

critical values at the necks and pores (Beresnev et al., 2009). To this extent, Beresnev

and Deng (2010) developed a theory of fluid break-up in sinusoidally constricted capillary

channels. Their formulation reduces to the condition for Rayleigh instability as a limiting

case. Deng et al. (2014) used the latter model to study the snap-off of CO2 in capillary

channels of such sinusoidal profile. They considered capillary channels with different

wavelenghts but fixed contraction ratio. They then observed that snap off can occur even

in capillary channels which do not meet Roof’s criteria. Hence, they proposed a new

criterion of the form

C̃p

R̃p

+
1

Rzp

≤ C̃t

R̃t

+
1

Rzt

, (5)

where Rzp is the longitudinal radius of curvature of the pore. Raeini et al. (2014) inves-

tigated the existence of a threshold contraction ratio for snap-off for a single star-shaped

pore-throat system of different aspect ratios AR

AR =
Lt
Rp

, (6)
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where Lt is the length of the throat. Finally Armstrong et al. (2016) used Density Func-

tional Hydrodynamics (DFH) tools to study geometry-constrained snap-off in pore dou-

blets and simple systems of pores, demonstrating consistency of simulation results with

theoretical criteria. In particular, they compared the curvature at the leading interface

measured from the numerical simulations against its theoretical value at the moment of

snap-off from Roof’s model. They observed slight discrepancy between these values due

to the fact that theoretical models assume quasi-static conditions while inertial effects

are present in numerical simulations. However, they also observed that this discrepancy

tends to decrease with increasing grid resolution.

However, the last numerical studies assumed perfectly wetting behaviour between the

two fluids, i.e. θ = 0◦. Little effort has been devoted to quantifying the influence of contact

angle on the occurrence of snap-off. Yu and Wardlaw (1986) carried out experiments under

quasi-static conditions on a single pore-throat system of square cross-section. They found

that the critical contraction ratio for snap-off increases only slightly from 1.5, when θ is

equal to zero, to 1.75, when θ = 55◦, however above ∼ 70◦ snap-off never occurs. Pore-

network studies (Blunt et al., 1997; Mogensen and Stenby, 1998) indicated that snap-off

is inhibited for θ > 45◦ when throats have a square cross-section.

In the present study, the effects of contact angle and viscosity on the dynamics of

snap-off are examined. The dimensionless quantities describing the flow that will be used

in the following are the Reynolds number Re, the capillary number Ca and the viscosity

ratio µ, defined as:.

Re =
ρvD

µ
, (7a)

Ca =
µv

σ
, (7b)

µ =
µnw
µw

, (7c)

where v is the velocity, ρ and µ are the fluid’s density and viscosity, D is the diameter of

the pipe and σ is the interfacial tension. The study is conducted by simulating drainage

in a single pore-throat constriction of variable cross-section and for different pore-throat

geometries. To model the flow, we developed the C++ in-house code interpore3d which

solves the governing equations by means of the Finite Volume (FV) method. The numer-
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Figure 1. Standard configuration of the ”truncated volume”. All the three normal
components are positive with fluid 1 laying below the interface

ical method is described in Sec. 2. Simulation results of benchmark problems for model

validation are presented in Sec. 3. These include the classic static drop problem and sim-

ulations of imbibition in a circular pipe for different flow conditions. Finally, simulation

results of snap-off are presented in Sec. 4.

2 Numerical method

The method consists of three main components: an interface-tracking algorithm, a model

for the surface tension forces and a solver for the incompressible Navier-Stokes (NS)

equations.

2.1 The interface-tracking algorithm

The interfaces are tracked using the Volume-of-Fluid (VOF) method by Hirt and Nichols

(1981). The VOF method is a volume-tracking method for the representation of the

interfaces in interfacial flow problems, in which the fluids are marked and tracked by

means of a volume fraction, also called indicator function. In a VOF-FV framework, the

indicator function α is defined for each cell as the ratio between the volume of fluid 1

contained within the cell, V α, and the volume of the cell V as

α =
V α

V
. (8)
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This means that the indicator function is bounded between 0 and 1 as follows

α =


1, if the cell is filled with fluid 1,

0, if the cell is filled with fluid 2,

0 < α < 1, if there is an interface within the cell.

(9)

Starting from a known initial distribution, the volume fraction is updated in time by

solving the following advection equation

∂α

∂t
+∇ · (αu) = α∇ · u, (10)

where t is time and u is the velocity vector. Advection is done through operators-splitting,

i.e the interface is advanced in time with three independent sweeps along each of the

three directions, where the order of the sweeps is alternated at each time step to ensure

better stability. We employed the Piecewise Linear Interface Calculation (PLIC) method

by Youngs (1982) to solve eq. (10) numerically. In the PLIC method, the interface is

mathematically described as a planar surface defined by equation

n · x− β = 0, (11)

where β is a constant and n is the interface unit normal vector pointing outwards from

fluid 1:

n = − ∇α
|∇α|

. (12)

The minus sign in eq. (12) comes from the choice of the normal pointing direction.

Discretization of the gradient operator in eq. (12) is done using a 27 points-stencil Finite

Difference scheme, while determination of the constant β is done by matching the interface

truncated volume V (n, β) (the volume ABCDIJKL in Fig. 1) to the actual fluid volume

V α contained in the cell using Brent’s method (Press et al., 1996). A useful formula for

the truncated volume is given by Gueyffier et al. (1999). Further detail on the PLIC

algorithm can be found in Kothe et al. (1996) and Rider and Kothe (1998).

6



n|w

nw

sw

θ

n|w
nw

sw

θ

θ

Figure 2. Unit vectors at the contact line between a solid wall and an interface: n|w is
the normal to the interface at the contact line, nw is the unit normal to the wall pointing
outwards from the wall and sw is a unit vector lying in the wall and normal to the contact
line. θ is the contact angle between the interface and the solid wall, measured towards
the wetting phase.

2.2 The incompressible Navier-Stokes equations with surface

tension forces

The Navier-Stokes equations with surface tension forces are written as

∂

∂t
(ρu) +∇ · (ρuu) +∇p−∇ · τ− ρg − fs = 0, (13)

where p and u = (u, v, w) are the pressure and velocity respectively, τ = µ
[
∇u + (∇u)T

]
is the viscous stress tensor, g is the gravitational acceleration, fs is the surface tension

force and ρ and µ are the fluid density and viscosity, which in the VOF method are

computed as

ρ = αρ1 + (1− α) ρ2,

µ = αµ1 + (1− α)µ2.

(14)

The use of the VOF method for the representation of the interface between two immis-

cible fluids offers the advantage that the numerical techniques for the solution of the NS
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equations are the same for two-phase systems as in single-phase flow. The two-phase flow

problem can thus be seen as the flow of a single fluid with spatially and temporally vari-

able physical properties. However, the presence of localized interfaces generates additional

forces of chemical nature due to the change of molecular forces in the transition region

between the two fluids. These forces are embodied in the NS equations as body forces

concentrated at the interface, i.e. the term fs in eq. (13), and their discretization must

be treated carefully. Following the Continuous Surface Force (CSF) model by Brackbill

et al. (1992), the surface tension force fs is computed as a body force using the Dirac

delta function δs concentrated at the interface as follows:

fs = σknδs, (15)

where σ is the interfacial tension, k is the interface curvature defined as (Aris, 1962)

k = −∇ · n, (16)

and n is the unit normal to the interface computed using eq. (12). For those interface

cells which are in direct contact with a solid wall boundary (see Fig. 2), the normal takes

the form (Brackbill et al., 1992)

n|w = nw cos θ + sw sin θ, (17)

where θ is the contact angle measured between the wall and the wetting phase, nw is the

unit normal to the wall pointing outwards from the wall and sw is a vector lying in the

wall and normal to the contact line given by (Qaseminejad Raeini, 2013)

sw =
n− (n · nw)nw

|n− (n · nw)nw|
, (18)

Eq. (17) replaces eq. (12) in the interface tracking algorithm for those interface cells

which are in direct contact with a solid wall boundary, i.e. cells with indicator function

α between 0 and 1, having at least one solid wall cell among the direct adjacent cells.

The NS equations are solved using the PISO algorithm (Issa, 1986). We employed

the Filtered Surface Force (FSF) formulation by Raeini et al. (2012) for filtering the
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Figure 3. Static drop test: initial (a) and final (b) volume fraction distribution for the
3D drop with L/∆x=16

surface tension forces in the interface transition region. All the resulting linear systems

of equations are solved using the PBCG method with incomplete LU factorization as pre-

conditioner (Saad, 2003). Finally, there is a stability condition to respect when solving

the NS equations with surface tension forces, i.e. the numerical method is stable when

the time step resolves the capillary wave propagation (Brackbill et al., 1992)

∆t <

√
〈ρ〉∆x3

2πσ
, (19)

where 〈ρ〉 is the average density of the two fluids and ∆x is the characteristic grid size.

In order to facilitate the presentation of the numerical setup for the various tests where

surface tension forces are involved, a modified time step constraint is introduced:

∆t = Ct∆tbkz, (20)

where Ct is a constant and ∆tbkz is the r.h.s. of eq. (19).

3 Validation

3.1 Surface tension test: static drop

This is the typical test which is commonly used for validating surface tension implemen-

tations. A problem often arising in numerical simulations when accounting for surface
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Figure 4. Static drop test: computed max velocity in the computational domain as a
function of time (L/∆x=16)

tension effects is the occurrence of the so-called ”spurious currents”, a non-vanishing ve-

locity field which appears in the interface transition region even in absence of external

forces (Lafaurie et al., 1994; Brackbill and Kothe, 1996; Williams et al., 1998; Scardovelli

and Zaleski, 1999; Renardy and Renardy, 2002; Sussman and Ohta, 2006; Raeini et al.,

2012). Here, both a 2D and a 3D bubble of gas immersed in another fluid approaching its

equilibrium state in absence of gravity are studied. The gas has viscosity µg = 10−5 Pa ·s

and density ρg = 1 kg/m3 while the other fluid is water with viscosity µw = 10−3 Pa · s

and density ρw = 1000 kg/m3. The interfacial tension coefficient σ = 0.07 N/m. Initially

the bubble has square (2D) and cubic (3D) shape of size L=40 µm and is placed at the

centre of a computational domain of size 2.5L to allow for the bubble deformation. This

setup is chosen for comparison with the work of Raeini et al. (2012). Velocity is set to

zero everywhere at the boundary. Simulations with Ct = 0.5 are carried out for different

resolutions L/∆x=3, 4, 8, 16 and 32.

The aim of this test is to prove that the model is able to eliminate the so-called

spurious currents, as in Raeini et al. (2012), and to show the convergence of the bubble

to its exact curvature:

kexact =


1/r, with r =

√
Afα
π
, 2D

2/r, with r =
3

√
3V f

α

4π
, 3D

(21)
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Figure 5. Static drop test: error in the drop curvature as a function of grid resolution

where Afα and V f
α are the bubble area and volume respectively in the final equilibrium

configuration. The initial and final equilibrium configurations can be visualized in Fig.

3. As far as eliminating the spurious currents is concerned, Fig. 4 clearly shows how the

velocity eventually tends to zero everywhere in the domain. This was the main goal of

the test. The error in the curvature is measured as

εk =
|knum − kexact|

kexact
, (22)

where the numerical curvature knum is computed using a weighted average as:

knum =

∑
ki|∇αf |iVi∑
|∇αf |iVi

. (23)

The error in the curvature plotted as a function of grid resolution is shown in Fig. 5,

exhibiting convergence towards zero with increasing grid resolution.

3.2 Imbibition in a circular capillary pipe

The movement of a ganglion of water displacing another fluid (µ=1, 0.01) in a circular

pipe of radius R and length L = 8R is studied. The fluids physical properties are the

same as in simulations presented in Sec. 3.1, with interfacial tension coefficient σ = 0.05

N/m, the static contact angle θ = 45◦ and the grid resolution R/∆x = 5. This test aims

at investigating the stability of the numerical method for different flow conditions and
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assessing its capability to handle high density and viscosity ratios in dynamic conditions.

Boundary conditions consist of pressure at the outlet and a Poiseuille velocity distri-

bution at the inlet vin. The Reynolds and capillary number are controlled by varying

the mean inlet velocity vin=0.1, 0.01 and 0.001 m/s and the pipe diameter D = 25, 250,

2500 µm, yielding a set of 3x3 possible flow conditions, with Ca and Re ranging between

2.0e−3 and 2.0e−5 and between 0.025 and 250 respectively.

Initially, the interface is placed at L/4 and a static simulation is carried out in order

to start the dynamic simulations from equilibrium conditions. Cdt is set equal to 1 for

the case with µ = 1 and 0.5 for the case with µ = 0.01. All the simulations are run until

breakthrough or stopped after 200000 time steps.

The stability and accuracy of the simulations are evaluated using several parameters:

the maximum difference in curvature εk, the maximum difference in average interface

velocity εv, the relative standard deviation of the average interface velocity RSDv and

the error in mass conservation εmc. The maximum difference in curvature εk is the largest

discrepancy between the curvature computed after each time step using eq. (23) and the

exact one:

εk = max

(
|kmin − kexact|

kexact
,
|kmax − kexact|

kexact

)
, (24)

where kmin and kmax are the minimum and maximum curvature recorded during the

simulation, and kexact is:

kexact =
2σ cos θ

R
(25)

The maximum difference in the average interface velocity εv is computed in the same way

as

εv = max

(
|vs,min − vin|

vin
,
|vs,max − vin|

vin

)
, (26)

where vs is the mean interface velocity, i.e. the average velocity calculated for the inter-

face cells, after each time step. The relative standard deviation of the average interface

velocity RSDv is a measure of the variability of the average interface velocity during the

simulations. It is defined as the ratio between its standard deviation and mean value dur-

ing the whole computation. Finally, the mass conservation error is the relative difference

between the total injected volume at the end of the simulation Vin = (tf − t0)
∫
∂A
vindA
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Table 1. Measures of error for different capillary and Reynolds numbers, and for different
pair of fluids.

Ca Re µ εk εv RSDv εmc

2e-3 2.5
1

0.01
0.061
0.046

0.23
0.37

0.041
0.044

5.95e-4
1.56e-3

2e-3 25
1

0.01
0.077
0.055

0.11
0.37

0.033
0.053

1.32e-3
1.52e-3

2e-3 250
1

0.01
0.063
0.076

0.11
0.39

0.033
0.030

3.60e-3
6.21e-3

2e-4 0.25
1

0.01
0.045
0.039

0.47
0.57

0.087
0.083

3.50e-5
2.86e-4

2e-4 2.5
1

0.01
0.041
0.037

0.63
0.55

0.089
0.098

6.05e-5
2.03e-3

2e-4 25
1

0.01
0.047
0.046

0.68
0.44

0.102
0.061

4.04e-5
8.64e-3

2e-5 0.025
1

0.01
0.056
0.043

1.60
3.25

0.156
0.159

1.05e-3
1.30e-3

2e-5 0.25
1

0.01
0.060
0.054

1.79
2.26

0.164
0.172

1.11e-3
2.00e-3

2e-5 2.5
1

0.01
0.040
0.039

1.25
1.32

0.303
0.154

1.61e-3
9.42e-3

and the simulated change in volume of the injected phase ∆V = V f
α − V 0

α :

εmc =
|∆V − Vin|

Vin
, (27)

where V f
α and V 0

α are calculated from the initial and final volume fraction distributions

in the computational domain.

As the computed parameters listed in Tab. 1 clearly indicate, all the simulations

can be considered stable and accurate. The error in mass conservation is always below

1%, confirming the robustness of the code in handling high density and viscosity ratios

in dynamic conditions and at low capillary numbers. The largest maximum difference

in curvature for all computations is 7.7 %. This means that the interface is pushed to

advance uniformly through the pipe while maintaining its equilibrium configuration (see

Fig. 6). The maximum difference in average interface velocity is generally higher than

the other indicators, due to the localized surface tension forces active in the interface

transition region and their interplay with the viscous forces active at the wall. A small

numerical error in forces is likely to generate some local perturbations of the interface

front, resulting in changes of the pressure jump across the interface and thus changes of

the velocity field. The influence of the different flow conditions on the velocity field is also

13



t = 0 s t = 1.6ms

t = 3.2ms t = 4.8ms

L = 100 µm

R = 12.5 µm

α

Figure 6. Time evolution of the volume fraction (µ = 0.01, Ca = 2e−4, Re=0.25).

more visible than their influence on the other two indicators. This is reasonable, as the

curvature is primarily determined by the static contact angle θ, which is not influenced

by the flow conditions (hysteresis and dynamic effects are not considered in the model),

while the mass conservation is mainly a feature of the advection scheme. First thing to

note is the dramatic increase εv and RSDv at low capillary numbers. Again this can be

explained by the local perturbations of the interface front due to surface tension forces. At

higher capillary numbers capillary forces are less dominant with respect to viscous forces

and the displacement is stabilized by viscous effects. On the contrary, at low capillary

numbers capillary forces are dominant, resulting in a more unstable interface advancing

front. This difference is exacerbated at high viscosity ratios. This is made clearer by

visualizing snapshots of the velocity field in a plane parallel to the flow direction passing

through the centre of the pipe (see Fig. 7). Far from the interface, the velocity assumes

the Poiseuille distribution for single-phase flow. In the transition region, the capillary

forces are responsible for aligning the wetting fluid velocities with the interface, hence

moving the wetting fluid particles towards the walls. Evidence of these flow patterns

was also shown by Molecular Dynamics (MD) simulations (Dimitrov et al., 2007). This

results in a decrease in the velocity at the centre of the pipe compared to the Poiseuille

distribution (see also Levine et al. (1980) for a study on the deviation from Poiseuille

flow at the front meniscus). This in turn yields, for continuity, a higher velocity near the

walls. For the system with high viscosity ratio this increase of the velocity at the contact

line is more pronounced, giving rise to the formation of some vortices at the centre of

14



(a)
t = 0.8ms

v[m/s]

(b)

t = 1.4ms

Figure 7. Snapshots of the velocity field near the interface along the central plane at
different time steps for different values of the viscosity ratio: µ = 1 (left column) and
µ = 0.01 (right column). (Ca = 2e−4, Re=0.25).

the pipe (see Fig. 7b). This return flow is due to continuity because of the very high

velocities next to the walls. However, it is likely that these very high velocities and thus

the vortices are provoked by numerical instabilities in the transition region caused by the

high viscosity ratios.

3.3 Roof’s criterion for snap-off

Here the code is validated against Roof’s extended criterion for snap-off, eq. (5). The

constriction has the sinusoidal shape given by (Ransohoff et al., 1987)

R(z)

Rp

= 1−
(
CR− 1

2 · CR

)[
1 + cos(2π

z

`

]
, (28)

where R(z) is the constriction radius, z is the axial position measured from the neck of

the constriction and ` is the constriction wavelength. For this shape function, Ransohoff

et al. (1987) provided also an expression for the longitudinal radius of the curvature Rzt,

which for circular pores is

Rzt =
`2

Rp

(
CR

2π2(CR− 1)

)
(29)

The same setup of Deng et al. (2014) is used. The contraction ratio CR is fixed and

equal to 2 (Rp and Rt measure 100 and 50 µm respectively), and two wavelengths are

considered, `1 = 200 and `2 = 600 µm. Circular pores and perfectly wetting conditions

15



(a) `1 (b) `2

Figure 8. Initial (top) and final (bottom) volume fraction distribution for the sinusoidal
constrictions with different wavelengths.

(θ = 0) are considered. According to Roof’s criteria, snap-off is expected to occur for

the configuration with wavelength equal to `2, while it is not expected to occur for the

configuration with shorter wavelength `1. The resident fluid is water, the interfacial

tension coefficient is equal to 0.05 N/m and the viscosity ratio is equal to 1. Boundary

conditions are the same as in simulations presented in Sec. 3.2, with inlet velocity equal to

5 mm/s, resulting in a capillary number equal to 1.0e−4. Initially the interface is placed

at the neck of the constriction and the inlet is entirely filled with the injected fluid. The

grid resolution is Rt/∆x = 5 and Cdt = 1.

The initial and final fluid configurations for the two wavelengths considered can be

visualized in Fig. 8. Results are in agreement with the extended Roof’s criterion for

snap-off, with snap-off happening only for the configuration with longer wavelength `2.

4 Numerical simulations

4.1 Numerical setup

We study a single pore-throat constriction with four different configurations. The geom-

etry of the problem is controlled solely by the contraction ratio CR and the aspect ratio

AR, defined in eqs. (4) and (6) respectively. Medium long (AR = 1.5) and long (AR = 5)

throats, as well as medium narrow (CR = 2) and narrow (CR = 3) constrictions are

16



Rp Rp 2Rp

Figure 9. Cross-sections used in this study.

Lin = 2.5Rp

Lt

Lout = 5Rp

L0 = 0.9Lin

ζ

Rt

Rp

Figure 10. Initial conditions for the VOF indicator function (the non-wetting fluid is
displayed in blue at the inlet) and the relevant geometrical parameters.

considered. We use three cross-sections (see Fig. 9): circular with unconstricted pore ra-

dius Rp of 215 µm, square with largest inscribed circle in the unconstricted pore of radius

equal to Rp and isosceles triangle having base and height equal to 2Rp. This particular

value of Rp has been chosen to be consistent with the experimental apparatus of Yu and

Wardlaw (1986), and is kept constant. The inlet and outlet pore lengths Lin and Lout are

set equal to 2.5Rp and 5Rp respectively. Initially, the non-wetting fluid is positioned just

at the throat entrance, at a distance of 0.9Lin from the inlet. Boundary conditions are the

same as in simulations presented in Sec. 3.2, with inlet velocity equal to 5 mm/s. Water

is used as displaced wetting fluid, and the interfacial tension coefficient is always equal to

0.05 N/m, resulting in a capillary numer equal to 1.0e−4. Finally, values of Ct = 1 are

used in all the simulations. The initial conditions for the VOF indicator function, as well

as the various geometrical parameters involved, are displayed in Fig. 10.

Two series of simulations are performed. During the first series, the viscosity ratio

17



Table 2. Summary of all cases used in the simulations. For each case, θ is varied from
0◦ until snap-off is inhibited. Legend: S=square, C=circular, T=triangular.

Case Cross-section AR CR µ
1.1 S, C, T 1.5 2 1
1.2 S, C, T 1.5 3 1
1.3 S, C, T 5 2 1
1.4 S, C, T 5 3 1
2 S 1.5 2 0.02, 1, 10, 20

is kept constant (µ=1) and the effects of different cross-section and contact angle are

investigated. All range of values of θ from 0◦ until snap-off is inhibited are considered. The

threshold contact angle for snap-off, θthresh, above which snap-off is inhibited, is computed

using a systematic trial-error procedure by changing the static contact angle and repeating

the simulations. Simulations are stopped when snap-off occurs or at breakthrough. In

order to automatically detect snap-off, a function is implemented which measures how

many separate ganglia of non-wetting fluid are present within the system. When the

number of independent ganglia is greater than one, the simulation is terminated and the

static contact angle increased.

The second series is performed for the single case of square cross-section with AR = 1.5

and AR = 2 and θthresh is calculated for different viscosity ratios. The viscosity ratio

is varied considering different injected fluid: oil having the same density of water and

supercritical CO2 with density equal to 500 kg/m3 and viscosity of 2e−5 Pa · s (reference

values taken from Huppert and Neufeld (2014)). A summary of the input data for the

simulations is provided in Tab. 2.

4.2 Mesh sensitivity

Preliminary simulations were run for the standard case with square cross-section, AR =

1.5, CR = 2 and µ = 1 in order to assess the role of some minor parameters such as the

shape of the pore-throat junction, i.e. the angle ζ in Fig. 10, and the grid resolution

Rt/∆x. While the shape of the pore-throat junction has no effect on the outcome of the

simulations, the grid resolution strongly affects the dynamics of the flow. Fig. 11 shows

the predicted pressure drop between the inlet and the outlet and the average capillary

pressure as a function of time, for different values of grid resolution and for two values of

θ equal to 24 and 32◦ respectively. These values of θ correspond to cases whether snap-off
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Figure 11. Pressure drop between the inlet and the outlet (top row) and average interface
curvature (bottom row) as a function of time for different values of grid resolution and
contact angle (case 1.1, square cross-section). Dotted line: entry capillary pressure for an
unconstricted pore with infinite length computed using the MS-P method
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occurs or not. The numerical capillary pressure is computed as

pc,num = σknum, (30)

where knum is computed using eq. (23).

For the case without snap-off, three stages are outlined. Initially, as the bubble of

non-wetting phase invades the throat, the pressure rises as a result of the increase in the

interface mean curvature. There is a peak in capillary pressure when the bubble assumes

its max curvature, corresponding to the point the bubble starts filling the second pore.

Then, as the bubble invades the second pore, the interface mean curvature decreases and

so does the pressure. Finally the pressure drop approaches the theoretical value of the

entry capillary pressure for an unconstricted pore with infinite length computed using

the MS-P method (Mayer and Stowe, 1965; Princen, 1969). The case with snap-off is

characterized by flow instabilities and thus large variations in capillary pressure. When

snap-off occurs, an instantaneous jump in pressure is observed as a result of the bubble

break-up. As the figure clearly shows, the predicted pressure drop for the case with coarse

resolution can be up to five times as the value predicted by the finer resolution models.

These differences tend to diminish as the grid resolution increases, and the solution for the

cases with Rt/∆x=4, 6 and 8 are very similar for the case without snap-off. These non-

physical pressure values may have an impact when running simulations on digital images

of real rock samples. As a result of the segmentation process, the narrower throats, which

are the ones determining the permeability of the medium, may potentially be resolved by

very few elements, leading to inaccurate estimates of the capillary pressure. A possible

remedy is to create finer grids such that the narrower throats are resolved by more than

4 grid cells. This can be done by subdividing each cell into several sub-cells. However,

this has two major consequences on the overall computational cost of the simulations.

Firstly, increasing the size of the computational domain by a factor of at least 8 increases

the computational time required for performing each time step. Secondly, refining the

original grid implies using a smaller grid size, leading to a time step smaller by a factor

of at least 23/2, as constrained by eq. (19).

To quantify the difference in accuracy between the different mesh resolutions used, we

set the finer resolution model (Rt/∆x = 8) as the solution, and considered four accuracy
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Table 3. Accuracy measures for different values of contact angle, and for different mesh
resolutions (case 1.1, square cross-section).

θ[◦] Rt/∆x εp εp εk εk

24
4
6

0.664
0.110

0.343
0.056

0.075
0.063

0.063
0.027

32
4
6

0.300
0.070

0.042
0.017

0.015
0.020

0.020
0.015

indicators: the difference in peak pressure εp, the average difference in pressure εp, the

difference in maximum curvature εk and the average difference in curvature εk. Tab.

3 reports these values for different mesh resolutions. Results show that a resolution of

Rt/∆x=4 is enough for accurately represent the interface (all the indicators are always

within 10% of accuracy). However, with this mesh resolution the total pressure drop

can be overestimated, especially at snap-off. However, the focus here is on developing

understanding of the mechanism, putting the emphasis on capturing the correct physics

of the interfacial two-phase flow rather than estimating the pressure peaks. Besides, we

are more interested in determining the influence of the variation of the different physical

quantities involved, rather than on the exact quantification of the flow variables. Hence,

a value of Rt/∆x=4 is sufficient to ensure a good balance between computational effort

and results accuracy, and thus is used in the following simulations.

4.3 Description of the mechanism

The mechanism is illustrated in Fig. 12 for the case 1.1 of Tab. 2 with square cross-

section. Two scenarios, with and without snap-off, are presented, corresponding to values

of θ equal to 30 and 35◦ respectively. As the bubble invades the throat (Fig. 12a), the mean

curvature of the advancing front starts to increase, and so does the capillary pressure, as

a result of the bubble being squeezed into the throat. This curvature (or pressure) drop

between the interface advancing front just beyond the throat-pore junction and the initial

unconstricted section of the pore causes faster interface propagation within the throat

than within the initial uncostricted section. This leads to stretching of the interface,

creating a section with much lower radius and hence higher capillary pressure. This in

turn initiates some amount of wetting phase to flow back along the corners of the cross-

section, as shown in Fig. 13. If this drop in curvature is sufficiently large, enough wetting

phase may accumulate in the throat to cause the interfaces from two corner regions to
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(i) t = 0.016 s (j) t = 0.175 s

Figure 12. Time evolution of the volume fraction (case 1.1, square cross-section). Left
column: θ = 30◦, right column: θ = 35◦.
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Figure 13. Visualization of the flow-back of the wetting phase along the corners of
a square cross-section when the non-wetting phase invades the throat (Fig. 12a). (a)
location of the cross-section, (b) volume-fraction distribution in the section and (c) axial
velocity along the diagonal line (the x-axis is normalized against the diagonal half-length,
where Rt is the square half-side and r is the distance from the origin, the latter positioned
at the centre of the section).
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Figure 14. Visualization of the pressure gradient driving the flow-back of the wetting
phase along the corners of a square cross-section, when the non-wetting phase invades the
second pore (Fig. 12e). (a) location of the cross-sections, (b) pressure along the diagonal
line.
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Figure 15. Pressure drop between the inlet and the outlet as a function of time for
different values of the contact angle θ (case 1.1, square cross-section).

meet, and thus the flow to become unstable (Fig. 12c). This flow instability was distinctly

observed during the simulations, and it was the critical condition leading to snap-off for

long throats (AR = 5). Coversely, for shorter throats like the one in Fig. 12 (AR = 1.5),

as the bubble reaches the throat exit (Fig: 12e), the interface starts to expand and the

curvature decreases. Again, this drop in curvature causes a pressure gradient for the

wetting phase. Fig. 14 clearly shows that while the pressure of the injected non-wetting

phase remains constant in the central part of the throat, there is a pressure difference at

the corners. This pressure difference thus acts as a driving force for the corner flow of the

wetting phase from the second pore back into the throat, initiating Rayleigh instability.

At this point, snap-off occurs almost instantanously. The wetting phase accumulating in

the throat squeezes the collar of injected non-wetting phase (Fig. 12g) until it eventually

breaks up, and two separate ganglia of non-wetting phase are formed (Fig. 12i). The

newly-formed bubble will be floating within the second pore while the inlet-connected

ganglion will re-start the mechanism from a configuration equivalent to (a). The case

without snap-off does not present phenomena of flow instability. This is because when

the bubble invades the second pore the entire cross-section of the throat is filled with the

non-wetting phase, and thus the corner flowback of the wetting phase is prevented (see

Fig. 12h). This is because larger contact angles force the interface towards the corners

and thus there is less area available for the corner flow back.

These steps are made clearer by plotting the pressure drop between the inlet and the
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outlet as a function of time (see Fig. 15) for both scenarios. The same stages outlined

in the previous section apply here. For the case without snap-off, the pressure initially

rises as the bubble of non-wetting phase invades the throat (Fig. 12d). The peak in

capillary pressure, i.e. the bubble assumes its max curvature, corresponds to the point

the bubble starts filling the second pore (see Fig. 12f). Then, as the bubble invades the

second pore (Fig. 12h), the interface mean curvature decreases and so does the pressure

until it approaches its theoretical value for a single unconstricted pipe.

Conversely, when snap-off occurs, an instantaneous jump in pressure is observed as a

result of the bubble break-up. The pressure at the inlet sharply increases, since the inlet-

connected ganglion is back to the initial phase of invading the throat (see Figs. 12a and

12i), with consequent increase in curvature and capillary pressure. Besides, after snap-

off (12i) there are two nw − w interfaces with a large curvature, and therefore a large

pressure drop, with in-between a w− nw inteface with the opposite effect but with much

smaller curvature. The localization of this pressure jump in the pressure vs time graph

can therefore be used to find the exact location where snap-off occurs within the pore-

throat system. An example of this is shown in Figs. 16 and 17 for case 1.1 with circular

cross-section. For θ = 26◦, the pressure drop rises dramatically as the non-wetting fluid

invades the throat and the jump occurs at time t = 0.016 s before the curve approaches

its descending branch, that is snap-off takes place at the throat. Conversely, for θ = 28◦,

the pressure jump occurs at time t = 0.09 s when the curve is in its descending branch,

that is snap-off occurs after the non-wetting bubble has already invaded the second pore.

Finally, for θ = 30◦, snap-off does not occur.

4.4 Effects of contact angle

The time required for snap-off as a function of the contact angle for all the geometries

considered is shown in Fig. 18. These graphs reveal two major findings. Firstly, the time

required for snap-off increases with the contact angle. This can be easily explained by

the fact that larger contact angles increase the flow resistence by forcing the interface

towards the walls and thus reducing the available area for the flow back of the wetting

phase (Legait, 1983; Ransohoff and Radke, 1988). Obviously, the time required for snap-

off is generally much less for the simulations with CR = 3 that those with CR = 2. Less
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Figure 16. Pressure drop between the inlet and the outlet as a function of time for
different values of the contact angle θ (case 1.1, circular cross-section).
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Figure 17. Volume fraction distribution at the time of instantaneous snap-off, when
occurring, for different values of the contact angle θ (case 1.1, circular cross-section).
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obviously, no significant changes in the time required for snap-off are observed for the

case with longer throats.

The second aspect to highlight is that θthresh increases with diminishing the roundness

of the cross-section, passing from a value of 28◦ for the circular cross-section to values

of 30 − 34◦ and up to 40◦ for the square and triangular cross-section respectively. This

can be explained by using the concept of dimensionless flow resistence (Ransohoff and

Radke, 1988). The dimensionless flow resistence is a parameter describing the wetting

flow along the corners of a non-circular conduit and is determined solely by the geometry

of the corner (half-angle and roundness). For a given interface radius of curvature, as

the corner half-angle increases, i.e. from 30◦ of the equilateral triangular cross-section

to 45◦ of the rectangular one, the area available for the wetting flow along the corner

decreases, resulting in a greater flow resistance. This greater flow resistence therefore

acts as an impediment to the flow of the wetting phase, reducing the area available for

the flow back along the corners of the cross-section, which is the origin of the snap-off

mechanism. The circular cross-section can be seen as a limiting condition with an half-

angle equal to 90°. However, with the approximations introduced when discretizing a circle

using a structured cubic mesh, the circular cross section becomes in practice an irregular

polygon. Nevertheless, since the aim here is to simulate pore-scale events taking place in

real porous microstructures, the case with perfectly smoothed rounded capillary tubes of

circular cross-section has no practical relevance. However, circular cross-sections are used

in pore-network modelling for fairly smooth pores with high shape factors, whereas more

irregular pore shapes are usually represented by square and triangular cross-sections with

very sharp corners, such as the ones used in this study.

4.4.1 Entry capillary pressure

In this section, we compare the throat entry capillary pressure computed during the

simulations with the theoretical values for a pore with the same cross-section and infinite

length computed using the MS-P method (Mayer and Stowe, 1965; Princen, 1969). For a

circular cross-section the theoretical value of the entry capillary pressure is computed from

the curvature given by eq. (25). For the two angular cross-sections, the entry capillary
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Figure 19. Entry capillary pressure as a function of contact angle for all the geometries
considered. Legend: cross - theoretical value for circular pores, eq. (25); asterisk - MS-P
method, eq. (31); diamond - model by Rabbani et al. (2016), eq. (33); black-filled circle
- numerical value for AR=1.5; white-filled circle - numerical value for AR=5.
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pressure is computed using the following expression:

pc =
σ
(

1 + 2
√
πG cos θ

)
ri

F, (31)

where ri is the inscribed radius of the pore, G is the shape factor defined as the ratio be-

tween the cross-sectional area and the square of the perimeter, and F is a factor computed

as follows

F =
1 +

√
1 +

4GH

cos2 θ

1 + 2
√
πG

, (32)

where

H = π

(
1− θ

π/3

)
+ 3 sin θ cos θ − cos2 θ

4G
.

We also compare the entry capillary pressure against an empirical formulation given by

Rabbani et al. (2016) for angular pore shapes:

pc =

2πriσ cos θ

(
1− β

π

)
GP 2

sin(π − 2β)

sin β
, (33)

where P is the cross-section perimeter and β is the half corner angle.

The comparison between the different entry capillary pressure measures for all the

geometries considered is presented in Fig. 19. The numerical value is the maximum value

of pc,num, computed using eq. (30), recorded during the simulation. The discrepancy

between theoretical and numerical values is due to two main reasons. Firsly, theoretical

values are computed for equilibrium conditions. We have already shown in Sec. 3.2

that under these conditions the interface curvature is predicted accurately by the model.

During snap-off instead, the interface is accelerated forward and local capillary numbers

are very high. Inertial effects, neglected by theoretical models, are here accounted for in

the simulations. Secondly, while theoretical values are computed for pores of constant

cross-section and infinite length, here we have channels of variable cross-section, thus the

interface has different curvature along its whole longitudinal profile. Averaging over the

whole interface region implies that the interface curvature is determined not exclusively

by the larger curvature of the interface front within the throat, but also the interfaces

with smaller curvature in the pore-throat junction are accounted for, resulting in a smaller
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average capillary pressure. The same discrepancy was found in the work of Rabbani et al.

(2016).

4.5 Effects of viscosity ratio

The predicted values of the threshold contact angle θthresh as a function of the viscosity

ratio are shown in Fig. 20. As the graph clearly shows, θthresh decreases with increasing

the viscosity ratio. This is due to the increase in the viscous forces of the non-wetting

injected fluid relative to capillary forces when µ increases. These forces oppose the flow

of the injected more viscous phase, hence they also act as an impedement to the corner

flow back of the resident wetting phase. As a result, when the non-wetting phase invades

the throat, the interface assumes a stable configuration by filling the entire cross-section.

Hence, smaller values of the contact angle, i.e. more bending of the interface, are necessary

for increasing the area available for the wetting corner flow and therefore inducing the

flow instability that leads to snap-off. Fig. 21 clearly shows this mechanism. When

µ = 1, velocity is negative near the corners, meaning that the corner flow back of the

wetting phase is initiated. Conversely, for a higher viscosity ratio, velocity is always

positive. However, there is an increase of velocity at the corners, which are still occupied

by the resident wetting phase. This is probably due to the fact that capillary forces are

responsible for deviating the path of the fluid particles, aligning them with the interface.
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As a result the axial velocity in the transition region where the interface resides is very

low. In pratice, the velocity profile for the case with µ = 1 is a dumped version of the

one with µ = 10, with viscous forces preventing the sharpness of the velocity gradients.

Reduction in intensity and in some cases even suppression of snap-off due to high oil

viscosity was also observed experimentally (Peña et al., 2009). This is of paramount

importance for practical applications such as enhanced oil recovery and all industrial

processing involving emulsions. In particular it provides explanation for high efficiency

oil recovery when polymer-coated nanoparticles (PNPs) are used (ShamsiJazeyi et al.,

2014).

Fig. 22 shows the time required for snap-off as a function of the viscosity ratio for a

fixed value of θ = 24◦, corresponding to the threshold value of the contact angle for which

snap-off takes place for the whole range of viscosity ratios considered. This increase in

time required for snap off for increasing viscosity ratios can be interpreted as an increase

of the flow resistence due to the increase of the viscous friction, in agreement with the

work of Legait (1983) for square cross-section. Fig. 23 shows the pressure drop as a

function of the viscosity ratio for the same set of simulations. This graph illustrates

the two main differences between the cases with µ < 1 and µ > 1. Firstly, the peak

in pressure is significantly greater for higher viscosity ratio. However, this may also be

due to numerical instabilities. Secondly, when µ < 1, the invading fluid fills the throat

very rapidly as there is less flow resistance and thus no impedement to the corner flow

back of the wetting phase. On the contrary, when the invading fluid is more viscous than

the resident fluid, the time required to invade the throat is much higher, again due to

the increase in the viscous resistance. This can be distinctly observed in fig. 23 from

the duration of the stage where the pressure drop is roughly constant, i.e. before the

pressure drop starts decreasing when the injected fluid invades the second pore. This

plateau becomes progresssively longer with increasing the viscosity ratio. However, snap-

off occurs after the fluid has invaded the second pore for all cases.

Finally, we note that when the injected fluid is up to two-order of magnitude less

viscous than the resident fluid, the time required for snap-off does not significantly differ

from the case with µ = 1. This may be of help for simulations at real reservoir conditions

for practical engineering applications, such as injection of CO2 in water/brine saturated

rocks. Results shown in Fig. 22 indicate that for this pair of fluids, one may reasonably
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Figure 21. Axial velocity along the diagonal of a cross-section taken at the same position
and at the same time step as in Fig. 13a, for different viscosity ratios (case 2, θ = 30◦).

take the viscosity ratio equal to one as first approximation, and thus reduce the numerical

instabilities, i.e. vortices, which are likely to be induced by high viscosity ratios (see Sec.

3.2).

5 Summary and conclusions

A stable and accurate FV-based algorithm for modelling two-phase flow in porous media

at the pore-scale has been developed.

We applied the algorithm to study the snap-off mechanism. We simulated drainage

in a single pore-throat constriction of variable geometry and for different shapes of the

cross-sections, and investigated the role of several parameters such as contact angle, vis-

cosity ratio and capillary number. Numerical simulations were shown to be a very useful

means for understanding the dynamics of this mechanism, providing information on the

instantaneous distribution of the relevant quantities otherwise impossible to access using

traditional experiments. Snapshots of the velocity field clearly showed that snap-off is

caused by local instability of the front meniscus, when the pore-throat constriction is

such that a corner flow-back of the wetting phase is initiated.

Preliminary simulations revealed that poor resolution of the narrower throat can lead

to a non-physical building-up of the pressure field. These non-physical pressure values

may have an impact when running simulations on digital images of real rock samples. As
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Figure 22. Time required for snap-off as a function of the viscosity ratio (case 2, θ = 24◦).
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a result of the segmentation process, the narrower throats, which are the ones determining

the permeability of the medium, may potentially be resolved by very few elements, leading

to inaccurate estimates of the capillary pressure.

The study highlighted the role of contact angle and viscosity ratio in determining the

dynamics of snap-off. The threshold contact angle for snap-off, θthresh, i.e. the value of

the static contact angle above which snap-off is inhibited, has been computed for each

case. Results showed that θthresh increases with dimininshing the roundness of the cross-

section, passing from a value of 28◦ for the circular cross-section to values of 30-34◦ for the

square cross-section, and up to 40◦ for the triangular cross-section. The analysis of the

viscosity ratio has been restricted to the single case with square cross-section, AR = 1.5

and CR = 2. Increasing the viscosity of the injected phase resulted in a drop in θthresh

from a value of 30◦ when µ = 1 to a value of 26◦ when µ = 10 and down to a value of 24◦

when µ = 20. On the contrary, when the viscosity of the injected fluid is up to two-order

of magnitude less than that of the resident fluid, there is no significant difference with the

case with µ = 1.
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