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Abstract 9 

The trends of faults and fractures in overburden next to a salt diapir are generally considered to be 10 

either parallel to the salt margin to form concentric patterns, or at right angles to the salt contact to 11 

create an overall radial distribution around the diapir. However, these simple diapir-related patterns 12 

may become more complex if regional tectonics influences the siting and growth of a diapir. Using 13 

the Sedom salt wall in the Dead Sea Fault system as our case study, we examine the influence of 14 

regional strike-slip faulting on fracture patterns around a salt diapir. This type of influence is 15 

important in general as the distribution and orientation of fractures on all scales may influence 16 

permeability and hence control fluid and hydrocarbon flow. Fractures adjacent to the N-S trending 17 

salt wall contain fibrous gypsum veins and injected clastic dykes, attesting to high fluid pressures 18 

adjacent to the diapir. Next to the western flank of the salt wall, broad (~1000 m) zones of upturn or 19 

‘drape folds’ are associated with NW-SE striking conjugate extensional fractures within the 20 

overburden. Within 300 m of the salt contact, fracture patterns in map view display a progressive 21 

~30°-35° clockwise rotation with more NNW-SSE strikes immediately adjacent to the salt wall. 22 

While some extensional faults display growth geometries, indicating that they were syn-23 

depositional and initiated prior to tilting of beds associated with drape folding, other fractures 24 

display increasing dips towards the salt, suggesting that they have formed during upturn of bedding 25 

near the diapir. These observations collectively suggest that many fractures developed to 26 

accommodate rotation of beds during drape folding. Extensional fractures in the overburden define 27 

a mean strike that is ~45° anticlockwise (counter-clockwise) of the N-S trending salt wall, and are 28 

therefore consistent with sinistral transtension along the N-S trending Sedom Fault that underlies 29 

the salt wall. Our outcrop analysis reveals fracture geometries that are related to both tilting of beds 30 

during drape folding, and regional strike-slip tectonics. The presence of faults and fractures that 31 

interact with drape folds suggests that deformation in overburden next to salt cannot be simply 32 

pigeon-holed into ‘end-member’ scenarios of purely brittle faulting or viscous flow. 33 

Keywords: Salt diapir, faults, fractures, Sedom, Dead Sea Fault system 34 

 35 

1. Introduction 36 

The trends of faults and fractures in overburden adjacent to a salt diapir are generally considered to 37 

be either parallel to the salt margin to form concentric patterns, or at right angles to the salt contact 38 

to create an overall radial distribution around the diapir (e.g. Jenyon, 1986, p.75; O’Brien and 39 

Lerch, 1987; Davison et al., 1996a, 2000a, b; Marco et al., 2002; Stewart, 2006; Yin and Groshong, 40 

2007; Carruthers et al., 2013; Harding and Huuse, 2015; Dewing et al., 2016; Warren 2016, p. 536; 41 

Jackson and Hudec, 2017, p.104). Indeed, when summarising previous studies of fault patterns 42 

around circular salt diapirs or stocks, Wu et al. (2016, p.784) noted that “nearly all report radial and 43 

concentric faults in the roof and adjacent strata of salt diapirs”. The concentric fault patterns reflect 44 

salt-induced pressure normal to the diapir walls (typically the maximum principal stress, σ1), while 45 

radial faults are created by circumferential ‘hoop’ stresses parallel to the salt margin (typically the 46 
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minimum principal stress, σ3) (e.g. Nikolinakou et al., 2014; Heidari et al., 2017 and references 47 

therein). However, it is also recognised that these simple diapir-related patterns may become more 48 

complex if regional tectonics influences the siting and growth of a diapir (e.g. Quinta et al., 2012 49 

p.529; King et al., 2012; Wu et al., 2016). In this case, ‘mixed patterns’ of faults and fractures may 50 

occur that change geometry from being controlled by the regional stress field to being controlled by 51 

the sum of the regional and diapiric stresses approaching the salt (e.g. Quinta et al., 2012).  52 

Salt walls may simply be defined as linear diapirs where the cross-sectional ratio is >2 53 

(Hudec and Jackson, 2011, p.31). Although a number of recent studies have examined fracture 54 

patterns within overburden adjacent to buried or removed salt walls (e.g. Koestler and Ehrmann, 55 

1987; Storti et al., 2011), they seldom consider the influence of regional tectonics on fracturing. In 56 

addition, the role that salt plays in regional strike-slip fault systems has been relatively poorly 57 

studied in comparison to extensional tectonic settings (e.g. see Jenyon, 1986, p.66), although it is 58 

widely recognised that salt diapirs form in extensional step-overs within the overall strike-slip fault 59 

zones (e.g. Koyi et al., 2008; Hudec and Jackson, 2011, p.81, Dooley and Schreurs, 2012; Fossen, 60 

2016, p.435; Warren, 2016, p.766; Jackson and Hudec, 2017, p.336).  61 

Owing to the solubility of halite, very few places exist where the detailed field study of 62 

fracturing and timing relationships around exposed salt diapirs can actually be undertaken. The 63 

influence of regional tectonics on fracturing will depend on its timing relative to salt emplacement, 64 

when for example, late-stage tectonics results in faults and fractures that simply cross-cut and 65 

overprint diapir-related deformation of overburden (e.g. Schorn and Neubauer, 2014). Those areas 66 

where halite is exposed are typically associated with orogenic contraction, resulting in salt being 67 

laterally squeezed to create surficial flows or salt glaciers, which may then mask fault patterns in 68 

adjacent overburden (e.g. Talbot, 1979; 1998; Aftabi et al., 2010; Colon et al., 2016). Many recent 69 

studies are potentially complicated by salt diapirs being overprinted by late-stage regional 70 

contraction. They include examples of salt diapirs from La Popa in Mexico (Giles and Rowan, 71 

2012), NW China (e.g. Li et al., 2014), Sivas Basin in Turkey (e.g. Ringenbach et al., 2013; Callot 72 

et al., 2014; Kergaravat et al., 2017), Central High Atlas of Morocco (e.g. Martín-Martín et al., 73 

2017) and northern Spain (e.g. Poprawski et al., 2014, 2016). This overprinting makes the 74 

interpretation of faults and fractures adjacent to salt more problematic due to the potential for 75 

reactivation of existing diapir-related faults and/or creation of new ‘regional’ faults. Establishing 76 

the timing of diapir emplacement relative to any regional deformation is therefore critical when 77 

interpreting patterns of faulting and fracturing around diapirs. 78 

Although analysis of seismic sections may permit imaging of larger scale faulting around 79 

salt diapirs, the distribution and timing of many fractures can be difficult to ascertain due to steeply 80 

dipping beds around the flanks of the diapir, together with potential fluid movements adjacent to the 81 

salt (e.g. Davison et al., 2000a, b; Vandeginste et al., 2017; Luo et al., 2017). While drill cores and 82 

well logs may provide some help in estimating fracture intensity within the overburden (e.g. 83 

Davison et al., 2000a, b), they potentially suffer from limited and biased sampling depending on the 84 

orientation of the well, combined with possible reorientation and disaggregation during recovery 85 

and preservation of the core. Studies in salt mines also aid in the overall understanding of diapirs 86 

(e.g. Burliga, 2014; Schofield et al., 2014; Davison et al., 2017; Warren, 2017), although the focus 87 

of mining within the salt itself (rather than overburden) limits their general applicability, while the 88 

extractive process could actually enhance and influence fracturing in the overburden.  89 
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Recent experimental work by Kaproth et al. (2016) demonstrates that the most significant 90 

permeability changes in marine sediments occurs along faults with relatively small magnitudes of 91 

displacement. They conclude that “minor faults, which may be difficult to detect in seismic data, 92 

may have dramatic implications for reservoir characterization” (Kaproth et al., 2016, p.233). In 93 

summary, the geometry, orientation and distribution of fractures may be critical in determining fluid 94 

and hydrocarbon flow, and as such are important for both academic and applied studies of salt 95 

diapirism (e.g. Archer et al., 2012).  96 

These potential issues from seismic imaging, drill cores and mining through salt structures 97 

have resulted in a range of physical modelling studies to better understand salt tectonics. These 98 

experiments typically use polymers to represent salt, and either sand (e.g. Koyi et al., 2008; Hudec 99 

and Jackson, 2011), mixtures of sand and beads (e.g. Dooley et al., 2015a), silica and garnet sand 100 

(e.g. Karam and Mitra, 2016) or glass beads (e.g. Alsop, 1996) as analogues for the deformed 101 

overburden. While physical models may offer important information regarding overall deformation 102 

around diapiric structures, especially where passively monitored (e.g. Dooley et al., 2015b), they 103 

are typically incapable of providing detailed fault and fracture patterns due to scaling issues in 104 

granular overburdens. 105 

This study examines fractures and faults developed in overburden around a diapiric salt wall 106 

within a strike-slip setting. We use the well-exposed Sedom salt wall that is positioned within the 107 

sinistral Dead Sea Fault system as our case study (Figs. 1a, b). This area is ideal as salt (halite) is 108 

exposed at the surface within an active, strike-slip plate boundary, thereby removing some of the 109 

doubts and variables that develop with analysis of older structures in areas where salt may not be 110 

exposed. The area also contains abundant clastic dykes that are formed by injection of over-111 

pressured sediment during seismic events along major faults (e.g. Levi et al., 2006; 2008). Our case 112 

study forms the first detailed analysis of fracturing around an exposed halite diapir in a strike-slip 113 

setting, and aims to: 114 

i) Analyse overburden fracturing adjacent to the salt diapir; 115 

ii) Describe clastic dykes injected near the salt wall; 116 

iii) Interpret the timing of fracturing relative to drape folding of the overburden; 117 

iv) Discuss the interaction of salt-related fractures with a regional strike-slip fault system. 118 

Our field-based analyses of fault and fracture patterns around this well-exposed salt wall 119 

enables us to investigate detailed structural relationships, and thereby evaluate the relative roles of 120 

diapirism and regional strike-slip faulting in creating overburden deformation. This study may thus 121 

provide a greater appreciation of the likely patterns of fracturing around salt diapirs influenced by 122 

regional strike-slip tectonics and has clear implications for hydrocarbons in such settings (e.g. 123 

Archer et al., 2012; Jackson and Hudec, 2017, p.336). 124 

 125 

2. Geological setting  126 

The Dead Sea Basin is a sinistral pull-apart basin situated between the NNE-trending Dead Sea 127 

Western border fault zone (WBFZ) and the Dead Sea eastern border fault (Figs. 1a, b) (e.g. 128 

Garfunkel, 1981; Smit et al., 2008a, b; Garfunkel, 2014). A number of faults are developed along 129 

the length of the basin, including the sub-surface ~N-S trending Sedom Fault, which displays 130 

sinistral strike-slip motion as well as down-throwing towards the deeper basin in the east (Figs. 1b, 131 

2) (e.g. Smit et al., 2008a, b). The Sedom Fault, which separates the ‘intermediate block’ to the west 132 
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from the deeper basin, is considered to be the major strike-slip fault along the western border of the 133 

basin and underlies the Sedom salt wall (Figs. 1b, 2) (Smit et al., 2008a).  134 

The Sedom salt wall is formed of the Sedom Formation predominantly comprising 135 

evaporites (75%) including halite, anhydrite and thin dolomites, interbedded with thinner clastics 136 

formed of siltstone, mudstone, clay and sandstones (Figs. 3, 4) (Zak, 1967; Frumkin, 2009). The 137 

Sedom Formation is subdivided into five members, and incorporates the Bnot Lot Shales Member 138 

dated at 6.2 and 5.0 ± 0.5 Ma (Matmon et al., 2014) (Figs. 3, 4). This Late Miocene-Pliocene 139 

evaporite sequence penetrates the overlying Plio-Pleistocene Amora Formation and the Late-140 

Pleistocene Lisan Formation that form the exposed overburden to the salt wall, via marginal faults 141 

and shear zones (Zak and Freund, 1980; Weinberger et al., 2006b) (Figs. 3, 4). The Amora 142 

Formation is subdivided into three members as shown on Figure 4 (Agnon et al., 2006). Although 143 

only 400-450 m of Amora Formation are exposed next to the Sedom salt wall, the overall Plio-144 

Pleistocene sequence attains thicknesses of 5500 m in the southern Dead Sea Basin (Al-Zoubi and 145 

ten Brink, 2001; Weinberger et al., 2006a). Immediately to the SE of Sedom, the Sedom Deep-1 146 

drill hole penetrated a 3700 m thick fluvio-lacustrine series which overlies a 900 m thick evaporite 147 

series (Figs. 1b, 2). To the west of Mount Sedom, the Ami’az East-1 drill hole penetrated a 1300 m 148 

thick evaporite series overlain by a 1900 m thick clastic series (Weinberger et al., 2006a) (Figs. 1b, 149 

2). The base of the Lower Amora Member within the Ami’az East-1 borehole has been dated as 150 

3.3±0.9 Ma, while approximately 500 m stratigraphically higher, the Lower Amora beds are dated 151 

as 2.7±0.7 Ma (Matmon et al., 2014) (Fig. 4). Overall, the Sedom Formation thickens towards the 152 

depocentre in the east and thins towards the western margin of the basin (e.g. Zak, 1967). 153 

The crest of the Sedom salt wall is covered by a 40 m thick caprock, which consists mainly 154 

of anhydrite, gypsum, as well as minor marl, clay, dolomite and sandstone fragments. The caprock 155 

is considered to have formed from the insoluble material that remained following dissolution of the 156 

various salt members (Zak, 1967) during Upper Amora times (340-80 ka) (Zak and Freund, 1980). 157 

The late-Pleistocene Lisan Formation overlies the Amora Formation and caprock, and consists of up 158 

to 40 m of aragonite-rich and detrital-rich laminae forming a varved lacustrine sequence, dated 159 

between ~70 ka and 14 ka by U-series and 14C (Haase-Schramm et al., 2004) (Fig. 4). 160 

 161 

3. The Sedom salt wall – an exposed and growing diapir  162 

The Sedom salt wall is a ~10 km long N-S trending ridge that rises ~240 m above the level of the 163 

Dead Sea (Figs. 1b, 3). The wall is commonly divided into northern and southern segments, each of 164 

which is ~4 km long and ~1.5-2 km wide at surface (Fig. 3). These two segments are separated from 165 

one another by a narrower 2 km long central section, where the margins of the wall converge and its 166 

width reduces to 800 m (Fig. 3). The western margin of the Sedom wall dips moderately to steeply 167 

towards the west, while the eastern flank also dips variably towards the west and is overturned 168 

(Weinberger et al., 1997; Alsop et al., 2015). The northern limit of the Sedom salt wall is marked by 169 

moderate dips towards the north, where the ‘nose’ of the salt wall plunges below the surrounding 170 

overburden (Fig. 3). Seismic profiles across the salt wall suggest that it is located adjacent to the 171 

underlying Sedom Fault, a major ~ N-S trending sinistral-extensional fault that may have focussed 172 

the upward flow of salt from depths of 3-4 km (Gardosh et al., 1997; Weinberger et al., 2006a) 173 

(Figs. 1b, 2). 174 

N-S trending and west-dipping major normal faults with displacement > 10 m are developed 175 

along the western flank of the Sedom salt wall (Fig. 3) (e.g. Zak, 1967; Alsop et al., 2015, 2016a). 176 
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The recent active uplift of the salt wall has been largely accomplished via movement on these 177 

‘boundary’ faults that cut both the Lisan Formation and the salt with its overlying cap rock (Zak and 178 

Freund, 1980; Weinberger et al., 2006b; Alsop et al., 2015, 2016a). Upper Amora Member and 179 

Lisan Formation that directly overlie the Sedom salt wall represent remnants of a roof that has been 180 

carried passively upwards above regional levels by displacement on the boundary faults 181 

(Weinberger et al., 2007). The present work focuses on fractures in overburden at greater distances 182 

(up to ~ 300 m) from the margins of the salt wall. This analysis of fracturing is largely restricted to 183 

the Upper Amora Member and Lisan Formation exposed along the western margin of the salt wall, 184 

as the eastern flank is typically obscured by recent (Holocene) sediments and the Dead Sea 185 

evaporation ponds (Fig. 3). 186 

Drape folding develops close to the surface where sediments deposited above a growing salt 187 

diapir are rotated away from the salt as the diapir moves upwards relative to a subsiding basin (see 188 

Giles and Rowan, 2012; Alsop et al., 2016a for summaries). The Sedom salt wall displays broad 189 

(>1000 m) areas of upturned bedding that form drape folds, together with withdrawal basins, and 190 

angular unconformities defining wedge shaped halokinetic sequences that reflect a phase of 191 

dominantly passive diapirism during deposition of the Upper Amora Member (Alsop et al. 2016a). 192 

Conversely, during deposition of the overlying Lisan Formation, the Sedom salt wall predominantly 193 

displays active diapirism resulting in narrower (<300 m) drape folds and active boundary faults 194 

along the margin of the salt wall, which truncate hook-shaped halokinetic sequences and transport 195 

them above regional elevations (Alsop et al., 2016a). The Sedom salt wall is not thought to have 196 

grown laterally since deposition of Upper Amora Member, as withdrawal basins are still intact 197 

around the northern and southern noses of the salt wall (Alsop et al., 2016a).  198 

 199 

4. Fracture patterns in overburden around the salt wall  200 

4.1. Overview of bedding and fracture orientations around the Sedom salt wall 201 

Beds within the Upper Amora Member and Lisan Formation dip away from the Sedom salt wall on 202 

both its western and eastern flanks (Figs. 3, 5a, b). Deformation within the overburden on the 203 

western margin of the salt wall is marked by moderately-steeply dipping NW-SE trending fractures 204 

(Figs. 3, 5c, d, e), while fractures within the Upper Amora Member on the eastern side of the salt 205 

more generally trend NE-SW (Figs. 3, 5f). Larger faults within the Upper Amora Member and 206 

Lisan Formation, that display metres to tens of metres displacement, are typically developed within 207 

300 m of the salt margin (e.g. Fig. 6a-d), although smaller fractures displaying < 1m displacement 208 

are also widespread in this area (e.g. Fig. 6e-g). Fractures within both the Upper Amora Member 209 

and Lisan Formation are typically extensional and generally form conjugate and domino systems 210 

with fractures dipping > 60° towards either the NE or SW (Figs. 5g-o, 6h, i, 7a-o). Overall, although 211 

the intensity and spacing of fractures is difficult to quantify due to the lack of flat bedding plane 212 

exposures, fracture abundance appears to increase qualitatively towards the Sedom salt wall. 213 

 214 

4.2. Orientation of bedding along the western salt margin 215 

The Upper Amora Member and overlying Lisan Formation display a progressive increase in 216 

bedding dips when traced towards the western margin of the Sedom salt wall (Figs. 3, 5a, 8a). 217 

Increased angles of bedding dip are attributed to syn-depositional drape folding of sediments around 218 

the diapir as it rises relative to the sediments (see Alsop et al., 2016a for details). These drape folds 219 

are developed on both the western and eastern flanks of the salt wall (Figs. 3, 5b), although they are 220 
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better displayed on the west due to greater exposure. Moving toward the salt wall, bedding dips start 221 

to increase at distances of 1250 m from the western margin of the salt wall within the Upper Amora 222 

Member, although the most pronounced increase occurs within 300 m (Figs. 3, 8a). The broad 223 

wedge-shaped drape folds within the Upper Amora Member were created during passive diapirism, 224 

while the narrower hook-shaped drape fold in the Lisan Formation represent more active diapirism 225 

(Fig. 8a) (Alsop et al. 2016a). Adjacent to the Sedom salt wall, the two sequences are separated 226 

from one another by an angular unconformity, with the angle of cut-off across the unconformity 227 

increasing towards the salt (Fig. 8b).  228 

 229 

4.3. Strike and dip of fractures along the western salt margin 230 

Fractures in both the Upper Amora Member and Lisan Formation generally trend NW-SE, and in 231 

map view display a progressive clockwise rotation in strike towards the western margin of the salt 232 

wall (Figs. 5g-o, 7a, b, 7k-o, 8c-f). At distances of 300 – 200 m from the salt, they have mean 233 

strikes of 109° (Lisan Formation) and 127° (Upper Amora Member), while adjacent (<100 m) to the 234 

salt they typically strike 144° and 155° respectively (Fig. 5g-o, Table 1). This rotation in fracture 235 

trends towards the N-S trending salt wall is summarised in a series of rose diagrams (Fig. 9) and a 236 

schematic map (Fig. 10a) that present subsets of fracture data from greater distances (300 m -200 m, 237 

Fig. 9a, b; 200 m – 100 m, Fig. 9c, d) to closer to the salt wall (0 – 100 m, Fig. 9e, f).  238 

At any given distance from the salt margin, the fractures in the Upper Amora Member 239 

typically strike clockwise of those fractures in the overlying Lisan Formation (Fig. 8e, f, 9a-f, 10a). 240 

This is also illustrated when fracture strikes are compared to the dip of bedding, with steeper 241 

bedding in the Upper Amora Member closer to the salt reflecting upturn over a more protracted 242 

interval (Fig. 8g, h). In addition, fractures developed within both the Upper Amora Member and 243 

Lisan Formation in the southern Sedom salt wall are marginally more clockwise than those adjacent 244 

to the northern portion (Fig. 8f). This relationship mirrors the overall bend in the Sedom salt wall, 245 

with the southern segment trending ~20° clockwise of the northern salt wall (Fig. 3). Rose diagrams 246 

of overall fault trends (Fig. 9a-f) display a bimodal tendency, which reflects the different strikes of 247 

NE and SW dipping extensional faults (Fig. 8e, f) together with the slight bend in the northern and 248 

southern segments of the salt wall (Figs. 3, 5g-o).  249 

 The ~30° clockwise rotation of mean fracture strikes towards the salt (Fig. 9a-f, 10a) is also 250 

marked by fracture dips becoming steeper nearer the salt (Fig. 5g-o, 8i, 10b). Considerable ‘scatter’ 251 

exists in the dip of fracture planes compared to distance from the salt margin, although fractures 252 

typically get steeper to sub-vertical (~70°-80°) nearer the salt (Fig. 8i, 10b). Within ~50 m of the 253 

salt, some east-dipping fractures in both the Upper Amora Member and Lisan Formation become 254 

less steeply dipping (~65°) (Figs. 8i, 10b). 255 

 256 

4.4. Strike and dip of fractures around the nose of the salt wall 257 

Further constraints on fracture controls and timing are provided by measuring the orientation of 258 

fractures within the Upper Amora Member exposed around the lateral terminations or ‘nose’ of the 259 

salt wall. Overburden around the northern nose is better exposed than that at the southern 260 

termination, with moderately NW-dipping bedding containing a conjugate system of NW-SE and 261 

NNE-SSW trending extensional fractures (Fig. 3, 7c, d, e). On the NW side of the nose, bedding 262 

dips moderately towards the NW and conjugate fractures trend NW-SE (Fig. 3, 7c), while on the 263 

NE side, the bedding dips moderately-gently towards the NE and conjugate fractures trend NNE-264 
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SSW (Fig. 3, 7e). The conjugate fractures collectively fan around the northern nose, and this pattern 265 

is mirrored at the southern nose, although it is less clear due to relatively poor exposure of the 266 

overburden (Fig. 7i, j, k). 267 

 268 

4.5. Strike and dip of fractures along the eastern salt margin 269 

Although overburden along the eastern margin of the Sedom salt wall is poorly exposed due to 270 

recent alluvium and Dead Sea evaporation ponds, it does provide useful information about overall 271 

fracture patterns around the diapir as a whole (Figs. 5f, 7f, g, h). The Lisan Formation is nowhere 272 

exposed along this eastern contact, and overburden consists entirely of Lower and Upper Amora 273 

Member separated by the intervening Amora Salt Member (Figs. 3, 4). Along the eastern flank of 274 

the salt wall, bedding in the Upper Amora Member dips moderately-steeply eastward (and may 275 

locally become overturned) (Figs. 3, 5b), while fractures trend NNW-SSE and NE-SW (Figs. 3, 5f, 276 

7f, g, h). Where fracture orientations in the Lower and Upper Amora Members were collected 277 

adjacent to one another, the fractures in the Upper Amora Member strike marginally clockwise to 278 

those in the Lower Amora Member (Fig. 7g), although the two populations do overlap.  279 

 280 

5. Nature and timing of fractures in overburden around the salt wall  281 

5.1. Extensional fractures in the overburden 282 

Conjugate (e.g. Fig. 11a, b) and domino-type (e.g. Fig. 11c, d, e) fracture systems are developed 283 

throughout the Upper Amora Member and Lisan formations adjacent to the Sedom salt wall (Figs. 284 

6a-i, 7a-o, 11a-e). NW-SE trending extensional fractures dip at angles of ~60° and define conjugate 285 

patterns in both the Upper Amora Member and Lisan Formation (Figs. 6a-i, 7a-o, 11a, b). Most 286 

conjugates form intersections plunging broadly in the dip direction of bedding (Figs. 6h, i, 11a, b), 287 

suggesting that the greatest stretching of beds is parallel to their strike along the N-S length of the 288 

Sedom salt wall.  289 

 290 

5.2. Age of fractures in the overburden 291 

Fractures cutting poorly lithified sediments rarely preserve slickensides, but those lineations that 292 

were observed indicate normal dip-slip motion down the fault plane and also suggest a degree of 293 

lithification within the Upper Amora Member at the time of faulting (Fig. 11f). However, 294 

conglomerate layers are ‘smeared’ along faults within the Upper Amora Member, suggesting in this 295 

case that the matrix to these units was not fully lithified at the time of faulting (Fig. 11g). Some 296 

conjugate fractures do not meet at a lower ‘point’, but rather are accommodated in underlying beds 297 

of sand that undergo thinning and are able to flow to assist extension and dilation (e.g. Morley, 298 

2014) (e.g. Fig. 11i). These relationships support the ‘soft-sediment’ nature of deformation adjacent 299 

to the salt, and suggest that the fractures formed early rather than later in the tectonic history. Faults 300 

cut through entire slumped horizons within the Lisan Formation (e.g. Fig. 11h), suggesting that they 301 

do not relate to regional slumping and development of mass transport deposits (e.g. Alsop and 302 

Marco, 2014; Alsop et al., 2016b; 2017), but rather stretching of beds as they accommodate 303 

subsequent diapir movement. In summary, some faults preserve slickensides and cut through entire 304 

sequences, suggesting they formed relatively ‘late’. Other fractures preserve ‘soft-sediment’ 305 

smearing of conglomerates, flow within sandstone, and hangingwall ‘growth’ sequences (e.g. Fig. 306 

6g) indicating faults were ‘early’ and syn-depositional (Alsop et al., 2016a).  307 

 308 
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5.3. Clastic dykes in the overburden  309 

Clastic dykes formed by injection of overpressured sediment are developed over large parts of the 310 

Ami’az Plain (Levi et al., 2006, 2008, 2011) where they typically define mode 1 (opening) fractures 311 

(Fig. 7a). The clastic dykes apparently propagated at velocities of tens of metres per second and at 312 

pressures of 1-10 MPa (Levi et al., 2008). They appear to be restricted to the Lisan Formation, 313 

where they act as markers to define horizontal displacement during coseismic deformation 314 

(Weinberger et al., 2016). Clastic dykes are also well developed in the Lisan Formation near the 315 

western margin of the narrower central part of the Sedom salt wall (around Grid 23635550, see Fig. 316 

3), where they are typically between 5 cm and 20 cm thick, and can form intense networks of 317 

injected dykes that display branching geometries (Fig. 12a-e). In plan view, the clastic dykes 318 

typically define linear intersections on bedding planes (Fig. 12d). Adjacent to the diapir, they are 319 

frequently marked by extensional offset of bedding, suggesting shear fractures rather than mode 1 320 

opening as observed on the Ami’az Plain (Levi et al., 2006, 2008) (Fig. 12b-e). The lack of 321 

sedimentary growth geometries on fractures filled by clastic dykes indicates that they did not simply 322 

utilise and infill older syn-sedimentary faults. Clastic dykes injected along fractures are typically 323 

NW-SE to N-S trending, dip at angles of >60° and may intrude along both domino and conjugate 324 

extensional faults (Fig. 12f-j). The injection of clastic dykes suggests high fluid pressures associated 325 

with hydraulic fracturing.  326 

 327 

5.4. Gypsum veins in the overburden  328 

Gypsum veins are more abundant towards the margin of the salt wall in both the Upper Amora 329 

Member and Lisan Formation, but are largely absent at greater distances (> 300 m) from the salt 330 

contact, apart from very locally within some mass transport deposits (Alsop et al., 2017). Within 331 

~50 m of the Sedom salt wall, the overburden is intensely fractured and contains significant 332 

amounts of gypsum net-veining (Fig. 13a, b, c) (see also Alsop et al., 2015, their fig. 9). Gypsum-333 

filled fractures form NW-SE trending conjugate systems of similar orientation to previously 334 

described faults and clastic dykes. (Fig. 13c, d, e). They are up to 3 cm thick, and commonly 335 

develop parallel to bedding planes with steep fibres suggesting sub-vertical ’jacking open’ of the 336 

fractures via high fluid pressures (see Davison et al., 1996b; Alsop et al., 2015 their fig. 9f) (Fig. 337 

13f, g). We find no evidence that the currently observed gypsum veins initiated as early anhydrite 338 

that subsequently underwent hydration and 30-67% volume increase as they transformed into 339 

gypsum (see Warren 2016 p. 667 for details of the process). All observed veins contain gypsum 340 

(without anhydrite), and no hydration-induced folds linked to the potential volume increase are seen 341 

in the finely-laminated Lisan Formation near the gypsum veins. Thus, clastic dykes coupled with 342 

gypsum vein complexes indicating vertical ‘jacking-up’ of overburden collectively suggest that 343 

high fluid pressures were locally developed around the salt wall. 344 

 345 

5.5. Contractional faults in the overburden  346 

Despite the Sedom salt wall undergoing a recent phase of active diapirism since 14 ka (e.g. 347 

Weinberger et al., 2007; Alsop et al., 2016a), evidence for contractional faulting in the overburden is 348 

very limited (Fig. 14a). Within the Lisan Formation, rare NE-SW striking and moderately (~45°) SE-349 

dipping reverse faults displace bedding by ~ 10 cm (Fig. 14a-e). The observation that reverse faults 350 

also cut slumped horizons, and displace the hangingwall towards the NW in a direction opposite to 351 

the general slump direction (e.g. Alsop and Marco, 2012a, b) indicates that reverse faults do not 352 
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relate to mass transport events within the Lisan Formation. Reverse faults are locally cut by clastic 353 

dykes, demonstrating that reverse faulting is not a younger event and is broadly of the same age as 354 

extensional faulting (Fig. 14d, e). Clastic dykes may display extensional offsets of bedding and the 355 

earlier thrusts (Fig. 14d, e). The strike of reverse faulting (047º) (Fig. 14b) is orthogonal to the trend 356 

of local extensional fractures on the western flank of the salt wall (Fig. 5n, o). 357 

 358 

6. Discussion 359 

6.1 Overburden fracturing adjacent to a salt diapir 360 

Outcrop studies have previously suggested that small-scale deformation in the sedimentary 361 

overburden around salt diapirs is relatively insignificant (e.g. Rowan et al. 2003, p.737). Indeed, the 362 

role of smaller faults and fractures in the development of drape folds around salt diapirs is typically 363 

not discussed in detail (e.g. Giles and Rowan, 2012; Ringenbach 2013). Perhaps, this approach is a 364 

consequence of salt being considered weaker than surrounding sediments and therefore capable of 365 

absorbing deformation (e.g. Schultz-Ela, 2003, p. 760), while smaller faults are difficult to image on 366 

seismic sections. Hearon et al. (2015a, p203) working on outcrops of Neoproterozoic strata in south 367 

Australia noted that even below the remains of salt sheets “no small-scale subsalt deformation such 368 

as shearing, fracturing or pervasive faulting is present” while Rowan et al. (2016, p.1741.) 369 

described the upturned sequences next to the same diapirs as containing “almost no small-scale 370 

faulting”. Working on Albian-aged diapirs in the Pyrenees, Poprawski (2014, p.763) recorded that 371 

“most of faults affecting the overburden are related to regional tectonics and not to diapir growth”. 372 

However, recent analysis of magnetic fabrics around these Pyrenean diapirs by Soto et al. (2017) 373 

suggests that diapir-related deformation may locally be preserved within the overburden. Likewise, 374 

numerical modelling undertaken by Nikolinalou et al., (2017) indicates that significant shear strains 375 

and deformation may indeed develop within upturned sediments around the flanks of salt diapirs. 376 

The question arises as to whether drape folds developed in unlithified sediments are indeed 377 

capable of developing brittle faults and fractures, as suggested by Alsop et al. (2000) for 378 

Carboniferous-aged diapirs in Nova Scotia (see also Vargas-Meleza et al., 2015). This problem is 379 

non-trivial as small faults and fractures may be crucial for fluid and hydrocarbon migration (e.g. 380 

Kaproth et al., 2016). In an attempt to answer this question and provide some ‘ground-truthing’ for 381 

numerical models of overburden deformation (e.g. Nikolinalou et al., 2017), we have tried to isolate 382 

the influence of the salt diapirism from regional tectonic faults such as the Sedom Fault that 383 

underlies the diapir (Figs. 1b, 2).  384 

Firstly, we have examined the nature of the Lisan Formation adjacent to the regional 385 

western border fault zone (WBFZ) just 5 km further west (Grid 23245551), and along which no salt 386 

diapirs are present (Fig. 1b). After detailed field examination, we report that no enhanced fracturing 387 

has been observed within the Lisan Formation adjacent to the WBFZ (Figs. 1b). Although this 388 

absence of evidence is not conclusive, as it could be argued that this portion of the WBFZ was 389 

simply not active during or after deposition of the Lisan Formation, it suggests that at least some of 390 

the observed fractures near to the Sedom salt wall are generated by salt emplacement rather than 391 

regional tectonics.  392 

Secondly, we examined the Upper Amora Member and Lisan Formation that lie above the 393 

continuation of the subsurface Sedom Fault beyond the northern and southern terminations of the 394 

Sedom salt wall. Once again, we report that no enhanced fracturing was observed along the 395 

projected surface trace of the fault beyond where the salt is exposed. In addition, the Sedom Fault is 396 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
01/11/2017        Alsop et al.         Faulting and fracturing in overburden around salt            10 

developed adjacent to the Sedom salt wall only in the central narrow section, and then deviates 397 

away from the salt wall to the north and south (Figs. 1b, 3). However, fractures are developed all 398 

the way along both the western and eastern salt margins and also around the northern nose of the 399 

salt wall (Fig. 7), thereby suggesting that the salt wall mainly controls fracturing.  400 

Thirdly, clastic dykes with notable extensional offset and gypsum veins were only recorded 401 

adjacent to the exposed salt and are not observed along the WBFZ (e.g. Figs. 12, 13). However, 402 

injected clastic dykes are best developed in the Lisan Formation near the narrower central area of 403 

the salt wall where the subsurface Sedom Fault is interpreted to be close to the salt (Figs. 1b, 3). 404 

Fourthly, the width of upturned bedding associated with drape folds extends for greater 405 

distances from the western Sedom salt wall into the Upper Amora Member than in the overlying 406 

Lisan Formation (Alsop et al., 2016a) (Figs. 5a, 8a, b). The fracture trends in the Upper Amora 407 

Member are clockwise to those in the Lisan Formation and this obliquity, which ranges across the 408 

entire upturned area, becomes more pronounced at greater distances from the Sedom salt wall (Figs. 409 

5m, n, o, 9a-f, 10a). As the underlying and steeply dipping Sedom Fault is at an equivalent distance 410 

to both the Upper Amora Member and Lisan Formation, it is difficult to link variable fracture trends 411 

to the Sedom Fault itself. However, if fracturing partially occurred during upturning of beds then 412 

any obliquity in fracture trends simply reflects the greater amounts of upturn in the Upper Amora 413 

Member compared to the Lisan Formation at any given distance from the salt wall (Fig. 8g, h). 414 

In summary, our observations collectively suggest that at least a significant component of 415 

fracturing is related to drape folding associated with salt diapirism (Fig. 10a, b). This conclusion 416 

differs from those of Hearon et al. (2014; 2015b), Poprawski (2014), and Rowan et al. (2016), who 417 

all suggest that little or no faulting relates to salt diapirism and drape folding. Our observations of 418 

the fracture population adjacent to the Sedom salt wall may reflect: a) the nature of the lithologies 419 

together with the rapid rates of salt movement and uplift along the Sedom salt wall that are 420 

estimated at ~ 5 mm per year (Alsop et al. 2016a; Weinberger et al., 2007); b) superb quality of 421 

outcrop that permits detailed observations along the actively rising diapir; c) absence of any later 422 

regional contractional overprint, which would have possibly masked diapir-related fractures in 423 

studies of older diapirs; and d) the linear geometry of salt walls may encourage greater fracturing 424 

than typically observed around circular salt stocks. 425 

 426 

6.2. Clastic dykes injected near a salt wall 427 

The injection of clastic dykes along extensional fractures that share similar orientations and 428 

kinematics to faults observed along the entire western flank of the Sedom salt wall suggests that 429 

some clastic dykes relate to the Sedom salt wall (Fig. 12f-j). However, the prevalence of clastic 430 

dykes near the narrower central section of the salt wall, where the subsurface Sedom Fault is 431 

adjacent to the salt, suggests that some clastic injections may be created by seismicity along this 432 

underlying fault. This interpretation is supported by the ‘branching geometry’ of injected clastic 433 

dykes (Fig. 12d, e) and their spacing density (Fig. 12c-e) that implies high fracture and injection 434 

velocities (Levi et al., 2008). Although clastic dykes are capable of being intruded in areas of 435 

contraction (e.g. Palladino et al., 2016), they more typically inject in areas undergoing extension, 436 

such as represented by normal faults near the Sedom salt wall.  437 

Optically stimulated luminescence (OSL) ages of quartz from within the clastic dykes on the 438 

Ami’az Plain give ages of between 15 and 7 ka (Porat et al., 2007), which post-dates deposition of 439 

the 70-15 ka Lisan Formation (Haase-Schramm et al., 2004). Clastic dykes intruded along 440 
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extensional faults adjacent to the Sedom salt wall are also younger than the Lisan Formation, and 441 

possibly relate to boundary faults that cut caprock developed above the salt wall (e.g. Zak, 1967, 442 

Alsop et al., 2016a). In summary, we interpret the clastic dykes near the western margin of the 443 

Sedom salt wall as being created by fluidisation and injection of over-pressured sediment along 444 

hydraulic fractures, potentially linked to seismicity and movement along the underlying Sedom 445 

Fault. A further implication of these clastic dykes centred near to, and directly above salt, is that the 446 

largely unconsolidated sediment within dykes forms easily erodible conduits, resulting in crevasses 447 

that would facilitate overall break-up and ‘spalling’ of overburden blocks off the growing salt wall.  448 

 449 

6.3. Timing of fracturing relative to drape folding of the overburden  450 

Having established that a significant portion of the fracturing history is coeval with the diapiric rise 451 

of salt (see section 6.1. above), we now consider the relative age relationships between drape 452 

folding and fracturing.  453 

 454 

6.3.1. Could fractures develop before drape folding?  455 

Extensional faults display sedimentary growth geometries in both the Upper Amora Member 456 

deposited between 340 – 80 ka (Torfstein et al., 2009) and also the younger Lisan Formation 457 

deposited between 70 – 14 ka by U-series and 14C (Haase-Schramm et al., 2004), and therefore are 458 

clearly syn-depositional (see also Alsop et al., 2016a) (e.g. Fig. 6g). Such growth faults would then 459 

undergo a component of rotation as beds are subsequently tilted into drape folds (Alsop et al., 460 

2016a) (Fig. 15a). However, the majority of east-dipping fractures developed at 200-300 m from the 461 

salt margin do not display growth geometries and become more steeply dipping at distances of 100-462 

200 m from the salt (Figs. 8i, 10b). Notably, any early fractures dipping eastwards would be 463 

expected to dip more shallowly east (< 30°) if they were rotated along with bedding nearer the salt 464 

(Figs. 8a, 15a). Conversely, original west-dipping extensional fractures could rotate through the 465 

vertical to become east-dipping faults with apparent thrust sense (Fig. 15a). Such relationships are 466 

not observed along the flanks of the Sedom Salt wall. 467 

In summary, faults do not display a distinct or simple linear pattern of changing dips with 468 

increased tilt of bedding in drape folds (Fig. 8j, 10b), suggesting no overall rotation of faults. Thus, 469 

although some fractures are early and syn-depositional with respect to the Upper Amora Member 470 

and Lisan Formation, most fractures would appear to be later and do not develop before drape 471 

folding of beds.  472 

 473 

6.3.2. Could fractures develop after drape folding?  474 

Faults and fractures that developed late in the deformation history following the creation of drape 475 

folds might be expected to have an overprint of reasonably constant orientations across the zone of 476 

upturned bedding (Fig. 15b). However, our data demonstrate a distinct and systematic increase in 477 

fracture dips and strikes towards the salt (Figs. 8, 9a-f, 10a, b). Within 50 m of the salt, east-dipping 478 

extensional faults within both the Upper Amora Member and Lisan Formation locally dip at 60°-479 

65° (Fig. 8i), which is the angle that fractures preserve in the outer (> 250 m) parts of the drape fold 480 

(Fig. 10b). This consistency suggests that some fractures immediately adjacent to the salt may form 481 

relatively late and be superimposed on upturned bedding (Fig. 15b). Although it could be argued 482 

that variably orientated bedding played a mechanical role and locally influenced fracture 483 

orientation, we believe this to be unlikely as sediments are exceptionally weak and were largely 484 
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unlithified or, at best, very poorly lithified at the time of deformation. The Upper Amora Member 485 

remains very poorly lithified while the Lisan Formation still contains 25% water and is largely 486 

unlithified (Arkin and Michaeli, 1986). Therefore, the systematic variations in fracture patterns are 487 

inconsistent with a deformation history where fractures were universally superimposed on the drape 488 

folded units at a late stage, and we discount that possibility.  489 

 490 

6.3.3. Could fractures develop during drape folding?  491 

The development of fractures during drape folding adjacent to the Sedom salt wall is broadly 492 

supported by the first-order observation that the zone of fracturing is largely restricted to, and 493 

coincides with the extent of drape folding (Figs. 3, 8a, c, 10a, b, 15c). Adjacent to the Sedom salt 494 

wall, fracture strike and dip vary appreciably within both the Upper Amora Member and Lisan 495 

Formations as the salt contact is approached (Figs. 5g-o, 8a-j, 9a-f, 10a, b). Fractures typically 496 

strike NW-SE and dip towards both the NE and SW, generally at angles >60° (Figs. 5, 7, 8, 9a-f, 497 

10a, b). However, most fracture data is collected within 250 m of the salt margin, which is the point 498 

where more marked upturn of the bedding commences to define drape folds (Alsop et al., 2016a). In 499 

addition, the intensity of fracturing qualitatively increases as bedding dip increases, although clearly 500 

different lithologies may also influence this general pattern. The observation that fracture trends 501 

systematically vary as bedding dips increase towards the salt is consistent with fractures forming 502 

during rotation and upturn of beds into drape folds (Figs. 5, 8g, h, 15c). As might be expected, 503 

steeper bedding dips in the Upper Amora Member are associated with more clockwise trending 504 

fractures when compared to the overlying Lisan Formation (Figs. 5m, n, o, 8g, h). The general 505 

increase in fracture dip and intensity towards the salt wall is consistent with fractures 506 

accommodating some of the bedding rotation during drape folding (Fig. 10b, 15c). Our observations 507 

collectively suggest that a significant proportion of fractures developed around the entire Sedom 508 

salt wall during drape folding, rather than before or after it. However, we cannot exclude the 509 

possibility that at least some fractures initiated pre-rotation and were associated with growth 510 

faulting, while others are post-rotation and link to continued movement on boundary faults or the 511 

underlying Sedom Fault.  512 

 513 

6.3.4. Protracted fracturing within older drape folded sequences 514 

Within the Upper Amora Member, it is not generally possible to separate fractures which formed 515 

during the older passive phase of diapirism from those which are younger and formed during the 516 

subsequent active phase of diapirism associated with deposition of the overlying Lisan Formation. 517 

Exceptions to this issue include some extensional faults that are clearly cut by the unconformity at 518 

the base of the Lisan Formation, while other faults displace this unconformity and must therefore be 519 

younger (Alsop et al., 2016a). However, fractures in the Upper Amora Member collectively display 520 

more variable patterns suggesting that they may have a more protracted history, including being 521 

affected by younger fractures associated with active diapirism (Alsop et al., 2016a). Older fractures 522 

formed during drape folding of the Upper Amora Member would, together with bedding, be 523 

subsequently rotated further during active diapirism. This possibility is clearly illustrated by 524 

examining the angle of cut-off preserved within the Upper Amora Member across the base Lisan 525 

unconformity (Figs. 8a, b, 10b). At distances of 250 m from the salt, cut-off angles of 20° are 526 

preserved along the base Lisan unconformity (Fig. 8b), suggesting that the underlying syn-Upper 527 

Amora Member fractures will also rotate by this amount prior to deposition of the overlying Lisan 528 
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Formation. However, observed angles of fracture may display significantly less variation than this 529 

(Fig. 8i, j), as the strike of mean fractures in the Upper Amora Member at this distance is 120°, 530 

which is only 30° oblique to the direction of rotation along the N-S trending salt wall in map view 531 

(i.e. steep faults parallel to the direction of rotation will simply tend to rotate within their own 532 

plane). In summary, some faults and fractures are early because they have growth geometries and/or 533 

are cut by the base Lisan unconformity, whereas others are relatively late as they cut and displace 534 

this unconformity or are infilled by clastic dykes dated at 15-7 ka (Porat et al., 2007). 535 

 536 

6.4. Interaction of salt-related fractures with a regional strike-slip fault system 537 

The role of strike-slip faulting in salt tectonics was recently summarised by Jackson and Hudec 538 

(2017, p.336) who highlight the importance of diapir timing relative to thick-skinned (whole-539 

crustal) or thin-skinned strike-slip tectonics. Within the study area, the crustal-scale Dead Sea Fault 540 

system is thick-skinned and initiated during the early Miocene (Nuriel et al., 2017), while diapirism 541 

associated with the Sedom salt wall did not commence until the Plio?-Pleistocene when the Amora 542 

Formation was deposited over the Sedom Formation and then around the growing salt diapir (Figs 543 

3, 4) (Weinberger et al., 2006; Alsop et al., 2016a).  544 

Fracture trends measured in map view from the southern portion of the Sedom salt wall are 545 

marginally clockwise of those measured in the north, because the contact of the Sedom salt wall is 546 

also orientated slightly clockwise (Figs. 3, 5g-l, 8f). Overall, the Sedom salt wall has a ‘banana’ 547 

shape in map view, with the southern segment trending clockwise of the northern portion. This 548 

geometry could reflect a gentle curvature in the underlying Sedom Fault (Fig. 1b), with the concave 549 

to the west geometry resulting in a ‘pull-apart’ during sinistral motion. Alternatively, the Sedom 550 

Fault could be segmented with left-stepping faults leading to a pull-apart between them. The source 551 

of a suggested extrusive salt flow from the Sedom salt wall at 420 ka (Alsop et al., 2015) is located 552 

in this potential pull-apart along the Sedom Fault strands. Similar models of extrusive salt flows 553 

emanating from pull-aparts have been proposed for Iranian salt glaciers by Talbot and Aftabi 554 

(2004). In addition, injected clastic dykes with extensional offsets and branching geometries (Fig. 555 

12a-j) are also developed in this central area of the Sedom salt wall. They may reflect high velocity 556 

intrusion and failure associated with seismicity and tensional ‘wing cracks’ (see Fossen, 2016, 557 

p.406) developed from the terminations of underlying step-over strands.  558 

On a more regional scale, the N-S trending Sedom salt wall forms in a transtensional pull-559 

apart jog within the overall NNE-SSW trending sinistral Dead Sea Fault system (e.g. Smit et al., 560 

2008a, b). Larsen et al (2002) suggested that the N-S trending Sedom Fault has undergone sinistral 561 

strike-slip tectonics as well as extensional motions that downthrow toward the deeper basin in the 562 

east (Figs. 1b, 16). Subsequently, Smit et al. (2008a, p.6) even suggested that the Sedom Fault “is 563 

the main strike-slip fault along the western border of the basin”. It is the obliquity of this N-S 564 

trending strike-slip fault relative to the major strike-slip discontinuity marking the NNE-trending 565 

Dead Sea Fault system that creates increased horizontal extension and diapirism above the Sedom 566 

Fault (Smit et al., 2008a, p.11) (Fig. 16). 567 

The laboratory experiments of Smit et al. (2008a, b, 2010) and Brun and Fort (2008) suggest 568 

that above the intermediate block to the west of the Sedom Fault, the overburden is still ‘coupled’ to 569 

the underlying basement due to the salt being thinner than in the deeper basin (Smit et al. 2008a, 570 

p.11) (Figs. 1b, 2, 16). This coupling allows the overburden to be subjected to simple shear 571 

associated with basement-driven sinistral strike-slip deformation, and results in NW-SE trending 572 
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normal faults developed perpendicular to the λ1 principal stretching direction in the overburden 573 

(Smit et al., 2008a their fig. 13b). These oblique normal faults formed at later stages of deformation 574 

with an obliquity of ~45° to the shear direction (Smit et al., 2008a, p.13). Our detailed fracture 575 

analysis in the study area supports this model-based interpretation (Figs. 5, 7, 9, 16). Contractional 576 

reverse faults are modelled by Smit et al. (2008a) to develop normal to the principal shortening 577 

direction (λ3) and would trend NE-SW, which we also confirm for the small population of reverse 578 

faults that we found and characterised (Figs. 14, 16).  579 

The presence of the ductile salt layer results in more distributed strike-slip deformation in 580 

the overlying overburden. Consequently, contractional and extensional deformation affects wider 581 

zones in the overburden above the salt, with continuing strike-slip deformation resulting in rotation 582 

of extensional structures thereby leading to ‘sigmoidal’ traces that curve toward the shear direction 583 

in map view (Smit et al., 2008a, p.13; see also Dooley and Schreurs, 2012). This swing in 584 

extensional fracture trends is clearly recorded in the present study (Figs. 5g-i, 8, 9, 10a, 16). 585 

In summary, the rare NE-SW trending reverse faults, together with the NW-SE striking 586 

normal faults that collectively rotate towards more NNW-SSE orientations in the overburden 587 

adjacent to the Sedom salt wall largely confirm and support the modelling of Smit et al. (2008a, b). 588 

The overall distribution of fractures adjacent to the Sedom salt wall indicates that they are 589 

associated with upturn of bedding and drape folding, while the orientation and systematic rotation 590 

of extensional fracture trends indicates that they are also linked to regional strike-slip tectonics 591 

along the Sedom Fault. Smit et al. (2008a, p. 12, their fig. 11) show from modelling that such 592 

extensional fractures may develop sigmoidal shapes in map view where they rotate towards major 593 

strike-slip faults bounding elongate diapirs or walls, and collectively “indicate N-S stretching in this 594 

area” (Smit et al., 2008a, p.10). We therefore have two competing influences on the generation of 595 

small faults and fractures in overburden linked to a) diapiric processes associated with the upturn of 596 

bedding and development of drape folds around the Sedom salt wall, and b) regional tectonic 597 

processes associated with the sinistral Sedom Fault that underlies the salt wall. This results in a 598 

‘mixed pattern’ of fractures that has developed over a protracted period of time during both passive 599 

and active growth of the salt wall. 600 

 601 

7. Conclusions 602 

The development of overburden fractures within upturned bedding on both the western and eastern 603 

margins of the diapiric Sedom salt wall demonstrates that fracturing is a significant and integral 604 

process during drape folding. Zones of intense minor faulting and fracturing that are spatially 605 

restricted to the lateral margins and nose of the salt wall, may reflect the rapid rise of salt at rates of 606 

~ 5 mm / year (see Alsop et al., 2016a; Weinberger et al., 2007), combined with the elongate shape 607 

of the salt wall. Fractures display a range of age relationships relative to bedding upturn, with 608 

growth faults demonstrating that some faults initiated during deposition of sediments prior to 609 

rotation of beds to form drape folds. However, evidence for systematic rotation of fractures as 610 

bedding dips increase towards the salt is absent, suggesting that many fractures actually form during 611 

drape folding and helped accommodate rotation of strata. Fracture orientations in older units display 612 

greater scatter due to their more prolonged history of upturn, and also potential reactivation of these 613 

faults during later active diapirism. 614 

Fractures within the overburden do not define a simple radial and circumferential map 615 

pattern relative to the Sedom salt wall. In map view, fractures fan around the northern nose of the 616 
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salt wall and also maintain high angles to the eastern salt margin to define a semi-radial fracture 617 

pattern. However, the western flank of the salt wall is marked by a clockwise rotation of fractures 618 

towards the salt, suggesting that diapir-related fractures within drape folds formed in a stress field 619 

that was the result of the interaction of the stresses generated by diapir emplacement with stresses 620 

due to regional strike-slip faulting to create ‘mixed’ fracture patterns. Here, the 45° anticlockwise 621 

obliquity of overburden fractures relative to the N-S trending salt wall is consistent with 622 

transtensional deformation along the sinistral Sedom Fault that underlies the salt wall (Fig. 16). The 623 

prevalence of branching injected clastic dykes near the narrow central portion of the salt wall that is 624 

closest to the underlying Sedom Fault suggests that seismicity along this fault could also lead to 625 

sediment injection. The presence of these clastic dykes, together with bedding-parallel gypsum 626 

veins that ‘jack-up’ the overburden, demonstrates that high fluid pressures were locally attained 627 

next to the salt wall. 628 

This field-based study has demonstrated a clear link between salt diapirism and strike-slip 629 

faulting in terms of both of them simultaneously affecting the stress field in the rock volume of the 630 

study area. Furthermore, the relationship between overburden fracturing and upturn of bedding next 631 

to a salt diapir has a number of implications regarding the role of fracturing and mechanics of drape 632 

folding. Based on our observations, we suggest that salt does not necessarily accommodate all of 633 

the shearing along the diapiric margin (cf. Shultz-Ela, 2003), and that significant deformation may 634 

be accommodated via fracturing within the overburden itself. The exact nature and inter-layering of 635 

the overburden (lithology, degree of lithification, presence of fluids etc.) coupled with the types of 636 

salt (halite, carnallite etc.) and rates of diapiric movement will all influence the resulting styles of 637 

deformation. The presence of faults and fractures that potentially segment and compartmentalise 638 

drape folds has broader implications for hydrocarbon exploration next to salt diapirs, and suggests 639 

that deformation in overburden next to salt cannot be simply pigeon-holed into ‘end-member’ 640 

scenarios of purely brittle faulting or viscous flow.  641 
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 649 

Figures 650 

Fig. 1 a) Tectonic plates in the Middle East. General tectonic map showing the location of the present Dead 651 

Sea Fault (DSF). The DSF is a left-lateral fault between the Arabian and African (Sinai) plates that transfers 652 

the opening motion in the Red Sea to the Taurus – Zagros collision zone with the Eurasian plate. Location of 653 

b) shown by the small box on the DSF. b) Map of the Dead Sea showing the position of the exposed Sedom 654 

salt wall and strands of the Dead Sea Fault (based on Sneh and Weinberger, 2014). The locations of the RV-655 

7003 seismic line (Fig. 2), together with the Sedom Deep-1 and Ami’az East-1 boreholes are shown, as is the 656 

subsurface trace of the Sedom Fault. 657 

 658 

Fig. 2. Time-migrated interpreted seismic profile RV-7003 across the Sedom salt diapir and adjacent 659 

overburden sediments (from Weinberger et al., 2006a). The seismic highlights the position of the sub-surface 660 
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Sedom Fault that is considered to have controlled the location of the Sedom salt wall, and divides the Dead 661 

Sea Basin into intermediate and deep blocks. The underlying source layer of salt (Sedom Fm.) is traced 662 

across the Sedom Fault, where it drops down into the deep block marked by much greater overburden 663 

thicknesses. The locations of the RV-7003 seismic line, together with the Sedom Deep-1 and Amiaz East-1 664 

boreholes that constrain overburden thicknesses are shown in Figure 1b.  665 

Fig. 3 Geological map of the Sedom salt wall and adjacent sedimentary overburden based on Zak (1967) and 666 

Agnon et al. (2006). The orientations of extensional fractures within the overburden are shown. The location 667 

of the NW and SW Sedom subareas along Northing 555 are highlighted. See Figure 1b for location. 668 

Fig. 4 Generalised stratigraphy and ages of the Sedom Formation that comprises the Sedom salt wall, and the 669 

Amora and Lisan Formations that form the overburden to the salt. Note that dissolution of salt members 670 

leads to local caprocks being preserved at the surface. TCN – Terrestrial cosmogenic nuclide burial ages. 671 

Fig. 5 Stereonets of bedding from the a) western margin of the Sedom salt wall, and b) eastern margin of the 672 

salt wall. c) Stereonets of fractures from the western margin of the salt wall are separated into d) fractures 673 

within the Lisan Formation, e) fractures within the Upper Amora Member (UAM). f) Fracture orientations 674 

from the Upper Amora Member along the eastern margin of the Sedom salt wall. g- l) Stereonets of 675 

extensional fractures in Upper Amora Member and Lisan Formation measured at distances of 300-200 m, 676 

200-100 m, and 100-0 m from the western margin of the Sedom salt wall. Data are subdivided into NW 677 

Sedom (g-i) and SW Sedom (j-l) domains that are north and south of Grid Northing 555 respectively (see 678 

Fig. 3 for boundary, Table 1 for exact numbers of fractures in each unit). m-o) Summary stereonets of mean 679 

fractures that combine both NW and SW Sedom data sets. Data from the Lisan Formation are shown in 680 

orange, with poles to NE dipping fractures (diamonds) and SW dipping fractures (squares). Data from the 681 

Upper Amora Member are shown in brown, with poles to NE dipping fractures (circles) and SW dipping 682 

fractures (triangles). In each case, the calculated mean fracture plane is shown by the orange (Lisan 683 

Formation) and brown (Upper Amora Member) great circles. In m-o), mean bedding in the tilted Upper 684 

Amora Member and Lisan Formation are also shown by the brown and orange dashed great circles 685 

respectively.  686 

Fig. 6 a-f) Photographs of larger faults at outcrop scale within the Upper Amora Member and Lisan 687 

Formation. g) Photograph of ‘growth’ fault within the Lisan Formation. h) Photograph and associated 688 

stereonet (i) of conjugate extensional fractures in the Upper Amora Member. Data on stereonet i) is 689 

represented by: bedding (red great circles and poles by solid red squares), fractures (blue great circles and 690 

poles by solid blue circles), mean intersection of conjugate fractures (open blue circle). 691 

Fig. 7 Examples of representative structural data collected from individual sites within the Upper Amora 692 

Member around the Sedom salt wall (a). Data on stereonets b-o) are represented by: poles to bedding (solid 693 

red squares), mean bedding (open red square and red great circle), poles to fractures (solid blue circles), 694 

mean fractures (open blue squares and blue great circles). Fractures that form conjugates dipping in opposing 695 

directions are distinguished by separate means. In g), poles to fractures measured in the Lower Amora 696 

Member are shown by blue triangles, while those in the Upper Amora Member are represented by blue 697 

circles. 698 

Fig. 8 Graphs showing relationships between extensional fractures and bedding adjacent to the western 699 

margin of the Sedom salt wall. a) Distance to salt margin compared with the dip of beds in the Upper Amora 700 

Member (N=104) and Lisan Formation (N=56). b) Distance to the salt margin compared with the angular 701 

obliquity of beds across the unconformity at the base of the Lisan Formation. ‘Best-fit’ curves on graphs a) 702 

and b) illustrate general trends. Distance to the salt margin is compared with the strike of fractures in c) 703 

Upper Amora Member (N=151), and d) Lisan Formation (N=133). In graphs e - j), mean data was calculated 704 

for each 50 m wide ‘zone’ measured as a distance from the western salt margin. e) Distance to salt margin 705 
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compared with the mean strike of west and east-dipping fractures, while f) shows this data separated into 706 

NW and SW Sedom sub areas that are north and south of Grid Northing 555 respectively (see Fig. 3). g) 707 

Mean dip of bedding compared with the mean strike of west and east-dipping fractures, while h) shows this 708 

data separated into NW and SW Sedom sub areas. i) Distance to salt margin compared with the mean dip of 709 

west and east-dipping fractures. j) Mean dip of bedding compared with mean dip of west and east-dipping 710 

fractures.  711 

Fig. 9 Rose diagrams with 10° petals displaying fracture trends in the Upper Amora Member (UAM) and 712 

Lisan Formation measured at (a, b), 300-200 m, (c, d) 200-100 m and (e, f) 100-0 m from the western margin 713 

of the Sedom salt wall (see Fig. 5 and Table 1). Mean fracture trends (large arrows) are clockwise in the 714 

UAM as compared to the Lisan Formation. Fracture trends in both units display an overall clockwise rotation 715 

towards the western margin of the Sedom salt wall. 716 

Fig. 10 a) Schematic synoptic map of fracture trends, and b) cross section summarising fracture dip angles 717 

from the Upper Amora Member (UAM) (shown in brown) and Lisan Formation (shown in orange) exposed 718 

along the entire western flank of the Sedom salt wall. Fracture data represent means from each interval 719 

measured at set distances (300 – 200 m etc.) from the salt wall. 720 

Fig. 11 Photograph a) and associated stereonet b) show conjugate extensional fractures within the Upper 721 

Amora Member, while photograph c) and associated stereonet d) shows domino faulting within the Upper 722 

Amora Member. Data on stereonets b, d) is represented by: bedding (red great circles and poles by solid red 723 

squares), fractures (blue great circles and poles by solid blue circles), mean intersection of conjugate 724 

fractures (open blue circle). e) Domino-style fractures within the Lisan Formation. f) Dip-slip slickenslides 725 

on a fault plane cutting the Upper Amora Member. g) Conglomerates smeared along an extensional fracture 726 

in the Upper Amora Member. h) Extensional fault cutting slump horizons within the Lisan Formation. i) 727 

Conjugate fractures within the Upper Amora Member that converge downwards in a sandstone bed that 728 

accommodated displacement by flow.  729 

Fig. 12 a-f) Photographs of injected clastic dykes within the Lisan Formation from near the narrower central 730 

section of the Sedom salt wall (Grid 23635550, see Fig. 3). g, i) Photographs and associated stereonets (h, j) 731 

of domino (g) and conjugate (i) extensional fractures filled by clastic dykes in the Lisan Formation. Data on 732 

stereonets h, j) is represented by: bedding (red great circles and poles by solid red squares), fractures (blue 733 

great circles and poles by solid blue circles). 734 

Fig. 13 a-c) Photographs of conjugate gypsum veins within the Lisan Formation. Photograph d) and 735 

associated stereonet e) show gypsum-filled conjugate fractures. Data on stereonet e) is represented by: 736 

bedding (red great circles and poles by solid red squares), fractures (blue great circles and poles by solid blue 737 

circles), mean intersection of conjugate fractures (open blue circle). f) Photograph of bedding-parallel 738 

gypsum veins within the Upper Amora Member. g) Close-up of a gypsum vein from the eastern side of the 739 

Sedom salt wall with vertical fibres suggesting a ‘jacking-up’ of overburden.. 740 

Fig. 14 a) Photograph and associated stereonet (b) of contractional SE-dipping thrust faults within the Lisan 741 

Formation. Data on stereonet b) is represented by: bedding (red great circle and poles by solid red squares), 742 

contractional fractures (blue great circles and poles by solid blue circles). Mean poles to bedding (open red 743 

square) and fractures (open blue circle). c, d, e) Photographs of thrust planes being cut by a later clastic dyke 744 

marking extensional displacement. 745 

Fig. 15. Schematic cross sections showing orientation and distribution of extensional fractures in drape folds 746 

next to a salt diapir. Diagrams summarise potential relationships between a) fractures that develop before 747 

drape folding, b) fractures that develop after drape folding, and c) fractures that develop during drape 748 

folding. Refer to text for further details. 749 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
01/11/2017        Alsop et al.         Faulting and fracturing in overburden around salt            18 

Fig. 16. 3D cartoon of schematic fracture patterns and transtension along the Sedom salt wall and underlying 750 

Sedom Fault. In map view, fracture patterns define overall sigmoidal traces and rotate towards the western 751 

margin of the salt wall, while fractures fan around the northern nose of the salt wall where it plunges below 752 

the overburden. Extensional and contractional fractures are broadly synchronous and display orthogonal 753 

relationships to one another. Note that the thickness (~40 m) of the Lisan Formation is vertically exaggerated 754 

and this unit is not exposed around the eastern flank of the salt wall. Refer to text for further details.  755 

  756 
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 757 

Table 1. Mean trends of fractures in the Upper Amora Member (UAM) and overlying Lisan 758 

Formation measured towards the western margin of the Sedom salt wall. NW and SW Sedom 759 

subareas are from north and south of Grid Northing 555 respectively (see Figs. 3, 5). 760 

 761 

Mean fracture trends towards 
salt contact 

300 m – 200 m west of 
Sedom salt margin 

200 m – 100 m west of 
Sedom salt margin 

100 m –0 m west of Sedom 
salt margin 

NW Sedom Lisan Fm. 098° (N=7) 121° (N=33) 119° (N=6) 
NW Sedom UAM 115° (N=35) 132° (N=43) 160° (N=33) 
SW Sedom Lisan Fm. 120° (N=24) 116° (N=10) 152° (N=52) 
SW Sedom UAM 140° (N=10) 154° (N=16) 152° (N=18) 
Overall Lisan Fm. 109° (N=31) 118° (N=43) 144° (N=60) 
Overall UAM 127° (N=45) 143° (N=59) 155° (N=51) 
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Formation Member Description and Age 

Lisan Formation  

40 m of aragonite-rich lacustrine sediments dated 

between ~70 ka and 14 ka (U-series and 14C, 

Kaufman, 1971; Haase-Schramm et al., 2004). 

Amora Formation 

(overburden to 

Sedom salt wall) 

Upper Amora 

Member 

200 m of fluvio-lacustrine shales, sandstones and 

conglomerates ranging in age between 340 – 80 ka 

(Torfstein et al., 2009). 

Amora Salt Member 
10 m thick halite unit dated at 420 ± 10 ka (U-Th 

ages from Torfstein et al., 2009) 

Lower Amora 

Member 

200 m of fluvio-lacustrine shales, sandstones and 

conglomerates exposed at outcrop. Dated at 740  

± 66 ka (U series ages from Torfstein et al., 2009). 

The base of the Amora Formation in the Ami’az 1 

borehole is dated at 3.3 ± 0.9 Ma (10Be TCN burial 

ages from Matmon et al., 2014). 

Sedom Formation 

(forms the Sedom 

salt wall) 

Hof Shale and Salt 

Member 

Up to 90 m of halite and shales  

(Zak et al., 1968) 

Mearat Sedom Salt 

Member 

Up to 250 m of halite, anhydrite  

and minor clastics 

Bnot Lot Shales 

Member 

Up to 200 m thick sandstones and shales dated at 

6.2 and 5.0 ± 0.5 Ma (10Be TCN burial ages from 

Matmon et al., 2014) 

Lot Salt Member Up to 800 m of halite, anhydrite and minor clastics  

Karbolet Salt and 

Shale Member 

550 m minimum thickness of halite and shale units 

(base not observed and not dated). 
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Fault and fracture patterns are examined around an exposed salt wall in the Dead Sea Basin. 

Drape folding is marked by extensional fractures that help accommodate upturn of overburden. 

Fracture patterns are neither concentric nor radial where diapirism is influenced by regional tectonics. 

Regional strike-slip faulting results in sigmoidal fracture traces developed at 45° to the salt wall. 

Injected clastic dykes and gypsum veins develop due to high fluid pressures adjacent to the salt wall. 

 


