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Abstract 

Simulation models are extensively used to predict agricultural productivity and greenhouse 

gas (GHG) emissions. However, the uncertainties of (reduced) model ensemble simulations 

have not been assessed systematically for variables affecting food security and climate 

change mitigation, within multispecies agricultural contexts. We report an international 

model comparison and benchmarking exercise, showing the potential of multimodel 

ensembles to predict productivity and nitrous oxide (N2O) emissions for wheat, maize, rice 

and temperate grasslands. Using a multistage modelling protocol, from blind simulations 

(stage 1) to partial (stages 2-4) and full calibration (stage 5), 24 process-based 

biogeochemical models were assessed individually or as an ensemble against long-term 
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experimental data from four temperate grassland and five arable crop rotation sites spanning 

four continents. Comparisons were performed by reference to the experimental uncertainties 

of observed yields and N2O emissions. Results showed that across sites and crop/grassland 

types, 23 to 40% of the uncalibrated individual models were within two standard deviations 

(s.d.) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within one 

s.d. of observed N2O emissions. At stage 1, ensembles formed by the three lowest prediction 

model errors (RRMSE) predicted both yields and N2O emissions within experimental 

uncertainties for 44 and 33% of the crop and grassland growth cycles, respectively. Partial 

model calibration (stages 2 to 4) markedly reduced prediction errors of the full model 

ensemble E-median for crop grain yields (from 36% at stage 1 down to 4% on average) and 

grassland productivity (from 44 to 27%) and to a lesser and more variable extent for N2O 

emissions. Yield-scaled N2O emissions (N2O emissions divided by crop yields) were ranked 

accurately by 3-model ensembles across crop species and field sites. The potential of using 

process-based model ensembles to predict jointly productivity and N2O emissions at field 

scale is discussed. 

 

Introduction 

The need to mitigate climate change requires the abatement of greenhouse gas (GHG) 

emissions and the sequestration of organic carbon (C) in cropland and grassland soils. 

However, this must be accomplished while increasing agricultural productivity under climate 

change to keep up with global increasing demand and improve food and nutritional security 

(Smith et al., 2008; Smith et al., 2014; FAO, 2016). In order to meet the joint goals of 

reducing the impact of agriculture on climate change (UN Sustainable Development Goal, 

SDG 13) and delivering zero hunger (SDG 2), it is necessary to find solutions that reduce 

GHG emissions and that do not compromise food production. A measure that reduces GHG 
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emissions but that reduces productivity would be of limited use, as would a measure that 

increases production but that also increases GHG emissions. The concepts of ‘yield-scaled 

emissions’ as defined by Van Groenigen et al (2010), or emissions intensity (emissions per 

unit product), provide relevant indicators for food security and climate change (Venterea et 

al, 2011; Valin et al., 2013). It is therefore essential to compare both outputs (agricultural 

productivity and N2O emissions) simultaneously with experimental data and simulation 

models.  

Field experiments are essential to develop reference data on agricultural productivity, GHG 

emissions and mitigation options (Liebig et al., 2016). However, they incur large costs, take 

many years to produce useful results, and it is generally difficult to extrapolate experimental 

results across space and time. Since the 1990s, the international scientific community has 

developed a number of simulation models that estimate GHG emissions and the dynamics of 

C and nitrogen (N) in agricultural (cropland and managed grassland) soils (Challinor et al., 

2013; Moore et al., 2014; Jones et al., 2016a). These models simulate interactions between 

the soil-plant-atmosphere continuum and agricultural management, enabling computation of 

transport and transformations of C and N in crop and pasture systems and subsequent 

responses of trace gas fluxes, such as N2O emissions (Chen et al., 2008) to agricultural 

practices. Sub-models are designed to interact with each other to describe cycles of water, C 

and N; thus any change in the management and environmental factors collectively affects a 

group of physical and biogeochemical processes either directly or indirectly via flow-on 

effects. Each of these process-based models offers a distinctive synthesis of scientific 

knowledge (Brilli et al., 2017) and has been calibrated and assessed by comparison with both 

field and laboratory experiments.  
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 It has recently been shown that an ensemble of models may reduce the uncertainties of crop 

yield simulations across contrasting soil and climate conditions in comparison with single 

models (Asseng et al., 2013; Challinor et al., 2014; Li et al., 2015; Maiorano et al., 2016). 

The advantage of using ensemble predictors over individual models is due to compensation 

of errors across models, and a broader integration of model processes (Martre et al., 2015). 

The use of model ensembles for reducing uncertainties at the national and international scales 

in simulations of agricultural production, such as grain and biomass production has therefore 

been recommended, noting however the benefits of using reduced-size model ensembles to 

limit the cost and complexity of multiple model simulations (Ruane et al., 2016; Wallach et 

al., 2016a). While there has been a range of published studies showing ensemble model 

simulation results for crop yields (e.g. Asseng et al., 2013), we are not aware of any 

published model intercomparison assessing multiple models across experimental sites for 

N2O emissions apart from the early study by Frolking et al. (1998), which investigated four 

individual models across three sites but did, however, not consider the median or mean of this 

model ensemble. Moreover, to our knowledge, no published study so far has assessed model 

ensembles across experimental sites for both N2O and yields.  

In previous ensemble studies, soil properties (e.g. soil N, soil organic C and soil moisture) 

that can affect crop simulations have been reset at the start of each growing season, thereby 

neglecting year-to-year plant-soil interactions that could potentially have large cumulative 

effects on yields, GHG emissions and soil organic C stocks (Basso et al., 2015; Kollas et al., 

2015; Paustian et al., 2016). Model ensembles were used for yield predictions with annual 

crop monocultures (e.g. maize: Bassu et al., 2014; rice: Li et al., 2015; wheat: Ruane et al., 

2016), but to a much lesser extent for crop rotations (Kollas et al., 2015) and grasslands 

(Sándor et al., 2016).  
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Here, we assess and report the results of 24 process-based integrated C&N models (16 

cropland and 12 grassland models), by comparing multi-year (1 to 11 years) simulations to 

experimental data from nine sites (four temperate grasslands and five arable crop rotations 

with wheat, maize and rice) spanning four continents. The aim of this study was firstly to 

quantify the uncertainties of single models and model ensemble simulations; secondly, to 

assess, for the first time, the potential of model ensembles for predicting agricultural 

productivity and N2O emissions, jointly, at field scale. 

 

Materials & Methods 

Experimental sites  

The experimental sites were selected from those volunteered through an open call using 

research networks. The potential list was shortened to four permanent temperate grassland 

sites and five arable crop rotation sites covering geographically-diverse locations. These sites 

provided high-quality and previously published data (Table 1) encompassing climate, soil, 

agricultural practices, yields, crop and pasture development, N2O emissions and, to the extent 

of possible, changes in soil organic C stocks. The main characteristics of the sites and the 

corresponding agricultural practices are summarized in Supplementary Materials (Tables S1 

and S2). The experimental sites were also selected to cover a wide range of temperatures 

(annual means between 6 and 25 °C for croplands and between 6 and 13 °C for temperate 

grasslands) and precipitation amounts (annual totals in the range 630 - 1,800 mm and 430 - 

1,100 mm at cropland and grassland sites, respectively) (Fig. 1). 

The selected cropping systems covered a range of climates, from continental (C1, Canada), 

oceanic (C2, France), subtropical & semi-arid (C3, India; C4, Australia), to subtropical (C5, 

Brazil). All sites were in cultivated rotations and among the variety of crops within the crop 

sequence (detailed in Table S1), the most common crop types were simulated by models, i.e. 
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wheat, maize and rice. Sites included at least one wheat crop within the crop rotation, while 

maize was present at C1, C2, C4 and C5 locations, and rice was only cultivated at C3. The 

study compared, in total, 17 growing seasons with a total of nine, six and two crop growth 

cycles for wheat, maize and rice, respectively. At each crop site, the simulation periods of 

one year (C4), two years (C5), three years (C3) and five years (C1 and C2).  

International collaborations have enabled the pooling and sharing of experimental data for 

temperate grasslands, including one site from the MAGGnet project (Liebig et al., 2016) 

situated in the United States (G1), one Free-Air CO2-Enriched experiment located in New 

Zealand (G2; only the ambient CO2 treatment was considered here), and two European 

experimental sites (G3, France; G4, United Kingdom). G1 was a rangeland situated in the 

Northern Great Plains of the USA with a humid continental climate, while G2, G3 (semi-

natural upland) and G4 (semi-natural moorland, intensively managed) were in the oceanic 

climate zone. All selected pastures were grazed with varying animal types: yearling steers 

(G1), non-lactating sheep (G2), heifers (G3) and, ewes, lambs and heifers-in-calf (G4). In 

addition, G4 had cutting events to harvest pasture for silage as well as supplementary feeding. 

Simulation periods, defined by the availability of experimental datasets, were 4 (G1), 9 (G4), 

10 (G3) and 11 years (G2). Grassland yields were calculated as the Above-ground Net 

Primary Productivity (ANPP), which was determined at all sites either with grazing exclusion 

cages (at G3 and G4) with different herbage cutting heights (4 and 5 cm respectively), by the 

clipping method (at G1) or by ‘difference’ method (between herbage mass pre-grazing and 

post-grazing) at G2 (Table S3). 

 

Nitrous oxide (N2O) emissions were measured at all sites except G2. At one site (C1), 

measurements were performed by eddy flux covariance (Pattey et al., 2006). At the 

remainder of the sites, N2O emissions were measured by chambers, either using manual (C3, 
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C5, G1, G4) or automated (C2, C4, G3) measurements (Table S4). Other data of relevance to 

climate change mitigation (Table S5) were also obtained from the sites but are not reported 

here. 

 

Contributing models 

Modelling groups contributed to the study in response to an open call through the Global 

Research Alliance (GRA) on agricultural greenhouse gases, FACCE-JPI projects and other 

research networks, resulting in a set of representative coupled C-N models that are commonly 

used. The 24 published models selected (Table 1) simulate plant-soil-atmosphere interactions 

based on processes that are influenced by agricultural practices and that are designed to 

predict crop and/or pasture production, N2O emissions (for 21 models) and changes in soil 

organic C stocks. A complete description of the contributing models is provided in 

Appendices S1 and S2, showing that these models vary in their complexity (number of 

parameters, type of inputs and outputs) and in their constitutive processes (Moore et al., 

2014; Brilli et al., 2017). A total of 24 modelling teams from 11 countries contributed with 

16 and 12 models to arable crop and grassland simulations, respectively, with four models 

contributing to both ensembles. The majority of the simulation models were run by a single 

modelling group. Nevertheless, five variants of APSIM and four variants of DayCent, each 

run by a different team, contributed to the simulations. Model anonymity was maintained 

throughout the process and model results are presented without attributing them to specific 

models or modelling teams. 

A multistage protocol to compare and benchmark an ensemble of models 

To ensure that model results would not be influenced by prior knowledge of the experimental 

data, a blind procedure was initially adopted, i.e. with no prior access to site-specific data 

concerning the simulated output variables (e.g. productivity and N2O emissions). Moreover, 
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modelers were not provided with site name nor with the exact location, since sites were 

labelled at random (from C1 to C5 for crops and from G1 to G4 for grasslands). 

Site-specific model calibration was performed at each modelling stage, with gradual access to 

site data from stage 2 onwards, to inform and parameterize the models. The protocol was 

organized in five stages (Fig. 2), from blind (stage 1) to partial (stages 2-4) and full (stage 5) 

calibration, by providing: (1) only basic data covering the experimental measurement period 

for model initialization (such as climate, soil initial properties and basic site management 

information, including description of crop rotation/grazing settings, fertilization and 

irrigation); (2) historical site-specific data for climate (Ruane et al., 2015) and management 

enabling long-term initialization periods, and regional statistics for wheat yield and pasture 

productivity from expert estimates; (3) site-specific phenology data, crop/pasture vegetation 

development (e.g. leaf area index), observed grain yields, monthly estimated grassland 

offtake (biomass removed by cuts or animal intake); (4) dynamic soil process data 

(temperature, moisture, mineral N) during the experiment; (5) observed data against which 

model outputs were compared, i.e. agricultural productivity (grain yields or ANPP together 

with daily changes in live weights of livestock categories and daily grassland offtake), GHG 

emissions and soil organic C stock changes (Fig. 2, Table S5). This final step opens 

possibilities for testing a set of mitigation options at the sites with the ensemble of fully 

calibrated models.  

The modelling teams carried out their work independently and simultaneously for each of the 

five successive modelling stages. Access to additional experimental data was only allowed 

when the results of the previous stage had been submitted by all groups. Continuous multi-

year simulations (i.e. without model re-initialization of dynamic soil variables) were required 

in all cases. Generic (site-independent) parameter values were kept constant, while a set of 

site-specific parameters were iteratively adjusted, based on the combination of experimental 
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data provided in each stage and on modeler’s judgement. Modelers were requested to limit 

the number of adjusted parameters to those most influential whilst maintaining 

parameterization settings throughout the exercise. The results were submitted by each 

modelling team using common reporting templates, ensuring consistency in the units and a 

common definition of variables. The operations of data provision upload of model results and 

archives were all centralized within a common IT system. 

 

Data analysis 

At each stage and for each site, model outputs were compared with means of replicated field 

measurements and their standard deviation (s.d.) over the experimental period. In order to 

account for carry-over effects in the simulated responses, annual grain yields from the same 

crop type (wheat, maize, rice) grown within a rotation were averaged (Table S3). For 

pastures, annual ANPP was calculated based on measurements during the growing season 

(Table S3) and averaged by calendar year over the experimental period. N2O emissions were 

calculated as means of daily emission values over days in which measurements were 

performed. Replicates were available for sites equipped with chambers (C2, C3, C4, C5, G1, 

G3, G4) while measurements with flux towers (C1) were performed with high temporal 

resolution but not replicated. In the latter case, the uncertainty in N2O flux data was estimated 

from the literature (Kroon et al., 2010). Daily N2O flux datasets included, at some sites, a 

small number of negative values, suggesting an uptake of N2O by the soil (Ammann et al., 

2009; Chapuis-Lardy et al., 2007). The reliability of negative N2O measurements is still 

questioned in the literature (e.g. Chapuis-Lardy et al., 2007; Cowan et al., 2014; Myrgiotis et 

al., 2016). Negative values were considered as negligible as they represented 8.3% of N2O 

values at grasslands sites, 3.2% in wheat crops, 2.8% in maize crops and were not present in 

rice crops. The average difference between series with vs. without negative values was 
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between +0.1 to +12 µg N2O-N m
-2

 d
-1

 across all sites. All this considered, model outputs 

were not compared to negative values. Means of daily N2O fluxes (for observed days with 

non-negative values) were calculated with their associated s.d., over a crop cycle (from 

seeding to harvest) or over a calendar year for pastures. 

 

Individual models and model ensemble accuracy compared to experimental uncertainties 

The median of the multi-model ensemble (E-median) was taken as an indicator of the central 

tendency of the models. The relative average prediction error of the individual models and of 

the E-median was firstly assessed by using the relative root mean square error (RRMSE) 

(Bennett et al., 2013):  

          
 

  
  

    
 
      

 
        (1) 

where Oi and Pi are the i
th

 observed and simulated values respectively, n is the number of O, 

P pairs, Ō is the mean of the observations. The individual model RRMSEs were initially 

calculated at each modelling stage across sites, with O, P pairs corresponding to the mean of 

observed and simulated seasonal or annual values, respectively, for grain yield of wheat, 

maize, rice and for grasslands yield (i.e. ANPP). For N2O emissions, the O, P pairs 

correspond to the mean of observed and simulated daily fluxes, respectively, for days with 

measurements. The relative average prediction error of the E-median (RRMSEE-median) was 

calculated from the median of individual model simulated values. 

Secondly, model performances were assessed by reference to the variability in the 

experimental data, using centered and reduced model data deviation (Zm,i), calculated for 

model m and observation i as: 

      
       

      
  (2) 
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where, for the i
th

 observation, Zm,i is the model (or E-median) data deviation, Sm,i is the model 

(or E-median) simulated value, Ōi is the observed value and σobs,i is the standard deviation 

(s.d.) of observations. When the absolute value of Zm,i is lower or equal to x, the model (or the 

E-median) is within x s.d. of the observation mean. The number of models providing 

plausible estimates simultaneously for yields and N2O at each site, was calculated by 

selecting models for which Zm,i was comprised between -2 and +2 for yields (x=2) and 

between -1 and +1 for N2O emissions (x=1). The arbitrary choice of these thresholds was due 

to a conventional rule in a normal distribution, for which about 68% and 95% of the values 

fall within 1 s.d. and 2 s.d. of the mean, respectively. Thus, the threshold defined for N2O is 

more stringent than the one for yields. 

To rank models based on their mean prediction error for the two variables considered 

simultaneously (i.e. yields and N2O emissions), we calculated a combined RRMSEc index as:  

RRMSEc = RRMSEyield + RRMSEN2O  (3) 

where, RRMSEyield and RRMSEN2O are the RRMSE for yield and for N2O emissions, 

respectively. RRMSEc allowed ranking individual models with least average prediction errors 

across sites. Based on this ranking, ensembles formed by the three models with least RRMSEc 

were selected with the three crop species (wheat, maize, rice) and with grasslands and their 

median (3-median) values were calculated both for yields and for N2O emissions. Finally, 

N2O emission intensity (g N2O-N kg
-1

 DM) was calculated by dividing N2O emissions by 

crop grain DM production. The statistical package Sigmaplot v12.5 (Systat software) was 

used for statistical analysis.  
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Results 

Observed crop and pasture productivity and N2O emissions 

The observed inter-annual means of grain yields for wheat, maize and rice were calculated 

for each site. Crop grain yields ranged between 0.25 and 0.82 kg DM m
-2

 season
-1

 for wheat 

(five sites), 0.67 and 0.92 kg DM m
-2

 season
-1 

for maize (four sites) and was 0.52 kg DM m
-2

 

season
-1 

for rice (single site) (Table S3). For grasslands, the ANPP estimated from replicated 

measurements over 3 to 11 years presented large contrasts, from 0.08 (G1) up to 1.27 kg DM 

m
-2

 yr
-1

 (G4) (Table S3). The mean yield coefficient of variation (CV) was 8.7% for wheat, 

11.4% for maize and 9.3% for rice across years and all sites considered together, while with 

grassland ANPP, the mean CV across all grasslands sites was 17.5% (data not shown). 

Daily means of soil N2O emissions in cropping systems ranged from 300 to 1,200 µg N2O-N 

m
-2

 d
-1

 for wheat (C1, C2, C3, C4, C5), from 360 to 1,300 µg N2O-N m
-2

 d
-1 

for maize (C2, 

C4, C5) and reached 860 µg N2O-N m
-2

 d
-1

 for rice (C3). N2O fluxes had high CVs, with day-

to-day variation ranging between 20 and 176% for wheat, 74 and 259% for maize and about 

22% for rice (Table S4). At site C1, N2O flux measurements were only provided for the 

wheat crop cycle and the subsequent snowmelt. The daily N2O emissions from grasslands 

varied between 380 and 3,500 µg N2O-N m
-2

 d
-1, 

with CV values comprised between 101 and 

186% for sites with chamber measurements (G1, G3, G4) (Table S4). At the site equipped 

with a flux tower (C1), the CV was assumed to be 50% at daily timescale following (Kroon et 

al., 2010). No N2O measurements were available at G2 site. 

 

Prediction error from individual and ensemble models  

Both with arable crops and with grasslands, no single model consistently outperformed other 

models by having the lowest RRMSE value both for N2O and for yields (Tables S6, S7 and 

S8). With the E-median for crop grain yields, the RRMSE declined sharply from stage 1 (34, 
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31 and 45% for wheat, maize and rice, respectively) to stage 3 (6.4, 5.8 and 5.5% for wheat, 

maize and rice, respectively) and remained below 5% at stages 4 and 5 (Fig. 3a). For 

grasslands yield (i.e. ANPP), the RRMSEE-median declined from 44% at stage 1 to 27% at stage 

3 and finally increased up to 46% at stage 5 (Fig. 3a). 

For N2O emissions of wheat and maize, the RRMSEE-median (Fig. 3b) was relatively stable 

throughout the calibration process and comprised between 42-47% and 50-55%, respectively. 

For rice N2O emissions, the RRMSEE-median declined from 32% at stage 1 to 3% at stage 4, but 

increased up to 18% at stage 5. For grasslands N2O emissions, the RRMSEE-median varied 

between 67% (at stage 1) and 96% (at stage 2). 

 

Performances and uncertainties in model ensemble estimates and in observations 

Yield estimates by individual models were considered to be plausible when they were within 

two standard deviations of the observed site mean (i.e. Zm,i  between -2 and +2). At stages 1 

and 2 (Fig. 4a, b, c), the E-median relative deviation with observed means was usually 

negative, showing an underestimation of yields by models with wheat (except at C1), rice and 

maize (except at C4). At further calibration stages (i.e. 3, 4 and 5), the E-median values were 

within two s.d. of the observed mean for all crops. At all stages, grassland yield (i.e. ANPP) 

was overestimated at G1 and under-estimated at G4 by the E-median (Fig. 4d). At G2 and 

G3, E-medians were within two s.d. of observed means at stages 2 to 4 and at stages 2 to 5, 

respectively. 

At all stages and for all sites, the E-median of N2O emissions was within one s.d. of the 

observed mean both for crops and grasslands, except at C3 for wheat where N2O emissions 

were underestimated (Fig. 4 e, f, g, h). The detailed model relative deviations (Zm,i) for yields 

and N2O emissions according to sites and modelling stages are shown in Supplementary 

Materials (Figs. S1 and S2). 
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Finally, Table 2 compares full size model ensembles (E-median) and reduced size model 

ensembles (3-median, for the ensemble of three models with least average RRMSEc). Site 

specific E-medians and 3-medians were considered as plausible when they were within two 

and one s.d. of observed means for yields and for N2O emissions, respectively. With 

uncalibrated models (stage 1) and for the prediction of both variables together, the 3-median 

provided plausible estimates at two wheat sites out of five (C2, C4), one maize site out of 

three (C5), at the single rice site (C3) and at one grassland site out of three (G1). The full size 

model ensemble E-median did not perform better, since it was a plausible estimator of both 

yield and N2O emissions at two wheat sites out of five and one maize site out of three, while 

failing to predict in a plausible way the rice site or any of the grassland sites. 

Using Spearman’s rank correlations with reduced model ensembles (3-Median) (Fig.S4), we 

show a significant correlation between simulated and observed N2O emission intensities (g 

N2O-N kg
-1

 DM) across sites and crops since stage 1 (ρ=0.72, p=0.025). This correlation 

becomes highly significant after provision of phenology data at stage 3 (ρ=0.82, p<0.005) 

and further increases at stage 5 (ρ=0.93, p<0.0001). 

 

Proportion of contributing models with plausible estimates 

At stage 1 and all sites taken together (C1-C5), plausible estimates (i.e. Zm,i  between -2 and 

+2) were found for 26, 40 and 23% of the contributing models for wheat, maize and rice 

grain yields, respectively. At stage 2, this proportion decreased slightly for maize and 

increased slightly for wheat and rice. At stages 3, 4 and 5, the percentage of plausible models 

increased, reaching at the final stage 60, 70 and 60% for wheat, maize and rice, respectively. 

For grassland yield (i.e. ANPP), the mean percentage of plausible models (G1-G4) was in the 

same range than with grain yields (26 and 37% at stage 1 and stage 2, respectively) and 

decreased in subsequent stages down to 25% at final stage (Fig. 5a). 
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N2O emission estimates by individual models were considered to be plausible when they 

were within one s.d. of the observed mean (i.e. Zm,i  between -1 and +1). Taken as a mean of 

all sites (C1-C5 and G1-G4), up to 84 and 96 % of individual model estimates were found to 

be plausible for maize (at stage 2) and for grasslands (at stage 1). In contrast, the percentage 

of plausible models did not exceed 60 and 42% for wheat (at stage 5) and for rice (at stage 1) 

(Fig. 5b). 

The percentage of individual models with plausible estimates both for yields and for N2O 

emissions reached up to 39 and 49% for wheat (stage 5) and for maize (stage 4) respectively, 

while it did not exceed 20% for rice (from stage 2) and 23% for grasslands (at stage 2) (Fig. 

5c). 

 

Discussion 

This study provides the first assessment of process-based simulation models used for 

simultaneous estimates of crop and pasture productivity and of N2O emissions in response to 

climate, soil and management conditions. The statistical approach of model error adopted in 

this study is based on predictions averaged over space (means of replicate measurements) and 

time (seasonal and annual means) (Wallach & Thorburn, 2014). Compared to Willmott et al. 

(2012), where model performance metric (index of agreement, dr) ranges from 0 to 1, our 

dimensionless indicator (Zm,i) scales the model performance by considering the uncertainties 

in the measurements and allows for assessing model estimates on an observed s.d. basis. We 

have compared simulation results from multiple model structures (i.e. model ensembles), 

multiple input vectors (i.e. site comparison) and multiple parameter vectors by allowing for 

improved calibration of each model during successive modelling stages as recommended by 

Wallach et al. (2016b). Modelers’ expertise and knowledge still remains a non-negligible 

source of uncertainties, as described by Confalonieri et al. (2016) and an investigation on 
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how model experts used the information gradually released in our exercise would be of great 

interest to understand how and why models results were improved. 

 

Grain yields 

Compared to previous studies (Asseng et al., 2013; Bassu et al., 2014), grain yields were 

estimated here by models able to simulate full crop rotations, including fallows, without 

resetting soil states and thereby provided estimates resulting from integrated C and N cycles 

at field scale. Therefore, the model ensemble used in our study differs substantially from 

ensembles used in previous studies, e.g. only eight models in the present study were in 

common with the 27 models reported by Asseng et al. (2013). 

Without site-specific information (stage 1), the RRMSEE-median was approximately three times 

larger than the s.d. of the observations in the case of wheat and maize yields. Providing 

measured phenology and grain yield values at stage 3 allowed for improved model calibration 

corresponding to a strong reduction in the model ensemble prediction error (RRMSEE-median 

reduced down to 6% for wheat, maize and rice yields). These results are in line with those 

reported by Asseng et al. (2013) for wheat with uncalibrated and calibrated models (23 and 

5% respectively), by Bassu et al. (2014) for maize (7% for fully calibrated models) and by Li 

et al. (2015) for rice grain yields. Compared to these reports, where flowering dates were 

used to run uncalibrated models, we provided only sowing and harvest dates at stage 1 which 

resulted in larger prediction errors. In the same way for wheat, Palosuo et al. (2011) noted 

that, in spite of phenological observations (emergence, flowering, ripening and harvest dates) 

being provided to models, simulated dates of flowering and maturity are highly variable 

across models, and that model simulations are greatly improved by accessing such 

phenological data. Another factor that impacts model simulations may be the dynamics of 

available N contributing to the grain filling of wheat. N mineralization rate as a function of 
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soil temperature and moisture (Salo et al., 2016) is often not well captured by models which 

may explain the absence of model improvements at stage 4 (i.e. after provision of physico-

chemical soil data to the modelling teams).  

In our study, the E-median estimates for wheat, maize and rice grain yields were as good as 

those presented in previous multi-model studies with simplified modelling methodologies, 

thus confirming the reliability of using model ensembles for realistic field conditions (multi-

year crop rotations and grazed pastures) and reinforcing the conclusions by Basso et al. 

(2015) and Kollas et al. (2015). 

 

Grassland productivity (ANPP) 

In grazed pastures, herbage offtake by domestic herbivores is a function of the grazing 

pressure (driven by animal stocking density and liveweight) thus can be directly estimated 

from variables provided at stage 1, and is therefore not useful for model benchmarking 

purposes. In order to keep a strict blind test, the ANPP was used to benchmark simulated 

grassland productivity. Modelling the ANPP of temperate pastures has often been found to be 

difficult, given the large variability in vegetation composition and structure (Snow et al., 

2014). Indeed at stage 1, grassland ANPP was poorly predicted by the ensemble of models 

(E-median prediction error of 44% with only 22% of plausible models). At further stages (2-

5), only few improvement were obtained and systematic trends in the E-median data-

deviation was observed with minimum value at stage 3 for all sites (except G1), while 

estimated monthly biomass removal (i.e. biomass cut and grazed, the latter calculated from 

information about the animal stock liveweight and density), leaf area index and flowering 

dates were provided. Such discrepancies between simulated and observed values can be 

caused both by data and by model limitations. Indeed, methods for measuring grassland 

ANPP were not standardized across sites (i.e. varying cutting heights within grazing 
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exclosure cages, number of replicates and sampling frequencies, Table S3) causing likely 

substantial bias in productivity estimates at some sites (Smit et al., 2008). Moreover, model 

overestimation compared to measurements could be explained by several factors: i) models 

include all aboveground compartments in ANPP calculations, while measurements only 

include shoots above the cutting height without plant residues (i.e. stubble); ii) most models 

do not account for effects of spatial heterogeneity (i.e. trampling, vegetation, dung and urine 

patches) on pasture productivity (e.g. Snow et al., 2017); iii) calibration methods in response 

to grazing offtake vary across models. Such differences cause limitations to the use of large 

model ensembles for grasslands ANPP estimates and we highlighted improved performances 

of reduced-size model ensemble. 

 

Crop and pasture N2O emissions 

To account for the large variability across replicated N2O emission measurements (Table S4), 

a more stringent criterion for model plausibility was adopted, i.e. within one s.d. of the 

observed mean. Already at stage 1, the E-median was plausible for N2O emissions however, 

in contrast to grain yield, prediction errors of E-medians (RRMSEE-median) for N2O emissions 

did not show a large decline through the calibration stages, and were ranged between 67 and 

96% for grasslands, 42 and 55% for wheat and maize and between 3 and 32% for rice. These 

values are somewhat lower than with previous reports, since Frolking et al. (1998) reported 

simulated N2O fluxes within a factor of about two of the observed annual fluxes. With fully 

calibrated models for a highly fertilized winter wheat-summer maize rotation system, Zhang 

et al. (2015) obtained a lower average RRMSE (27%) but an overestimation of N2O emissions 

with three models. These authors suggested that a model ensemble would perform better than 

single models, but they did not show a reduction in prediction errors by using model medians. 
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In addition, it has been suggested by Frolking et al. (1998) and Abdalla et al. (2009) that soil 

moisture content and water filled pore space are key requirements for reliable simulations of 

N2O emissions. Similarly, Saggar et al. (2013) have underlined the role of soil temperature 

and nitrate availability to impact nitrification and denitrification processes. However, 

providing seasonal values of soil temperature, moisture and mineral N did not significantly 

reduce the RRMSEE-median in our study, with the exception of rice at stage 4 (RRMSEE-median 

down to 24%). Differences in calibration methods (number of soil and plant parameters being 

adjusted, use of automated or manual calibration routines) may explain the overall lack of 

improvement in accuracy with model calibration for wheat, maize and grasslands N2O 

estimates. It should also be noted that not all the events and management activities causing 

N2O emissions (e.g. freeze/thaw cycles, or water management in rice) were recorded at the 

experimental sites. 

 

Implications for field estimates of agricultural productivity and N2O emissions 

Our study has allowed model assessment and calibration at distant and contrasted sites, 

thereby potentially overcoming bias caused by model inter-comparison in a local specific 

context. Both for agricultural productivity and for N2O emissions, we show that reduced 

complexity model ensembles, obtained by selecting uncalibrated models with least average 

error, can perform as well, or even better, than full model ensembles. This result paves the 

way to the use of small model ensemble medians for field scale estimation of yields and soil 

based GHG emissions. Nevertheless, the three model ensembles selected in our study differ 

across crop species and are not the same with grasslands compared to arable crops. Further 

improvements of data sources (e.g. phenological observations) could help defining best 

model ensembles that could be used for screening agricultural practices and mitigation 

options at international crop and grassland sites. 
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For the first time, our results show the potential of multi-model ensembles for estimating 

jointly agricultural productivity and N2O emissions. Yield-scaled emissions (i.e. N2O 

emission intensities) are relevant for two policy dimensions: food security and climate 

change. With arable crops, our results show that the median of 3-model ensembles predicts 

significantly the ranking of observed N2O emission intensities (i.e. N2O emitted per unit of 

grain production, gN2O-N.kg
-1

 DM) (Figure S4). Therefore, cropping systems could be 

simulated and ranked by N2O emission intensity, in order to test options for improving 

agricultural productivity while reducing GHG emissions. 

Finally, our results question the use of model ensembles for upscaling projections of 

agricultural productivity and N2O emissions from field scale to larger spatial units (e.g. 

gridded projections) as needed for Tier 3 national inventories. Such ensemble projections 

have recently been used for global simulations of climate change impacts on wheat and maize 

yields (Rosenzweig et al., 2014; Elliott et al., 2015), neglecting however soil spatial 

variability which is likely to reduce the accuracy of yield projections (Folberth et al., 2016). 

The establishment of a global network of carefully standardized and long-term field 

experiments measuring GHG emissions, soil organic C stocks, and crop and grassland yields, 

would provide an essential foundation to further reduce uncertainties of model ensemble 

estimates both at field and regional scales, and to test the impacts of mitigation practices and 

of climate change. International modelling efforts should converge to work on 

complementary scales (from local to global), since global estimates (such as grids) are 

essential to determine major trends, while field scale simulations help in refining agricultural 

practices or selecting new/other cultivars adapted to existing local agronomic contexts. Such 

efforts could be fueled by the emergence of new generation technologies, especially 

collaborative online platforms facilitating the sharing of data and modelling tools and 

supporting decision making, as well as Tier 3 methods for national GHG inventories. 
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Figures 

Figure S1. Model-data relative deviation (expressed in s.d. of observation) for wheat, maize 

and rice grain yields (a, b, c) and for grasslands ANPP (d) according to sites and modelling 

stages 1 to 5. 

Figure S2. Model-data relative deviation (expressed in s.d. of observation) for wheat, maize, 

rice and grasslands N2O emissions (a, b, c, d) according to sites and modelling stages 1 to 5. 

Figure S3. Percentage of single models providing plausible estimates simultaneously for 

yields and for N2O emissions by site (C1-C5; G1-G4) and by modelling stage (1-5) for wheat, 

maize, rice and grasslands.  

Figure S4. Simulated vs. observed N2O emission intensity for wheat, maize and rice at stages 

1, 3 and 5.  

Appendices 

Appendix S1. Description of models. 

Appendix S2. References for model description. 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Tables 

Table 1 References of experimental sites and of models contributing to the model 

benchmarking. C, cropland site; G, grassland site. Sites were arbitrarily numbered from 1 to 5 

for crop sites and from 1 to 4 for grasslands. A detailed description of the models and 

literature references is provided in Supplementary Materials (Appendices S1 and S2). 

Site Country Main references 

C1 Canada Pattey et al. (2006); Sansoulet et al. (2014) 

C2 France Laville et al. (2011); Loubet et al. (2011) 

C3 India Bhatia et al. (2012) 

C4 Australia De Antoni Migliorati et al. (2014) 

C5 Brazil Aita et al. (2014) 

G1 USA Liebig et al. (2006, 2010, 2013) 

G2 New Zealand Newton et al. (2010, 2014) 

G3 France Allard et al. (2007); Klumpp et al. (2011) 

G4 UK Skiba et al. (2013); Jones et al. (2016b) 

Model Version System Web address 

Agro-C 1.0 C  

APSIM 7.5 C 

http://www.apsim.info  

APSIM 7.6 C 

APSIM 7.6 Grazplan G 

APSIM 7.7 SoilWat G 

APSIM 7.7 SWIM G 

CenW 4.1 G http://www.kirschbaum.id.au/Welcome_Page.htm 

CERES-EGC  C https://www6.versailles-grignon.inra.fr/ecosys/Productions/Logiciels-

Modeles/CERES-EGC 

DairyMod/SGS 4 G http://www.imj.com.au/dm 

DayCent 4.5 2006 C; G 

http://www.nrel.colostate.edu/projects/daycent-downloads.html 

DayCent 4.5 2013 C; G 

Daily DayCent 4.5 2010 C; G 

Daily Daycent 4.5 2013 C 

DNDC CAN C http://www.dndc.sr.unh.edu 

http://gramp.org.uk/models/104 

DSSAT GHG C http://dssat.net 

EPIC 810 C http://epicapex.tamu.edu/model-executables 

FASSET 2.5 C http://www.fasset.dk 

INFOCROP 2.1 C http://www.iari.res.in/?option=com_content&view=article&id=1334  

Landscape-DNDC 0.9.2 C; G Under licence agreement with Institute of Meteorology and Climate 

Research, Germany 

LPJmL 3.5.003 C Precursor model (LPJ): https://www.pik-

potsdam.de/research/projects/activities/biosphere-water-modelling/lpjml. 

Current version (LPJmL v4), available by December 2016 

PaSim  G https://www1.clermont.inra.fr/urep/modeles/pasim.htm 

Request to raphael.martin@inra.fr  

SALUS  C Request to basso@msu.edu  

SPACSYS 5.0 G Request to lianai.wu@rothamsted.ac.uk  

STICS 831 C http://www6.paca.inra.fr/stics_eng 

http://www.apsim.info/
http://www.imj.com.au/dm
http://www.nrel.colostate.edu/projects/daycent-downloads.html
http://www.dndc.sr.unh.edu/
http://gramp.org.uk/models/104
http://www.fasset.dk/
http://www.iari.res.in/?option=com_content&view=article&id=1334
https://www1.clermont.inra.fr/urep/modeles/pasim.htm
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Table 2 Summary of uncalibrated (stage 1) model ensembles assessment for the accuracy of 

yield and N2O emission predictions. E-median and 3-median correspond to full (up to 15 for 

crops and to 9 for grasslands) and three ensemble of models, respectively (see Materials and 

Methods); 1-var perf. and 2-var perf., are the number of sites with plausible medians out of 

the total number of sites for one and two variables, respectively; Black cell represent 

plausible estimate by the median (within 2 and 1 s.d. of observed means for yields and for 

N2O emissions, respectively); grey cell, non-available experimental data; white cell, median 

outside the plausibility range. 

 

Stage 1 

Crop rotations Wheat 
 

Maize 
 

Rice 

 

Permanent grasslands  

 
Yield N2O 

 
Yield N2O 

 
Yield N2O 

  
ANPP N2O 

 Site  [-2; 2] [-1; 1] 
 

[-2; 2] [-1; 1] 
 

[-2; 2] [-1; 1] 
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n
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C2     
 

    
 

    
 

G2     

C3     
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C4     
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C5     
 

    
 

    
 

1-var perf. 0/4 3/4 

1-var perf. 3/5 3/5 
 

2/4 3/3 
 

0/1 0/1 
 

2-var perf.  0/4 

2-var perf.  2/5   1/3   0/1   
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ed
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n
 

C1     
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n
 

G1     

C2     
 

    
 

    
 

G2     

C3     
 

    
 

    
 

G3     

C4     
 

    
 

    
 

G4     

C5     
 

     
 

    
 

1-var perf. 2/4 3/3 

1-var perf. 2/5 4/5 
 

2/4 3/3 
 

1/1 1/1 
 

2-var perf. 1/3 

2-var perf.  2/5 
 

1/3 
 

1/1 
 

   

Top models 
M13, M20, 

M09  

M09, M25, 

M13  

M09, M13, 

M26  
Top models 

M05, M24, 

M03 

 

Figure captions 

Figure 1 Location of the experimental sites (a) and their distribution depending on annual 

precipitation and temperature (b) of cropping (circles) and grasslands locations (triangles). C 

refers to cropping systems - C1: Canada, C2: France, C3: India, C4: Australia, C5: Brazil; G 
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refers to grassland systems; G refers to grasslands - G1: USA, G2: New-Zealand, G3: France, 

G4: UK. Source of the background map: J. Foley, University of Minnesota; 

http://www.nationalgeographic.com/foodfeatures/feeding-9-billion/  

Figure 2 Chart of the five-stage protocol adopted for model comparison and benchmarking. 

A detailed list of input data provided to models according to modelling stages is shown in 

Supplementary Material (Table S3). 

Figure 3 Relative average prediction errors of E-medians for yields (a) and for soil N2O 

emissions (b) from modelling stages 1 to 5. Data are Relative Root Mean Square Error of E-

medians (RRMSEE-median) ± s.e. (standard error based on individual models RRMSE) for 

wheat, maize, rice and for grasslands. 

Figure 4 E-median relative deviation to observed means of yields (a to d) and of N2O 

emissions (e to h) for wheat, maize, rice and grassland sites over modelling stages 1 to 5. The 

shaded area shows the range within two standard deviations (2 s.d.) of the experimental mean 

for grain yield and grassland ANPP, and within one standard deviation (1 s.d.) of the 

experimental mean for N2O emissions.  

Figure 5 Percentage of single models providing plausible estimates for yields (grain yields at 

crop sites and ANPP at grassland sites) (a), N2O emissions (b) and for both variables 

combined (c), over modelling stages 1 to 5. Model estimates were considered plausible when 

within two and one s.d. of the observed mean for yields and N2O emissions, respectively.  

  

http://www.nationalgeographic.com/foodfeatures/feeding-9-billion/
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