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A B S T R A C T

Samples of red bed sediments in several Mesoproterozoic successions contain enrichments of tellurium (Te),
including discrete telluride minerals. The tellurides were neoformed during redox-controlled diagenesis, rather
than representing mechanical concentrations of heavy minerals. Tellurium is enriched relative to selenium,
which may reflect erosion of Archean and Palaeoproterozoic rocks with high Te contents. High continentality
during the Mesoproterozoic would have limited the delivery of Te and other trace elements to the oceans, so
accumulated Te on the continents.

1. Introduction

A key consequence of the oxygenation of the atmosphere after the
Great Oxidation Event was the enhanced weathering of the continents.
It has been reasoned that this weathering released redox-sensitive me-
tals, sulphur and other elements, which then progressively changed the
chemistry of the oceans (Anbar and Knoll, 2002; Scott et al., 2008;
Parnell et al., 2012). The build-up of trace elements, such as mo-
lybdenum, copper, zinc and selenium in the oceans, is regarded as
critical to the development of multicellular life, which are required for a
range of metabolic functions (Zerkle et al., 2005; Williams, 2006;
Lobanov et al., 2007; Dupont et al., 2010). The evidence for trace ele-
ment release is indirect, through a progressive change in the trace
element contents of marine anoxic black shales (Anbar and Knoll, 2002;
Lyons et al., 2014) and the appearance of extensive gypsum deposits
(Kah et al., 2001) that imply weathering of bedrock sulphides to soluble
sulphates. Both lines of evidence date the availability of trace elements
to the Mesoproterozoic, which matches the timing of expansion of the
eukaryotes (Knoll et al., 2006). Here we report direct evidence for the
availability of redox-sensitive elements in Mesoproterozoic continental
sandstones, which were a reservoir for delivery to the oceans.

In continental sandstones, the predominant residence of trace ele-
ments is in iron oxide grain coatings. A wide variety of redox-sensitive
and other metals are deposited from groundwaters in the coatings
during shallow burial (Zielinski et al., 1983; Cave and Harmon, 1997).
The trace elements may be co-precipitated with the iron oxides, but at
least in the case of selenium they may be adsorbed from solution, and
both natural and artificial iron oxides are used to remove Se from
groundwaters for environmental clean-up (Balistrieri and Chao, 1990;

Ziemkiewicz et al., 2011). Tellurium and gold are similarly adsorbed
from water by iron oxides (Ran et al., 2002; Qin et al., 2017). Conse-
quently, the trace element chemistry of the coatings can aid the ex-
ploration for regional metal anomalies (Schmidt Mumm et al., 2013),
and the leaching of the coatings is hypothesized to be a critical stage in
the generation of metalliferous ore fluids in sandstones (Rose and
Bianchi-Mosquera, 1993; Metcalfe et al., 1994). In the context of trace
element fluxes, the coatings provide a measure of the elements that are
available in continental environments. In most cases, the contents of
trace elements in the grain coatings are too low to be detectable.
However, red sandstones commonly contain reduction spheroids, in
which the trace elements leached from the grain coatings in a reduced
spherical volume can become concentrated in a central mineralized
core during burial diagenesis (Harrison, 1975; Hofmann, 1991, Fig. 1).
The spheroids, which occur in red beds back to the Mesoproterozoic,
are attributed to microbial activity (Hofmann, 1990, 2011; Parnell
et al., 2016a). This is based on widespread reduction in modern soils by
Fe(III) reducing bacteria which strip off the iron oxide grain coatings
(Lovley, 1997), and which can mobilize and concentrate a range of
trace elements (Coates et al., 1996). The mineralized cores provide a
detectable signature of the trace elements in the grain coatings. More
generally, the cores are evidence that trace elements were available in
mobile form to the environment. Thus, they have potential value in
recording the availability of trace elements in continental environments
in deep geological time.

The trace elements that are concentrated within reduction spheroids
are particularly those that are redox-sensitive, and are mobile in oxi-
dizing conditions but become precipitated in authigenic minerals in
reducing conditions. They therefore ‘fix’ the elements that are being

https://doi.org/10.1016/j.precamres.2017.12.022
Received 28 April 2017; Received in revised form 20 October 2017; Accepted 4 December 2017

⁎ Corresponding author.
E-mail address: j.parnell@abdn.ac.uk (J. Parnell).

Precambrian Research 305 (2018) 145–150

Available online 06 December 2017
0301-9268/ © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/03019268
https://www.elsevier.com/locate/precamres
https://doi.org/10.1016/j.precamres.2017.12.022
https://doi.org/10.1016/j.precamres.2017.12.022
mailto:j.parnell@abdn.ac.uk
https://doi.org/10.1016/j.precamres.2017.12.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.precamres.2017.12.022&domain=pdf


transported through the continental environment during their passage
from weathering to the oceans or lakes. In Phanerozoic rocks, the me-
tals most commonly concentrated in the spheroids are vanadium,
copper and uranium (Harrison, 1975; Hofmann, 1991), whose mobility
is highly redox-sensitive. However, the concentrations of other scarcer,
elements can be informative. Reduction spheroids have been found
variably enriched in gold, silver, platinoids and rare earth elements.
Many spheroids contain selenides (Hofmann, 1991; Spinks et al., 2014),
and enrichments in Te also occur (Parnell et al., 2016b). Both Se and Te
are redox-sensitive and both can be concentrated in iron oxides (Harada
and Takahashi, 2009) so may be enriched in red beds. However, Se
dissolves in water more readily than Te over a wide range of redox
conditions, as Se(VI) has a relatively high solubility. This reflects
greater affinity of Te(IV) and Te(VI) to Fe(III) hydroxides than Se(VI),
due to the formation of inner-sphere complexes of Te(IV), Te(VI) and Se
(IV) to Fe(III) hydroxides while Se(VI) forms outer-sphere complexes
(Harada and Takahashi, 2009; Qin et al., 2017). It has been suggested
that the ratio of the two elements reflects redox conditions (Schirmer
et al., 2014), whereby Te/Se increases with more oxidizing conditions,
although this model awaits support through laboratory experiments.

A critical aspect of the late Palaeoproterozoic-Mesoproterozoic se-
dimentary record is the marked abundance of red beds (Turner, 1980;
Goodwin, 1996). The widespread distribution of continental red beds
bears comparison with younger episodes in the Devonian (Old Red
Sandstone) and Permo-Triassic (New Red Sandstone). In each case the
red beds are predominantly the products of sedimentation in arid and
semi-arid climates, where redox conditions favour the precipitation of
iron (III) oxides during early diagenesis. The aridity reflects con-
tinentality (e.g. Morón et al., 2014), as in the case of Permian red beds

developed on the Pangea continent (Gibbs et al., 2002). The palaeo-
geography of the Palaeoproterozoic-Mesoproterozoic has been eluci-
dated by palaeomagnetic and zircon provenance studies (Pisarevsky
et al., 2014). There is a consensus for an increase in continentality
through the Proterozoic, and supercontinent development especially
over the period 1.9–1.2 Ga (Ernst, 2009; Condie and Aster, 2010; Piper,
2013). Red beds may also have occupied a broader range of climatic
zones in the Precambrian, before the development of land plants and
soils rich in organic matter (Chukhrov, 1973).

Despite their age, reduction spheroids and other reduction phe-
nomena have been recognized in many Mesoproterozoic successions,
including the Belt Supergroup, Montana, USA (Hargrave and Lonn,
2011), Sibley Group, Ontario, Canada (Rogala et al., 2007), Apache
Group, Arizona, USA (Spencer and Richard, 1995), Keweenawan Su-
pergroup, Michigan, USA (Mitchell and Sheldon, 2010), Thule Group,
northern Greenland (Dawes, 1997) and Canada (Jackson, 1986),
Eriksfjord Formation, southern Greenland (Tirsgaard and Øxnevad,
1998), Satakunta Sandstone, Finland (Kohonen et al., 1993), Collier
Group, Western Australia (Martin and Thorne, 2004), and the Stoer
Group, Scotland (Spinks et al., 2010). We expect that they occur else-
where but are unrecognised or unrecorded. It is evident that in some of
these occurrences, the spheroids are markedly abundant (e.g. Tirsgaard
and Øxnevad, 1998).

This study reports analysis of reduction spheroids in several
Mesoproterozoic successions, to determine if Se and Te could be de-
tected, and if so whether they occur at high levels of enrichment. The
behaviour of Te in sedimentary rocks is not well documented, so data
for the distribution of Te-bearing diagenetic phases is valuable.

2. Methodology

Samples of Mesoproterozoic massive, horizontally bedded red silt-
stone, and one late Palaeoproterozoic red sandstone, containing re-
duction spheroids (Fig. 1) were collected from four regions:

(i) Samples of Mesoproterozoic Belt Supergroup, USA, collected at
two distinct localities in the Spokane Formation, at Flesher Pass
and Sieben Ranch (about 25 km apart), Lewis and Clark County,
Montana.

(ii) Samples of Mesoproterozoic Sibley Group, Ontario, Canada, drilled
through winter ice on Lake Superior in Nipigon Bay about 120 km
east of Thunder Bay (UTMs E 4,25,430 and N 54,10,540).

(iii) Samples of Mesoproterozoic Stoer Group, Scotland, UK, collected
at Culkein (National Grid Reference NC 043329).

(iv) Samples of late Palaeoproterozoic Tawallah Group, McArthur
Basin, Northern Australia collected from diamond drill cores
DD91-RC18 and 14MCDDH002, archived at the Northern Territory
Geological Survey drill core library facility in Darwin, NT,
Australia.

Samples were examined using electron microscopy and laser abla-
tion-inductively coupled plasma mass spectrometry (LA-ICP-MS).

High-resolution element mapping and semi-quantitative mineralogy
of Tawallah Group reduction spheroids were determined using a Zeiss
Ultra Plus field emission gun Scanning Electron Microscope (FEG-SEM),
fitted with a Bruker XFlash 6 energy-dispersive spectrometer at the
CSIRO Australian Resource Research Centre (ARRC) Advanced
Characterisation Facility, in Perth, Australia. Samples were mounted on
slides and analysed by energy-dispersive X-ray spectroscopy at ∼6mm
working distance. Standard analytical conditions were an accelerating
voltage of 10–20 kV and a beam current of 690 pA. Data were collected
and processed with the Bruker Esprit Quantax software package.

LA-ICP-MS analysis of a Stoer Group spheroid was performed using
a UP213 laser ablation (LA) system (New Wave, Freemont, CA) coupled
to an Agilent (Wokingham, UK) 7500ce inductively coupled plasma
mass spectrometer (ICP-MS). LA-ICP-MS was tuned for maximum

Fig. 1. Reduction spheroids with dark cores rich in metals and semi-metals. A, Belt
Supergroup, Montana, USA; B, Sibley Group, Ontario, Canada.
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sensitivity and stability using standard SRM 612 for trace elements in
glass (NIST, Gaithersburg MD), optimising the energy fluence to about
2 J/cm2. A semi-quantitative calibration for Te and Se was provided
using MASS-1 Synthetic Polymetal Sulfide (USGS, Reston, VA). Samples
and the standard were analysed using a 100 µm diameter round spot
moving in a straight line at 50 µm s−1. A 15 s laser warm-up preceded
30 s of ablation (1.5 mm) and 15 s delay. 82Se and 125Te were mon-
itored for 0.1 s each. Three lines were analysed for each sample or
standard. The average count signal over 20 s of the ablation was cal-
culated for each element and subtracted by the average signal over 10 s
for the initial gas blank. The standard was used to calculate the con-
centration (µg g−1)/counts ratio, which was multiplied by the sample
counts to estimate concentration.

LIBS data was collected with an Applied Photonics LIBS-8 module
equipped with an Innolas SpitLite Compact 200 Q-switched Nd-YAG
laser and 8 spectrometers operating in the range 182–1009 nm. The
samples was analysed at 180mJ power with a 1 hZ repetition rate,
1.1 ms integration time, 2 μs delay time and 250 μm spot size. 49 ana-
lyses were taken on a 7×7 grid. Calibration curves for Se and Te were
constructed by comparing the laboratory certified values with the LIBS-
determined values of reference standards, with the 49 unknown values
analysed against the resulting chemometric regressions.

3. Results

The microscopic studies show that the spheroids contain a range of
mineral inclusions, representing concentration of trace elements, in-
cluding Te and Se. The inclusions are generally micron-scale or smaller,
with no distinctive habit except one case where laths are recognized.

I. SEM study of spheroid cores from both Belt Supergroup localities
showed abundant inclusions of tellurides up to micron-scale
(Fig. 2). In a sample from Flesher Pass, an iron oxide-rich core
contains grains of mercury telluride, copper selenide (with traces of
Te), lead selenide and mercury selenide, and also coffinite and
barite. The core of a sample from Sieben Ranch shows abundant
mercury telluride, copper telluride, lead selenide and rare gold
telluride.

II. SEM study of spheroid cores from the Sibley Group show a range of
authigenic mineral phases. Micron-scale inclusions (Fig. 3) of lead
telluride were identified, and also clausthalite (some with traces of
Te) and coffinite, in a matrix of roscoelite.

III. No telluride minerals were detected in a reduction spheroid core
from the Stoer Group. However, LA-ICP-MS mapping of the core
shows a Te enrichment, increasing towards the centre of the core,
where it is 1 to 2 orders of magnitude enriched relative to the core
margin. No detectable enrichment was observed for Se, meaning in
practice that any enrichment was less than 5 times that at the
margin. Thus, Te was enriched relative to Se by an order of mag-
nitude.

IV. FEG-SEM study of Tawallah Group reduction spheroids shows they
contain iron minerals such as siderite and chamosite, but also ac-
cessory complex bismuth-selenide-tellurium minerals. These occur
as clusters of micron-scale euhedral laths of Bi-Se-Te minerals
within the reduction spheroid cores (Fig. 4). The Se/Te ratio in
these minerals varies from 1 to 2. There are additionally lead se-
lenides and tellurides.

The very small size of inclusions prohibited precise quantitative
analysis, but except where Te occurs as traces in a selenide, the tell-
urides appear to be pure and so probably of formulae PbTe, HgTe,
Cu2Te and AuTe2. These minerals indicate that the elements occur
mainly as Te2− and Se2− ions.

Fig. 2. Scanning electron micrograph of reduction spot core, Belt Group, Montana,
showing numerous micro-inclusions (bright) in a matrix of iron oxide. Selected inclusions
analyse as lead and copper selenides (upper field) sand copper and mercury tellurides
(lower field). Field width 100 µm.

Fig. 3. Scanning electron micrograph of core of reduction spheroid, Sibley Supergroup.
Dark matrix is predominantly rocoelite (vanadian phyllosilicate); bright phases in the
core are all lead telluride (Pb/Te) and lead selenide (Pb/Se) minerals.

Fig. 4. Scanning electron micrograph of bismuth-selenium-tellurium-bearing phase
(bright) in siliciclastic matrix in reduction spheroid, Tawallah Group, Australia.
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Quantitative analyses of Te and Se in the cores are reported in
Table 1. Cores were measured over an area of about 1mm2, much larger
than the inclusions, so there is little significance to the values of Te and
Se, but Te/Se ratios indicate relative degrees of enrichment.

4. Discussion

4.1. Concentration of tellurium

Tellurium is a rare element, 3–4 times as rare as gold, at a mean
crustal content of about 1 ppb (Rudnick and Gao, 2003). The few
measurements available for sedimentary rocks are generally at sub-
0.1 ppm level (Belzile and Chen, 2015), excluding slow-growing sea
floor crusts (Hein et al., 2003). The occurrence of discrete Te minerals
in the spheroids is, therefore, exceptional. Apart from the seafloor
crusts, telluride minerals are not widely recorded in other diagenetic
environments. However, the incorporation of Te in diagenetic pyrite in
black shales (Large et al., 2015) and oil reservoirs (Parnell et al.,
2015a), and in secondary alteration minerals (Frost et al., 2009) shows
that Te is at least locally mobile in low-temperature environments.
Tellurium enrichments in all five localities indicate that Te concentra-
tion in this setting is a normal, ubiquitous process.

The concentration of Te has also been recorded in the cores of much
younger reduction spheroids, of Palaeozoic and Mesozoic age (Parnell
et al., 2016a,b). However, the abundance of discrete Te minerals ob-
served in some of the Mesoproterozoic examples has not been observed
in younger samples. A single case of a telluride mineral was recorded in
a survey of Triassic-hosted reduction spheroids in the British Isles
(Parnell et al., 2015c, 2016b). We cannot be certain that this difference
between Mesoproterozoic and younger samples is actually age-related.
Nevertheless, it can be concluded that the process by which Te was
concentrated in the Phanerozoic was already active a billion years
earlier in the Mesoproterozoic. Also, a supply of Te must have been
available in either the groundwaters or the host sediment. The occur-
rence of a gold-bearing phase in a spheroid in the Belt Supergroup is
also comparable with gold-bearing phases found in younger spheroids
(Parnell et al., 2016b). The oxygen level in the atmosphere at that time
was already adequate to allow the weathering of sulphides on the
continents, and the liberation of associated trace elements from the
sulphides (Reinhard et al., 2009).

The Te/Se ratios of 0.25 to 0.76 measured in the spheroids (Table 1)
is greater than recorded in most sedimentary rocks, including silici-
clastic sediments (mean ratio 0.18, n=14) (Schirmer et al., 2014),
sedimentary pyrite in black shales (mean ratio 0.03) (Gregory et al.,
2015) and the bulk silicate Earth (ratio 0.14) (Wang and Becker, 2013).
These data emphasize the relative enrichment of Te in the Mesopro-
terozoic samples. Notably sedimentary pyrite in Mesoproterozoic black
shales, formed in a reducing environment, has a much lower Te/Se ratio

of 0.03 (Gregory et al., 2015) (Table 1). The possible use of the Te/Se
ratio as a paleo-redox indicator (Schirmer et al., 2014) was provision-
ally attributed to surface oxidation of Te (IV) to Te (VI), but no
equivalent oxidation of Se (IV), causing preferential enrichment of Te
relative to Se (Hein et al., 2003). However, Kashiwabara et al. (2014)
determined experimentally that Te(VI) is incorporated into ferrihydrite
by co-precipitation, as the Te(VI) octahedron is similar to Fe(III) but
unlike the Se(VI) tetrahedron, and Te(IV) is not oxidized by ferrihy-
drite, indicating that the variations in the Te/Se ratio are yet to be fully
understood. From another perspective, at lower oxygenation levels, Te
might be more readily sequestered into reducing environments than at
higher oxygenation levels. This is consistent with the occurrence of Te
enrichments in Proterozoic reduction spheroids reported here. Notably,
Fe(III) reducing bacteria that are implicated in the leaching of iron
oxide grain coatings, can concentrate both Se and Te (Klonowska et al.,
2005; Kim et al., 2013).

There remains the question of why such a rare element as Te should
be concentrated to the degree observed. The high concentration could
reflect anomalous availability. Tellurium and gold are present at rela-
tively high levels in Archean and Palaeoproterozoic rocks, often to-
gether as gold telluride minerals (e.g. Bierlein et al., 2006; Helt et al.,
2014; Large et al., 2015; Rezeau et al., 2017). As these older rocks were
being eroded into Mesoproterozoic sediments, as evidenced from age
data for detrital zircons (Hawkesworth and Kemp, 2006; Parnell and
Lindgren, 2016), Te and Au would have been recycled into the surface
environment. Although they do not have distinctive habits, the mineral
grains are, however, clearly neoformed from groundwaters during
burial diagenesis, not simply concentrations of placer minerals eroded
from the source rocks. A placer origin for the tellurides can be excluded
for multiple reasons, including (i) an absence of the most common
heavy minerals such as zircon and garnet; (ii) a selective distribution of
tellurides in the cores of reduction spheroids, although the rest of the
host rock has the same grain size; (iii) a size range for the telluride
grains less than one tenth of the detrital grains in the host rock; and (iv)
grains of several different metallic tellurides in close proximity within a
single spheroid in the Belt Supergroup samples.

4.2. Red bed reservoir of trace elements

Although the atmosphere was sufficiently oxygenated to cause the
formation of red beds containing haematite, the oxygen level may still
have been well below 1% PAL (Present Atmospheric Level) in the
Mesoproterozoic (Canfield, 2014; Planavsky et al., 2014), and reduc-
tion of the haematite would have occurred more readily than in Pha-
nerozoic rocks. This is consistent with the widespread distribution of
Mesoproterozoic reduction spheroids and their abundance. Oxygen
penetration into the subsurface, where spheroids develop, would have
been relatively shallow, promoting redox boundaries. Shallow pene-
tration of oxygen is highlighted by the record of weathering profiles,
which shows depths mostly less than 10m in the mid-Proterozoic
(Zbinden et al., 1988; Mitchell and Sheldon, 2009). If redox boundaries
were more abundant in the Mesoproterozoic, possibly a greater pro-
portion of the available redox-sensitive elements were precipitated, and
thereby fixed, in red beds compared to the Phanerozoic. Reducing
conditions at shallow levels would engender an efficient sequestration
of redox sensitive elements from near-surface groundwaters.

The composition of Mesoproterozoic seawater can be characterized
by trace element contents in pyrite precipitated in marine black shales
(Large et al., 2014, 2015). Data for Te in diagenetic pyrite indicate
relatively low concentrations during the Mesoproterozoic, between
higher levels in the Archean-Palaeoproterozoic and the Neoproterozoic
(Large et al., 2015). Gold contents in the Mesoproterozoic oceans were,
like Te contents, relatively low (Large et al., 2015), and cycling of the
two elements appears to be linked, from deposition through diagenesis
to metamorphism. A similar association of Te and Au occurs in Pha-
nerozoic red beds, recorded in reduction spheroids (Parnell et al.,

Table 1
Te/Se ratios for reduction spheroids and reference compositions.

Te (ppm) Se (ppm) Te/Se Method/Refs.

Spheroids
Belt Supergroup 32.73 43.00 0.76 LIBS
Sibley Group 0.8 3.0 0.27 LA-ICP-MS
Stoer Group 0.3 1.2 0.25 LA-ICP-MS
Tawallah Group 0.3 0.5 0.60 LA-ICP-MS
Reference
Bulk Silicate Earth 0.01 0.08 0.14 Wang and Becker

(2013)
Siliciclastic sediments 0.03 0.19 0.18 Schirmer et al.

(2014)
All sedimentary pyrite 0.63 19.5 0.03 Gregory et al.

(2015)
Mesoproterozoic

sedimentary pyrite
0.31 12.2 0.03 Gregory et al.

(2015)
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2016b).
An implication of the enhanced accumulation of Te in

Mesoproterozoic red beds is that a relatively low proportion reached
the oceans. This possibility would have been amplified by the high
continentality at that time (Condie and Aster, 2010), which would re-
duce the proportion of surface run-off reaching the oceans. Currently,
24% of the world continental surface has interior drainage (Lewis and
Berry, 2012), but that proportion would have been greater at times of
high continentality. Lower delivery of run-off and associated solute to
the oceans is consistent with the lower levels of trace elements mea-
sured in marine diagenetic pyrite from this time. This has important
consequences for the availability of trace elements required for the
flourishing of life, including Se (Lobanov et al., 2007; Long et al., 2015),
while the biological role of Te is still emerging (Ba et al., 2009). Limited
delivery of trace elements to the oceans may have hindered the de-
velopment of eukaryotes in marine environments (Anbar and Knoll,
2002; Scott et al., 2008), but concomitantly there would have been
greater opportunity for evolution in the terrestrial environment (Parnell
et al., 2015b).

5. Conclusions

Study of Mesoproterozoic reduction spheroids shows that, like those
in younger rocks, they are enriched in trace elements. Our focus on Te
and Se shows that:

i. The spheroids are markedly and consistently enriched in Te.
ii. Discrete telluride minerals were precipitated, including tellurides of

mercury, copper, lead and gold.
iii. The abundance of Te relative to Se is greater than in younger

spheroids.

We speculate that the occurrence of Te in Mesoproterozoic con-
tinental sediments reflects erosion of older basement sources relatively
enriched in Te.
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