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Abstract
Detailed	information	acquired	using	tracking	technology	has	the	potential	to	provide	
accurate	pictures	of	the	types	of	movements	and	behaviors	performed	by	animals.	To	
date,	such	data	have	not	been	widely	exploited	to	provide	inferred	information	about	
the	foraging	habitat.	We	collected	data	using	multiple	sensors	 (GPS,	time	depth	re-
corders,	and	accelerometers)	from	two	species	of	diving	seabirds,	razorbills	(Alca torda,	
N =	5,	from	Fair	Isle,	UK)	and	common	guillemots	(Uria aalge,	N =	2	from	Fair	Isle	and	
N =	2	 from	 Colonsay,	 UK).	We	 used	 a	 clustering	 algorithm	 to	 identify	 pursuit	 and	
catching	events	and	the	time	spent	pursuing	and	catching	underwater,	which	we	then	
used	as	indicators	for	inferring	prey	encounters	throughout	the	water	column	and	re-
sponses	 to	changes	 in	prey	availability	of	 the	areas	visited	at	 two	 levels:	 individual	
dives	and	groups	of	dives.	For	each	individual	dive	(N =	661	for	guillemots,	6214	for	
razorbills),	we	modeled	the	number	of	pursuit	and	catching	events,	in	relation	to	dive	
depth,	duration,	and	type	of	dive	performed	(benthic	vs.	pelagic).	For	groups	of	dives	
(N =	58	for	guillemots,	156	for	razorbills),	we	modeled	the	total	time	spent	pursuing	
and	catching	in	relation	to	time	spent	underwater.	Razorbills	performed	only	pelagic	
dives,	most	likely	exploiting	prey	available	at	shallow	depths	as	indicated	by	the	verti-
cal	distribution	of	pursuit	and	catching	events.	In	contrast,	guillemots	were	more	flex-
ible	in	their	behavior,	switching	between	benthic	and	pelagic	dives.	Capture	attempt	
rates	indicated	that	they	were	exploiting	deep	prey	aggregations.	The	study	highlights	
how	novel	analysis	of	movement	data	can	give	new	insights	into	how	animals	exploit	
food	patches,	offering	a	unique	opportunity	 to	comprehend	the	behavioral	ecology	
behind	different	movement	patterns	and	understand	how	animals	might	respond	to	
changes	in	prey	distributions.	
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1  | INTRODUCTION

Food	resources	are	generally	aggregated	over	a	range	of	scales	in	hi-
erarchical	patch	systems	where	high-	density	patches	at	 small	 scales	
are	 nested	 within	 low-	density	 patches	 at	 larger	 scales	 (Fauchald,	
Erikstad,	 &	 Skarsfjord,	 2000;	 Regular,	 Hedd,	 &	Montevecchi,	 2013;	
Weimerskirch,	 Gault,	 &	 Cherel,	 2005).	 Foragers	 should	 adjust	 their	
foraging	patterns	in	such	complex	environments	to	maximize	foraging	
efficiency.	Optimal	foraging	theory	(OFT)	is	widely	used	to	explain	the	
foraging	behavior	of	animals.	According	to	this	theory,	predators	for-
aging	in	patchy	environments	make	decisions	to	maximize	the	rate	of	
energy	intake	while	minimizing	energy	costs	(Pyke,	Pulliam,	&	Charnov,	
1977;	Stephens	&	Charnov,	1982).	This	relies	on	the	assumption	that	
predators	adjust	their	time	spent	within	a	patch	based	on	their	expec-
tation	of	locating	a	new	and	richer	patch	when	they	move	on.

Technical	 advances	over	 the	 last	50	years	have	enabled	 the	col-
lection	 of	 data	which	 can	 capture	 the	 types	 of	movement,	 feeding	
behavior,	 and	 physiological	 processes	 in	 environments	where	 direct	
observations	 of	 behavior	 are	 difficult	 or	 impossible	 (Evans,	 Lea,	 &	
Patterson,	2013).	In	both	marine	and	terrestrial	environments,	satellite	
transmitters,	GPS,	time–depth	recorders	 (TDRs),	and	accelerometers	
have	provided	some	of	the	most	voluminous	and	informative	data	to	
date.	The	 analysis	 and	 interpretation	of	 these	 types	of	 data	 involve	
the	classification	of	different	behavioral	patterns,	reconstructed	time–
depth	 profiles,	 and	 quantification	 of	 costs	 and	 benefits	 of	 different	
movement	patterns	(Brown,	Kays,	Wikelski,	Wilson,	&	Klimley,	2013;	
Hays	et	al.,	2016;	Hussey	et	al.,	2015;	Kays,	Crofoot,	Jetz,	&	Wikelski,	
2015).

A	wide	range	of	statistical	methods	facilitates	behavioral	classifi-
cation	of	movement	patterns	(Bailey,	Hammond,	&	Thompson,	2014;	
Bestley,	Jonsen,	Hindell,	Guinet,	&	Charrassin,	2013;	Bestley,	Jonsen,	
Hindell,	Harcourt,	&	Gales,	2015;	Jonsen,	Flemming,	&	Myers,	2005;	
Langrock	 et	al.,	 2012;	 Morales,	 Haydon,	 Frair,	 Holsinger,	 &	 Fryxell,	
2004;	 Pinto	 &	 Spezia,	 2015).	 These	 methods	 show	 that	 foraging	
predators	 typically	 follow	 the	 hierarchical	 patchy	 distribution	 of	 re-
sources	 varying	 their	 search	 tactics	 at	 several	 spatial	 and	 temporal	
scales.	 Predators	may	use	 hierarchical	 foraging	 tactics,	 using	 search	
patterns	to	maximize	their	chances	of	encountering	prey	aggregations	
(Fauchald	et	al.,	2000;	Fryxell	et	al.,	2008;	Pinaud,	2007).	However,	es-
pecially	in	the	marine	environment,	questions	such	as	how	predators	
forage	at	fine	scales,	how	they	react	to	prey	availability	(e.g.,	densities	
and	distributions),	how	they	select	and	assess	resources,	and	how	they	
make	decisions	whether	to	stay	or	leave	the	foraging	patch	are	poorly	
understood.	 Recently,	 studies	 have	 begun	 to	 associate	 movement	
data	with	 the	 quantitative	 assessment	 of	 prey	 density	 and	distribu-
tion	 (Boyd	et	al.,	2015;	Carroll	 et	al.,	2017;	Goldbogen	et	al.,	2015).	
Combining	tracking	data	with	prey	survey	data	 is	crucial	 for	 investi-
gating	how	predators	relate	to	food	resources	and	how	they	respond	
to	changes	 in	prey	abundance	and	distribution.	However,	combining	
these	data	sources	is	costly	and	limited	by	the	availability	of	spatially	
and	temporally	co-	occurring	datasets.

For	diving	marine	predators,	especially	marine	mammals	and	sea-
birds,	dive	metrics	such	as	dive	duration,	bottom	duration,	dive	shape,	

descent,	and	ascent	rate	have	been	used	to	infer	foraging	activity	and	
the	quality	of	prey	patches	visited	(Austin,	Bowen,	McMillan,	&	Iverson,	
2006;	Elliott	et	al.,	2008;	Machovsky	Capuska,	Vaughn,	Würsig,	Katzir,	
&	 Raubenheimer,	 2011;	Watanuki	 et	al.,	 2006).	 Depending	 on	 spe-
cies	and	search	tactics,	restricted	search	behaviors	may	be	performed	
above	or	below	water	in	association	with	persistent	sea	shelf	ocean-
ographic	 fronts	 and	 fine-	scale	 physical	 features	 such	 as	 horizontal	
and	vertical	 currents	which	 are	 known	 to	 create	 favorable	 foraging	
locations	(Cox	et	al.,	2016;	Garthe,	Montevecchi,	Chapdelaine,	Rail,	&	
Hedd,	2007;	Scales	et	al.,	2014;	Waggitt,	Cavenave,	Torres,	Williamson,	
&	Scott,	2016).	In	deep	diving	predators,	such	as	marine	mammals	and	
penguins,	it	has	been	assumed	that	prey	acquisition	increases	linearly	
with	search	time	(Mori,	1998;	Mori,	Takahashi,	Mehlum,	&	Watanuki,	
2002;	 Thompson	 &	 Fedak,	 2001).	 Based	 on	 this	 assumption,	 dive	
shapes	have	been	classified	and	assigned	to	different	behaviors:	for-
aging,	transiting,	and	resting	(Thums,	Bradshaw,	&	Hindell,	2008).	The	
combination	 of	 multiple	 sensors	 recording	 different	 types	 of	 high-	
frequency	movements	provides	unique	data	which	can	be	used	to	ob-
serve	the	behavior	of	tracked	animals	at	different	spatial	and	temporal	
scales.	For	example,	a	 limited	number	of	 studies,	where	pursuit	and	
catching	 events	were	 recorded	with	 cameras,	 have	 extracted	 more	
complex	gain	functions	when	comparing	the	number	of	prey	caught	
with	 residence	 time	 in	 patches	 of	 prey	 species	 (e.g.,	Watanabe,	 Ito,	
&	Takahashi,	 2014).	Moreover,	 recent	 analysis	 combining	TDRs	 and	
accelerometers	highlighted	that	the	common	interpretation	that	a	lon-
ger	bottom	phase	duration	is	an	indication	of	higher	foraging	success	
may	 not	 always	 be	 accurate	 (Viviant,	 Jeanniard-	du-	Dot,	Monestiez,	
Authier,	&	Guinet,	2016).	It	is	important	to	use	the	correct	metrics	of	
foraging	 success	 to	 reflect	 true	 foraging	 success	 accurately	 (Aguilar	
Soto	et	al.,	2008;	Foo	et	al.,	2016;	Viviant,	Trites,	Rosen,	Monestiez,	
&	Guinet,	2010;	Volpov,	Hoskins,	Battaile,	&	Viviant,	2015).	The	infor-
mation	acquired	from	combining	data	from	multiple	tracking	devices	
not	only	has	the	potential	to	provide	detailed	pictures	of	the	behaviors	
performed	but	 can	 also	be	used	 as	 a	 tool	 to	 infer	 information	 indi-
rectly	about	the	environment	that	animals	experience	and	how	they	
might	adjust	foraging	patterns	in	response	to	environmental	variation	
(Guinet	et	al.,	2014).	Temporal	variation	in	predator	behavior	is	likely	
to	provide	insights	into	the	spatial	distribution	of	highly	dynamic	prey	
sources	that	may	be	difficult	to	track	in	other	ways.	With	these	new	
types	of	detailed	information,	there	is	a	need	for	new	methods	to	ex-
plore	in	more	detail	how	to	infer	availability	of	food	resources	and	the	
profitability	of	the	habitat	visited	from	a	predator’s	perspective.

Diving	seabird	species,	such	as	auks,	use	the	water	column	for	only	
a	 limited	amount	of	time	during	foraging,	making	it	more	difficult	to	
examine	 movements,	 search	 strategies,	 predator–prey	 interactions,	
and	how	foraging	behavior	relates	to	the	surrounding	habitat	(Elliott	
et	al.,	 2008;	Doniol-	Valcroze	 et	al.,	 2011).	 Common	 guillemots	 (Uria 
aalge,	Figure	1)	and	razorbills	(Alca torda,	Figure	1)	are	wing-	propelled	
pursuit	divers	(Croll,	Gaston,	Burger,	&	Konnoff,	1992).	Despite	having	
the	same	diving	method,	these	two	species	show	differences	in	forag-
ing	behavior,	diving	to	different	depths	and	performing	different	ac-
tivities	underwater	while	chasing	prey	(Chimienti	et	al.,	2016;	Thaxter	
et	al.,	2010).	When	foraging,	these	two	species	typically	fly	between	a	
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series	of	locations,	where	they	perform	combinations	of	isolated	dives	
and	groups	of	dives	(called	“dive	bouts”),	suggesting	a	hierarchical	and	
patchy	 distribution	 for	 their	 prey	 (Boyd,	 1996;	Mori,	 1998).	 Studies	
on	 the	diets	of	both	species	conducted	 in	 the	North	Sea	show	that	
self-	feeding	and	chick-	provisioning	individuals	capture	mainly	sandeel,	
sprat,	young	Atlantic	herring,	whiting,	and	cod	(Anderson,	Evans,	Potts,	
Harris,	&	Wanless,	2014;	Rindorf,	Wanless,	&	Harris,	2000),	selecting	
different	prey	sizes	when	self-	feeding	and	chick	provisioning	(Wilson	
et	al.	2004).	The	two	species	differ	in	the	number	of	prey	carried	back	
to	the	colony;	razorbills	typically	bring	several	fish,	while	common	guil-
lemots	feeding	chicks	bring	back	a	single,	usually	large,	fish	(Thaxter	
et	al.,	2013).	Stationary	video	cameras	 investigating	underwater	 for-
aging	 behavior	 of	 common	 guillemots	 indicate	 high	 percentages	 of	
active	 foraging	on	 individual	prey	and	on	 low-	density	 shoals	 (Crook	
&	Davoren,	2014).	However,	 it	 is	not	currently	well	known	how	the	
foraging	 patterns	 of	 these	 marine	 predators	 are	 influenced	 by	 the	
density,	distribution,	and	behavior	of	prey	and	how	they	adjust	their	
behavior	in	response	to	changes	in	prey	availability.	Modeled	foraging	
behavior	 for	 Peruvian	 booby	 (Sula variegata)	 and	Guanay	 cormorant	
(Phalacrocorax bougainvilliorum)	suggest	that	depth	distribution	is	the	
primary	factor	for	foraging	success	followed	by	abundance	and	then	
spatial	configuration	of	prey	(Boyd	et	al.,	2016).

We	used	a	combination	of	GPS	and	accelerometer	data	to	explore	
the	potential	for	these	data	to	be	used	to	assess	I)	prey	availability	in	
terms	of	the	vertical	distribution	of	prey	encountered,	and	II)	how	in-
dividuals	respond	to	differences	in	prey	availability	between	contrast-
ing	visited	food	patches.	We	assume	that	seabird	diving	activities	at	a	
given	location	and	depth	are	a	function	of	both	the	diving	capability	
of	 the	 species	and	 the	 relative	abundance,	distribution,	 and	 type	of	
prey	 throughout	 the	 water	 column.	 From	 the	 behavioral	 classifica-
tion	of	accelerometer	data,	it	is	possible	to	detect	pursuit	or	catching	
events	(PCEs)	occurring	during	dives,	which	are	characterized	by	fast	
and	 sharp	 movements	 (Chimienti	 et	al.,	 2016;	 Viviant	 et	al.,	 2010).	
We	 	further	use	 the	 information	obtained	 from	PCE	 to	explore	prey	
availability	and	the	profitability	of	food	patches	visited	at	two	foraging	

levels:	 individual	dives	and	dive	bouts.	We	propose	that	 I)	 the	num-
ber	 of	 PCE	 in	 individual	 dives	 can	be	used	 as	 an	 indication	of	 prey	
encountered	through	the	water	column,	and	II)	the	time	spent	pursu-
ing	and	catching	prey	(PCT)	in	dive	bouts	can	reveal	different	foraging	
strategies	performed	in	response	to	changes	in	prey	availability	to	the	
seabirds	in	the	area	visited.

2  | MATERIALS AND METHODS

2.1 | Data

Data	were	collected	 in	2014	and	2015	at	two	 locations	 in	Scotland	
(UK),	Colonsay	(56°3054N,	6°24021″W),	and	Fair	Isle	(59°22055″N,	
1°48026″W).	 Axy-	Depth	 tags	 (TechnoSmArt,	 http://www.technos-
		 mart.eu/),	 which	 comprise	 a	 tri-	axial	 accelerometer	 and	 a	 time–
depth	recorder	 (TDR),	were	deployed	 in	combination	with	GPS	tags	
(Gt-	120,	IgotU)	and	mounted	using	Tesa	tape	(Tesa,	Extra	Power)	on	
the	 backs	 of	 common	 guillemots	 and	 razorbills.	 GPS	 tags	were	 set	
to	 record	 the	 location	every	100	s,	 and	accelerometers	were	set	 to	
record	 	pressure	 (millibar,	 precision	 of	 0.5	millibar)	 and	 temperature	
(°C,	precision	of	0.1°C)	at	1	Hz	and	acceleration	in	three	dimensions	
at	25	Hz	(Chimienti	et	al.,	2016).	Data	from	four	common	guillemots	
and	five	razorbills	were	collected,	respectively,	from	Colonsay	(n = 2 
guillemots	 in	 2014)	 and	 Fair	 Isle	 (n =	5	 razorbills	 in	 2014	 and	n = 2 
guillemots	in	2015).	For	simplicity,	the	four	guillemots	will	be	referred	
to	as	COGU	1,	COGU	2,	COGU	3,	and	COGU	4.	The	five	razorbills	will	
be	referred	to	as	RAZO	1,	RAZO	2,	RAZO	3,	RAZO	4,	and	RAZO	5.

Four	razorbills	(RAZO	1-	4)	were	tracked	during	incubation	and	one	
(RAZO	5)	at	the	early-	stage	of	chick	rearing	(first	week).	COGU	1	and	
2	 (from	Colonsay)	were	tracked	during	the	chick-	rearing	period,	and	
the	other	two	guillemots	(COGU	3	and	4,	from	Fair	Isle)	were	tracked	
while	incubating.	Capture	and	handling	of	birds	were	kept	to	a	mini-
mum	(<5	min)	and	carried	out	under	license	from	the	British	Trust	for	
Ornithology.	Devices	were	 generally	 deployed	on	 consecutive	days;	
only	COGU	3	and	4	were	tracked	at	the	same	time.	The	devices	were	

F IGURE  1 Photographs	of	(a)	Razorbill	
(Alca torda)	and	(b)	common	guillemot	(Uria 
aalge)	taken	by	Marianna	Chimienti

(a) (b)

http://www.technos
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then	recovered,	when	possible,	as	soon	as	the	birds	were	back	from	a	
trip.	The	length	of	deployment	varied	from	a	minimum	of	a	few	hours	
(COGU	2	was	back	on	the	nest	after	a	very	short	trip)	to	a	maximum	
of	 five	 days.	Mean	 body	mass	was	 634.75	±	32	g	 for	 razorbills	 and	
878.75	±	76	g	for	guillemots	(Table	S1).	Sex	and	age	were	unknown.	
Animals	can	be	affected	by	the	attachment	of	devices	during	capture	
and	 handling	 (Mcmahon,	 Field,	 Bradshaw,	White,	 &	 Hindell,	 2008)	
to	 the	 psychological	 and	 physical	 stress	 of	 carrying	 a	 foreign	 body	
(Ropert-	Coudert,	 Knott,	 Chiaradia,	 &	 Kato,	 2007;	 Wilson	 &	 Duffy,	
1986).	 After	 being	 tracked,	 all	 animals	 successfully	 continued	 their	
breeding	activities.	No	signs	of	impact	arising	from	our	GPS	tracking	
were	detected	in	these	birds	(Wakefield	et	al.,	2017).

2.2 | Data preparation

Data	manipulation	and	behavioral	pattern	recognition	of	accelerome-
ter	data	were	conducted	following	the	method	developed	in	Chimienti	
et	al.	 (2016),	where	 an	 unsupervised	 learning	 algorithm	Expectation 
Maximization	was	used	to	perform	behavioral	partitioning.	A	dive	was	
defined	as	having	a	maximum	depth	of	≥1	m.	By	looking	at	the	distri-
bution	of	the	interdive	duration,	a	dive	bout	was	defined	as	to	be	a	
group	of	dives	in	which	the	interdive	durations	were	≤300	s.	Hence,	a	
dive	bout	could	be	represented	by	an	isolated	dive	or	a	group	of	dives.

In	this	study,	we	focus	on	PCE	detected	from	the	behavioral	par-
titioning	of	data	for	each	individual.	During	these	events,	animals	per-
formed	fast	and	sharp	movements	in	the	water	column,	suggesting	a	
type	 of	 activity	 that	 can	 be	 associated	with	 pursuing	 and/or	 catch-
ing	prey	underwater	(Chimienti	et	al.,	2016).	The	number	of	PCE	was	
defined	as	the	number	of	times	the	algorithm	detected	pursuing	and	
catching	events	across	an	entire	whole	dive.	The	number	of	PCE	per-
formed	and	 time	 spent	executing	each	event	varied	between	dives.	
The	total	time	spent	for	all	PCE	within	a	dive	bout	gave	the	PCT.	For	
each	dive,	maximum	dive	 depth	 and	dive	 duration	were	 also	 calcu-
lated.	For	each	bout,	we	calculated	the	time	spent	underwater,	defined	
as	the	sum	of	the	dive	durations	within	that	bout.	In	total,	661	dives	
were	recorded	in	58	dive	bouts	for	guillemots	and	6214	dives	in	156	
dive	bouts	for	razorbills	(Table	S1).

We	extracted	bathymetry	data	at	a	resolution	of	1/8	arc	minute	
(230	m)	 from	 the	 European	Marine	Observation	 and	Data	Network	
(EMODnet,	 http://www.emodnet-bathymetry.eu/).	 GPS	 positions	
were	 interpolated	 every	 100	s	 using	 the	 R	 package	 adehabitatLT	
(Calenge	2006)	to	standardize	the	sampling	interval	and	then	matched	
with	bathymetry	and	with	dive	based	on	the	starting	date	and	time	for	
each	dive.	To	distinguish	between	dives	performed	within	the	water	
column	(“pelagic	dives”)	and	dives	performed	to	the	sea	floor	(“benthic	
dives”),	we	applied	a	10	m	buffer	to	the	bathymetric	value	at	each	dive	
location.	Dives	with	a	maximum	depth	within	10	m	of	 the	sea	 floor	
were	considered	to	be	benthic.

2.3 | Individual dive models

In	 other	 diving	marine	 predators	 (e.g.,	 the	 little	 penguin	 (Eudyptula 
minor),	 Peruvian	 booby	 (Sula variegata),	 and	 Guanay	 cormorant	

(Phalacrocorax bougainvilliorum)),	 the	 distribution	 of	 prey	 capture	
events	and	dives	in	the	water	column	match	the	local	distribution	of	
their	prey	 (Boyd	et	al.,	2016;	Carroll	et	al.,	2017).	Therefore,	we	as-
sumed	that	the	number	of	PCE	performed	in	each	dive	is	a	measure	
of	 foraging	effort	occurring	 in	 the	presence	of	prey.	We	tested	 the	
hypothesis	that	the	foraging	effort	is	correlated	to	simple	dive	metrics	
such	as	maximum	dive	depth,	duration,	and	type	of	dive	performed	
(benthic	vs.	pelagic).	Furthermore,	we	tested	the	interaction	between	
dive	depth	and	duration,	hypothesizing	that	the	value	of	one	variable	
will	 depend	 on	 the	 value	 of	 the	 other.	We	 aimed	 to	 highlight	 how	
the	foraging	strategies	performed	underwater	(in	terms	of	dive	char-
acteristics,	e.g.,	depth,	duration,	and	type)	give	an	indication	of	prey	
encountered	through	the	water	column.

Due	to	the	nonlinear	relationships	within	the	data,	we	fitted	gener-
alized	additive	mixed	models	 (GAMM)	for	both	species	using	 the	gam 
function	in	the	mgcv	package	(Wood,	2006;	see	R	code	in	S2).	We	tested	
different	model	 structures	considering	both	maximum	dive	depth	and	
dive	 duration	 as	main	 effects	 and/or	 as	 interactions	within	 the	 same	
spline.	 Because	 dive	 depth	 and	 duration	 are	 on	 two	 different	 scales	
(space	and	time),	we	used	anisotropic	regression	splines	to	model	their	
interaction.	We	ran	three	different	model	structures:	additive,	additive	
plus	interaction,	and	a	model	with	only	the	interaction.	We	ran	the	mod-
els	using	maximum-	likelihood	(ML)	and	selected	the	best	structure	ac-
cording	to	AIC	(Table	S2).	As	individual	dives	were	grouped	within	dive	
bouts,	we	ran	the	models	with	bout	identity	(bout	ID)	as	a	random	effect.	
We	assumed	that	bouts	were	serially	independent	of	each	other	because	
they	were	distant	in	time.	In	all	models,	we	assumed	that	the	number	of	
PCE	followed	a	Poisson	distribution,	due	to	small	sample	size,	animal	ID	
was	used	as	a	fixed	effect.	The	random	effect	was	specified	in	the	same	
way	 as	 the	 smoothers,	 as	 penalized	 regression	 term.	 Collinearity	 be-
tween	the	variables	depth	and	duration	was	not	an	issue	for	these	mod-
els	 (variance	 inflation	 factor	<3).	Following	 the	guidelines	of	 the	mgcv 
package,	the	basis	dimension	of	the	penalized	regression	smoothers	was	
set	adequately	small,	see	specific	equations	below.	The	residuals	of	all	
the	models	performed	were	checked	for	violations	of	model	assumptions	
in	 terms	of	 residual	autocorrelation,	heterogeneity,	 and	normality.	We	
performed	the	analysis	using	R	version	3.3.1	(R	Core	Team	2016).	The	R	
code	used	for	the	models	can	be	found	in	Appendix	S2.

Razorbills	only	performed	pelagic	dives	(see	Results	sections).	For	
this	 reason,	 the	models	 for	 razorbills	 included	maximum	dive	depth	
and	duration	as	explanatory	variables	(Equations	1–3,	Table	S2).

where PCE	is	measured	at	the	individual	dive	level;	duration	and	depth	
are,	respectively,	the	duration	and	depth	of	the	dive;	fID(Duration)	and	
fID(Depth)	are	 individual-	specific	 isotropic	penalized	cubic	regression	
splines;	 and	 fID(Duration,	Depth)	 is	 an	 individual-	specific	 anisotropic	

PCE∼Poisson(λ)

(1)log (λ) = αID + fID(Duration) + fID(Depth) + Animal ID + Bout ID

(2)log (λ) = αID + fID(Duration, Depth) + Animal ID + Bout ID

(3)
log (λ) =αID + fID(Duration)+ fID(Depth)

+ fID(Duration, Depth) + Animal ID + Bout ID

http://www.emodnet-bathymetry.eu/
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bivariate	penalized	 cubic	 regression	 spline.	For	 all	models,	 the	basis	
dimension	was	set	to	5.	The	use	of	 individual-	specific	splines	allows	
for	varying	coefficient	models	according	to	each	individual.	Animal	ID	
was	set	as	a	fixed	effect	and	Bout	ID	as	a	random	effect.

Given	that	the	five	razorbills	were	tracked	from	the	same	colony,	
in	the	same	year,	and	performed	the	same	foraging	strategy,	we	also	
fitted	the	same	relationship	at	a	species	level,	by	removing	the	interac-
tion	within	the	spline	(Equations	4–6,	Table	S2).

where f(Duration)	 and	 f(Depth)	 are	 isotropic	penalized	cubic	 regres-
sion	splines,	and	f(Duration,	Depth)	is	an	anisotropic	bivariate	penal-
ized	cubic	regression	spline.	For	all	models,	the	basis	dimension	was	
set	 to	5,	Animal	 ID	was	 set	as	 fixed	effect,	 and	Bout	 ID	was	 set	as	
random	effect.

In	contrast	 to	 the	 razorbills,	 the	 four	guillemots	performed	both	
types	of	dives	 (pelagic	and	benthic,	 see	Results	 section).	The	differ-
ent	 areas	 used	 for	 foraging	 had	 different	 bathymetric	 profiles.	As	 a	
consequence,	the	number	of	PCE	was	modeled	for	the	two	different	
types	 of	 dives	 considering	 maximum	 dive	 depth	 and	 duration,	 ba-
thymetry,	animal	ID	as	fixed	effects	and	Bout	ID	as	a	random	effect	
(Equations	7–9,	Table	S2).

where fCLASS(Duration)	 and	 fCLASS(Depth)	 are	 isotropic	penalized	cubic	
regression	splines	specific	for	each	class	of	dive	 (benthic	and	pelagic),	
and fCLASS(Duration,	Depth)	 is	an	anisotropic	bivariate	penalized	cubic	
regression	spline	specific	for	each	class	of	dive.	The	bathymetry	was	also	
considered	 in	 relation	 to	 the	 type	of	dive,	 as	different	 foraging	 areas	
could	have	different	bathymetric	profiles.	The	basis	dimensions	for	the	
isotropic	and	anisotropic	splines	were	set	to	3	and	5,	respectively,	and	
Animal	ID	was	set	as	fixed	effect	and	Bout	ID	as	random	effect.

2.4 | Dive bout models

We	 tested	 the	 hypotheses	 that	 time	 spent	 underwater	 in	 a	 dive	
bout	 can	 predict	 PCT.	We	 assumed	 that	 each	 dive	 bout	 was	 an	

indication	of	the	animal	sampling	or	exploiting	a	foraging	patch.	PCT	
was	then	assumed	to	indicate	the	effort	invested	within	the	whole	
foraging	 patch.	We	 assumed	 that	 patch	 residence	 time	 (i.e.,	 time	
spent	underwater)	was	likely	to	increase	with	patch	quality	in	het-
erogeneous	 habitats	 (Calcagno,	Mailleret,	Wajnberg,	 &	 Grognard,	
2014;	Wajnberg,	Fauvergue,	&	Pons,	2000)	giving	insights	into	re-
sponses	 to	 different	 degrees	 of	 prey	 availability	 as	 perceived	 by	
the	animals.	Due	to	the	nonlinear	relationships	in	the	data	for	both	
species,	we	modeled	PCT	as	a	function	of	the	time	spent	underwa-
ter	using	GAMs	for	both	species	using	the	gam	 function	 from	the	
mgcv	package	(Equations	10	and	11).	As	our	sample	size	was	small,	
Animal	 ID	was	 set	 as	 fixed	 effect	 in	 all	models.	 The	 analysis	was	
performed	 using	 the	 Tweedie	 distribution	 because	 time	 can	 only	
have	positive	values.

where	p	 is	1.05,	Timebout	 is	 the	 time	spent	underwater	 in	 the	bout,	
and fID(Timebout)	 is	 the	 individual-	specific	penalized	cubic	 regression	
spline	 function	 of	Timebout.	 The	 basis	 dimension	was	 set	 to	 3.	This	
model	 (Equation	10)	 fitted	 the	 guillemot	 data	 poorly,	 due	mainly	 to	
overfitting	and	a	nonlinear	pattern	in	residuals.	Therefore,	both	time	
spent	catching	and	time	spent	underwater	were	log-	transformed,	and	
a	Gaussian	model	was	then	used	for	guillemots.

where fID(log(Timebout))	 is	 the	 individual-	specific	 isotropic	 penalized	
cubic	regression	spline.

2.5 | Comparison between the two species

To	observe	 the	general	pattern	among	the	 two	species	and	make	a	
comparison,	we	considered	individuals	belonging	to	the	same	species	
as	one	group	then	 looked	at	 the	 ratio	between	the	 time	spent	pur-
suing	and	catching	and	time	spent	underwater.	Both	variables,	 time	
spent	 pursuing	 and	 catching	 and	 time	 spent	 underwater,	were	 log-	
transformed,	and	we	fitted	a	linear	model	(LM)	with	the	two	species	
set	as	fixed	effect	(Equation	12).

3  | RESULTS

3.1 | Analysis of single dives

Razorbills,	tracked	in	2014	from	Fair	Isle,	performed	only	pelagic	dives	
over	a	wide	range	of	bathymetric	profiles	(Figures	2	and	7).	Common	
guillemots	showed	variability	in	the	proportion	of	benthic	and	pelagic	

PCE∼Poisson (λ)
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)
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Depth
)
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dives	 performed	 in	 different	 locations	 (Figures	2	 and	 8).	 COGU	 1	
and	COGU	2,	 tracked	 in	2014	 from	Colonsay,	 foraged	 in	 shallower	
areas	 compared	 to	 the	 other	 two	 individuals	 tracked	 from	Fair	 Isle	
(Figure	8).	COGU	1	and	COGU	2	performed	44%	and	23%	of	benthic	
dives,	respectively.	COGU	3	and	COGU	4,	tracked	in	2015	from	Fair	
Isle,	performed	7%	and	11%	of	benthic	dives,	respectively.

For	 the	models	 considering	 the	 individual	 ID	 for	 razorbills	 as	 an	
interaction	within	 the	 spline	 (Equations	1–3),	 the	model	 considering	
both	maximum	 dive	 depth	 and	 duration	 as	main	 effects	 as	well	 as	
their	 interaction	within	the	same	spline	was	the	best	fit	 (Equation	3,	
Table	 S2).	 For	 the	models	 considering	 the	 behavior	 at	 species	 level	
(Equations	4–6),	the	model	selection	indicated	that	the	model	includ-
ing	only	the	 interaction	between	maximum	dive	depth	and	duration	
was	the	best	fit	(Equation	5,	Table	S2).	Between	the	two	resultant	best	
models	(Equations	3	and	5),	the	AIC	showed	a	better	fit	for	the	model	
with	a	common	spline	for	all	individuals	(Equation	3:	R-	sq.	(adj)	=	0.26,	
AIC	=	18262.75,	Equation	5:	R-	sq.(adj)		=	0.26,	AIC	=	18261.49,	Table	
S2).	The	PCEs	performed	in	each	dive,	as	a	response	to	the	combina-
tion	of	 dive	duration	 and	dive	depth,	 generally	 increased	with	 both	

dive	time	and	depth.	Generally,	in	all	razorbills,	the	effect	of	the	inter-
action	between	duration	and	depth	was	significant	(Table	S5)	and	the	
predicted	PCEs	peaked	for	dive	duration	between	20–40	s	mainly	in	
shallow	dives	(<10	m,	Figure	3).

In	 the	 model	 considering	 different	 splines	 for	 each	Animal	 ID	
(Equation	3),	the	effect	of	dive	duration	was	significant	in	all	razor-
bills;	dive	depth	was	also	significant	in	RAZO	2	and	RAZO	3	and	the	
interaction	 between	 the	 two	variables	was	 significant	 in	 all	 razor-
bills	except	RAZO	1	 (Figs	S2,	S3	and	S4,	p-	value	<.001,	Table	S4).	
For	 RAZO	1,	 RAZO	2,	 RAZO	4,	 and	RAZO	5,	 the	 number	 of	 PCE	
increased	with	 dive	 duration	 reaching	 a	maximum	between	 2	 and	
4	for	dive	durations	between	20	and	40	s	(Fig.	S4).	Only	in	RAZO	1	
did	it	subsequently	decrease	for	longer	dive	durations.	The	response	
in	the	dive	depth	variable	showed	an	increase	in	the	number	of	PCE	
with	depth.	RAZO	3	showed	a	smaller	increase	in	the	number	of	PCE	
with	dive	duration,	with	no	saturation/plateau	as	in	the	previous	two	
individuals	 (Fig.	S4).	For	RAZO	4,	 the	highest	number	of	PCE	per-
formed	clustered	in	the	first	10	m	of	the	water	column.	For	RAZO	5,	
the	number	of	PCE	remained	stable	as	dive	depth	increased	and	the	
highest	PCE	were	performed	with	longer	and	deeper	dives	(Fig.	S4).

In	 guillemots,	 the	model	 selection	 indicated	 equal	 support	 for	
the	model	including	maximum	dive	depth	and	duration	as	main	ef-
fects	and	for	the	model	including	depth,	duration,	and	their	interac-
tion	 (Table	S2).	We	therefore	selected	 the	model	with	 the	simpler	
structure	(Equation	7).	The	analysis	of	the	number	of	PCE	performed	
in	each	dive	 in	 response	 to	dive	duration	and	dive	depth	 resulted	
in	different	predictions	for	benthic	and	pelagic	dives.	The	effect	of	
both	dive	duration	and	depth	was	significant	for	pelagic	dives,	while	
for	 benthic	 dives,	 only	 the	 effect	 of	 dive	 duration	was	 significant	
(Figure	4,	Fig.	S1,	Table	S3).	During	benthic	dives,	the	predicted	PCE	
performed	for	each	dive	slightly	declined	with	dive	depth	and	dura-
tion.	During	pelagic	dives,	 the	predicted	PCE	 increased	with	both	
dive	duration	and	depth,	increasing	from	a	minimum	value	of	about	
1.5	for	shallow	and	short	dives	(<50	m	and	<50	s)	to	over	4	in	deep	
and	long	dives	(dives	>200	m	and	>100	s)	(Figure	4,	Fig.	S1).

3.2 | Analysis of dive bouts

The	analysis	of	the	total	PCT	as	a	function	of	the	time	spent	underwater	
in	each	dive	bout	showed	different	patterns	between	the	two	species	

F IGURE  2 Proportion	of	dives	classified	
as	benthic	and	pelagic	in	four	common	
guillemots	(COGU	1–4)	and	five	razorbills	
(RAZO	1–5)

F IGURE  3 Overall	prediction	of	the	number	of	pursuit	and	
catching	events	(PCEs)	in	relation	to	dive	duration	and	depth	in	
razorbills.	The	distribution	of	the	data	used	for	the	model	is	in	Figs.	
S2	and	S3
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and	 fairly	 consistent	 results	 among	 individuals	 of	 the	 same	 species,	
especially	 in	 razorbills	 (Figure	5,	 Table	 S6	 and	 S7).	 The	 five	 razorbills	
showed	a	rapid	increase	in	the	total	PCT	as	the	time	spent	in	the	bout	
increased	up	to	1500	s.	For	longer	dive	bouts	(max	time	spent	under-
water	=	4550	s),	 the	PCT	started	to	reach	an	asymptote.	For	three	of	
the	four	guillemots,	the	PCT	in	a	dive	bout	linearly	increased	with	the	
total	time	spent	underwater.	One	guillemot,	COGU	1,	showed	a	differ-
ent	relationship	where	PCT	reached	an	asymptote	for	dive	bouts	longer	
than	1000	s.	The	analysis	of	the	comparison	of	PCT	as	a	function	of	the	
time	spent	underwater	between	the	two	species	(Figure	6)	showed	the	
ratio	between	bout	time	and	PCT	more	clearly.	The	difference	between	
the	species	was	significant	(p-	value	<.001,	Table	S8).	The	ratio	between	
PCT	and	time	spent	underwater	was	higher	in	razorbills	than	guillemots,	

indicating	that	razorbills	spend	relatively	more	time	pursuing	and	catch-
ing	than	guillemots.

4  | DISCUSSION

While	 foraging,	 predators	may	 use	 hierarchical	 foraging	 tactics,	 re-
sponding	 to	 patches	 at	 a	 variety	 of	 spatial	 and	 temporal	 scales,	 to	
maximize	their	chances	of	encountering	prey	aggregations	(Fauchald	
et	al.,	2000;	Fryxell	et	al.,	2008;	Weimerskirch	et	al.,	2005).	In	the	ma-
rine	environment,	both	predators	and	prey	can	be	highly	mobile	and	
difficult	to	monitor	simultaneously.	When	foraging,	seabirds	typically	
perform	hierarchical	movement	patterns	performing	“area-	restricted	

F IGURE  4 Prediction	of	the	number	of	pursuit	and	catching	events	(PCEs)	for	benthic	and	pelagic	dives	given	dive	duration	and	depth	in	
common	guillemots.	The	distribution	of	the	data	used	for	the	model	is	in	Fig.	S1

F IGURE  5 Total	time	spent	pursuing	
and	catching	(PCT)	predicted	by	the	time	
spent	underwater	during	a	foraging	bout	
for	individual	razorbills	(RAZO	1,	RAZO	
2,	RAZO	3,	RAZO	4	and	RAZO	5,	left	
panel)	and	common	guillemots	(COGU	1,	
COGU	2,	COGU	3,	COGU	4,	right	panel)	
Continuous	lines	indicate	model	prediction	
and	dashed	lines	±95%	confidence	intervals
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search”	 (ARS)	 movements	 or	 series	 of	 dives	 in	 each	 foraging	 loca-
tion,	 reflecting	 the	 spatial	 and	 temporal	 dynamics	 of	 food	 patches	
(Fauchald	 et	al.,	 2000;	 Regular	 et	al.,	 2013;	 Weimerskirch	 et	al.,	
2005).	As	marine	top	predators,	seabirds	have	been	shown	to	provide	
unique	insights	on	the	status	and	changes	of	marine	ecosystems	(Piatt,	
Sydeman,	&	Wiese,	2007).

In	this	study,	we	demonstrate	the	use	of	high-	frequency	foraging	
movement	 data	 to	 explore	 the	 feeding	 strategy	 of	 two	 species	 of	
diving	seabirds	in	more	detail.	We	propose	using	the	number	of	PCE	
as	 an	 indicator	 of	 the	 effort	 that	 an	 animal	 chooses	 to	 invest	 in	 a	
specific	 location	 (Thums,	Bradshaw,	Sumner,	Horsburgh,	&	Hindell,	
2013;	Watanabe	 et	al.,	 2014).	 By	 exploring	 the	 number	 of	 PCE	 in	
relation	 to	dive	depth,	 duration,	 and	 type	of	dive	performed	 (ben-
thic	vs.	pelagic),	we	highlight	sections	of	the	water	column	in	which	
animals	forage.	We	then	explore	the	use	of	PCT	in	response	to	time	
spent	underwater	within	a	dive	bout	to	highlight	patch	level	foraging	
processes.

4.1 | PCE as indicator for prey encounters in the 
water column

The	depth	distribution	of	prey	plays	an	important	role	in	how	preda-
tors	 use	 their	 habitat	 (Benoit-	Bird	 et	al.,	 2013;	 Boyd	 et	al.,	 2016;	
Carroll	et	al.,	2017).	By	exploring	the	relationship	between	the	num-
ber	of	PCE	with	dive	depth	and	duration,	we	have	shown	that	 two	
species,	 guillemots	 and	 razorbills,	 clearly	 made	 different	 decisions	
while	exploiting	the	water	column.	We	infer	that	these	different	be-
haviors	are	driven	by	differing	prey	availability.

Although	razorbills	are	capable	of	diving	deeper	to	observed	diving	
depths	beyond	35	m	(Dall’Antonia,	Gudmundsson,	&	Benvenuti,	2001;	
Thaxter	et	al.,	2010),	the	razorbills	in	our	sample	never	performed	ben-
thic	 dives	 and	 consistently	 foraged	only	 in	 the	 top	15–20	m	of	 the	
water	column	(Figures	2–3	and	Fig.	S2).	Within	each	dive,	the	depths	
at	which	the	higher	number	of	PCE	was	performed	were	variable,	sug-
gesting	 that	 prey	were	 available	 throughout	 the	 upper	 20	m	 of	 the	

F IGURE  6 Total	time	spent	pursuing	
and	catching	predicted	by	the	time	spent	
underwater	during	a	foraging	bout	for	
all	common	guillemots	and	razorbills	on	
log	scale	(ln).	Continuous	lines	indicate	
model	prediction	and	dashed	lines	±95%	
confidence	intervals

F IGURE  7 Location	of	foraging	bouts	
of	the	five	razorbills	tracked	on	Fair	Isle.	
Bathymetry	shown	in	gray	and	land	in	
white.	The	size	of	each	bout	location	
represents	time	spent	pursuing	and	
catching	(PCT)
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water	 column.	However,	 the	 time	during	 the	dive	 (between	20	 and	
40	s)	when	PCEs	were	highest	was	more	predictable	across	individu-
als.	This	timing,	and	analysis	of	dives	in	previous	work	(Chimienti	et	al.,	
2016),	suggests	that	razorbills	perform	their	catching	events	on	their	
way	back	up	 through	 the	water	 column	and	are	 therefore	 targeting	
habitats	where	prey	are	available	in	the	upper	surface	waters.

As	 shown	 in	 other	 species	 of	 diving	 seabirds,	 such	 as	 Peruvian	
booby,	Guanay	cormorant,	and	 little	penguin,	 the	probability	of	pre-
forming	foraging	dives	was	shown	to	be	predicted	by	the	vertical	dis-
tribution	of	prey	(Benoit-	Bird,	Kuletz,	Heppell,	Jones,	&	Hoover,	2011;	
Benoit-	Bird	et	al.,	2013;	Boyd	et	al.,	2016;	Carroll	et	al.,	2017).	Strong	
tidal	 currents	 and	 upwelling	 currents	 move	 prey	 toward	 the	 water	
surface	 and	 therefore	 increase	 their	 catchability	 (Embling,	 Sharples,	
Armstrong,	Palmer,	&	Scott,	2013;	Enstipp,	Grémillet,	&	Jones,	2007;	
Stevick	et	al.,	2008).	Despite	greater	physiological	capabilities	(Thaxter	
et	al.,	 2010),	 razorbills	 performed	 short	 and	 shallow	 dives	 in	 areas	
characterized	by	wide	bathymetric	variation,	 possibly	 indicating	 for-
aging	decisions	driven	by	profitability	of	the	food	patches	(Figure	7).

However,	 physical	 characteristics	might	not	 always	be	exploited	
by	 common	 guillemots	 when	 foraging	 (Benoit-	Bird	 et	al.,	 2013).	
Guillemots	 sampled	 deep	 parts	 of	 the	 water	 column	 and	 the	 sea	
floor	 (Figures	2	 and	4)	 at	 both	 locations	 in	which	 they	were	 tagged	
(Figure	8).	The	area	used	around	Colonsay	was	much	shallower	than	
the	 area	 used	 around	 Fair	 Isle.	 Different	 environmental	 conditions	
(e.g.,	type	of	prey	encountered	through	the	water	column)	and	bathy-
metric	profiles	around	the	colonies	can	have	an	impact	on	type	of	be-
havior	performed	 (Figures	8	and	S1).	Despite	already	 feeding	 in	 the	
relatively	deep	waters	around	Fair	Isle,	both	COGU	3	and	COGU	4	also	
opted	for	benthic	dives	 in	this	 region,	performing	the	deepest	dives	
ever	recorded	for	the	species,	reaching	250	m	(max	depth	previously	
recorded	177	m	(Regular,	Hedd,	&	Montevecchi,	2011)).

By	 switching	between	pelagic	 and	benthic	prey,	 and	performing	
different	PCE	between	pelagic	 and	benthic	 locations,	 diving	marine	
predators	 adjust	 their	 behavior	 to	 maximize	 the	 opportunities	 pre-
sented	 in	 the	 range	of	 trade-	offs	between	pelagic	and	benthic	prey	
availability	 (Benoit-	Bird	 et	al.,	 2011;	Thums	 et	al.,	 2013).	Guillemots	
are	 known	 to	 exploit	 a	 broad	 range	 of	 fish	 and	 invertebrate	 prey	
(Anderson	et	al.,	2014;	Elliott	et	al.,	2008),	and	it	has	been	shown	that	
the	effect	of	the	pressure	throughout	the	water	column	and	type	of	
prey	caught	can	affect	the	type	of	movement	performed	as	well	as	the	
number	of	PCE	 (Cook,	Kato,	Tanaka,	Ropert-	Coudert,	&	Bost,	2010;	
Elliott	et	al.,	2008).

Guillemots’	diving	capability	coupled	with	varying	energetic	con-
tent	 of	 different	 types	 of	 prey	 affects	 the	 level	 of	 energy	 used	 to	
perform	PCE.	Within	a	dive,	 the	majority	of	PCEs	were	usually	per-
formed	after	the	searching	phase	(bottom	of	a	dive),	but,	occasionally,	
the	PCEs	were	also	performed	during	the	ascending	phase	(Chimienti	
et	al.,	2016).	The	number	of	benthic	PCEs	slightly	increased	with	dive	
time	and	slightly	decreased	with	dive	depth.	The	foraging	areas	used	
around	 Colonsay	 were	 shallower	 than	 those	 used	 around	 Fair	 Isle	
(Figure	8).	 At	 shallower	 depths	 (e.g.,	 50	m),	 guillemots	 could	 spend	
more	 time	 searching/catching	 than	 at	 deeper	 depths	 (e.g.,	 >150	m)	
resulting	in	a	slightly	higher	number	of	PCE	in	shallow	waters	than	in	

deep	waters	and	showing	the	effect	of	the	greater	effort	required	to	
reach	deep	patches.

When	performing	pelagic	dives,	the	type	of	prey	found	in	deeper	
waters	may	be	more	worthwhile	than	the	prey	found	during	short	or	
shallow	pelagic	dives.	When	pelagic	dives	are	deeper,	PCEs	peak,	in-
dicating	prey	aggregations	found	while	exploiting	the	deeper	parts	of	
the	water	column.	Type	of	prey	caught	and	brought	back	to	the	chicks	
during	the	breeding	season	can	be	also	affected	by	atmospheric	con-
ditions.	Under	high	wind	conditions,	guillemots	switched	from	feed-
ing	their	offspring	on	schooling	fish,	to	preying	on	amphipods	caught	
while	 performing	benthic	 dives	 (Elliott	 et	al.,	 2014).	 It	 is	 not	 known	
if	by	switching	type	of	dive,	and	possibly	the	type	of	prey	pursued,	a	
different	amount	of	effort	is	required.

4.2 | Species- specific foraging strategies: responses 
to changes in prey availability

Animal	 behavior	 and	 ecology	 are	 intricately	 linked	 to	 environmen-
tal	conditions	which	are	dynamic	in	space	and	time	(Phillips,	Croxall,	
Silk,	&	Briggs,	2008;	Shaffer	et	al.,	2006;	Weimerskirch	et	al.,	2005).	
Seabirds	perform	behaviors	over	multiple	spatiotemporal	scales	(e.g.,	
dives	nested	within	dive	bouts),	and	clear	associations	are	recorded	
corresponding	 to	 biophysical	 phenomena	 that	 lead	 to	 patchiness	
(Cox,	 Scott,	&	Camphuysen,	 2013;	Pinaud,	 2007;	Pinaud,	Cherel,	&	
Weimerskirch,	2005;	Waggitt	et	al.,	2016).

F IGURE  8 Location	of	foraging	bouts	of	the	two	guillemots	
tracked	on	Colonsay	(top	panel)	and	the	two	guillemots	tracked	on	
Fair	Isle	(bottom	panel).	Bathymetry	shown	in	gray	and	land	in	white.	
The	size	of	each	bout	location	represents	time	spent	pursuing	and	
catching	(PCT)
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Within-	patch	 movements	 in	 foraging	 individuals	 have	 been	
	explained	 by	 the	 change	 in	 movement	 parameters	 based	 on	 their	
	experience	of	resource	encounters.	Earlier	studies	have	defined	and	
observed	ARS	movements	 in	 animals	 that	 reduce	movement	 speed	
and/or	increase	sinuosity	in	response	to	a	highly	clumped	resource	dis-
tribution	(Bailleul,	Lesage,	&	Hammill,	2010;	Barraquand	&	Benhamou,	
2008;	 Fauchald	 et	al.,	 2000).	By	 exploring	 the	 relationship	 between	
PCT	and	total	time	spent	underwater	in	each	foraging	bout,	we	high-
light	the	intensity	of	within-	patch	pursuing	and	catching	movements	
across	the	two	species	and	give	insights	on	patch	profitability	as	per-
ceived	by	the	animals.

PCT	within	dives	or	bouts	 should	not	be	 taken	as	a	direct	mea-
sure	of	 the	number	of	 prey	 caught.	 PCEs	 are	not	 always	 successful	
and,	 depending	 on	 the	 type	 of	 prey	 targeted	 and	 the	 type	 of	 dive	
performed	(pelagic	or	benthic),	animals	move	differently,	investing	dif-
ferent	effort,	which	 is	 translated	 into	different	numbers	of	 catching	
attempts	 recorded.	 Studies	 conducted	under	natural	 conditions	 and	
including	validation	datasets	have	used	both	bird-	borne	video	cameras	
(Ponganis	et	al.,	2000;	Takahashi	et	al.,	2004;	Watanabe	&	Takahashi,	
2013;	Watanuki	et	al.,	2008)	and	stationary	underwater	video	cameras	
(Crook	&	Davoren,	2014)	 to	observe	the	animal`s	 foraging	behavior	
and	the	type	of	prey	caught.	Data	collected	from	Adélie	penguins	high-
lighted	 the	 possibility	 of	 both	 diminishing	 return,	 increasing	 return,	
and	constant	return	gain	functions	(Watanabe	et	al.,	2014).	The	major-
ity	of	the	gain	functions	between	pursuit	and	catching	events	and	time	
spent	underwater	showed	a	sigmoid	curve,	supporting	the	assumption	
that	 the	animals	were	 feeding	on	 large	prey	aggregations	 that	were	
being	depleted	or	dispersed	over	time	(Watanabe	et	al.,	2014).

As	 observed	 in	 penguins	 (Watanabe	 et	al.,	 2014),	 razorbills	
showed	a	similar	diminishing	shape	in	the	gain	function,	calculated	as	
PCT	while	foraging	in	a	patch	(dive	bout)	(Figure	5).	About	94%	of	the	
observations	for	the	five	razorbills	in	this	study	fell	within	dive	bouts	
of	duration	<2000	s.	The	relationship	reaches	an	asymptote,	possibly	
suggesting	a	physiological	limit	in	the	amount	of	effort	that	an	individ-
ual	can	spend	within	a	bout.	The	decrease	observed	in	one	individual	
is	driven	by	two	data	points	and	should	not	be	taken	as	a	meaningful	
feature	of	the	model.	Observations	of	dive	bouts	longer	than	2000	s	
were	rare	and	also	had	a	correspondingly	high	variability	in	PCT.

According	 to	 the	marginal	value	 theorem	 (MVT),	 if	 patches	vary	
in	quality	 (profitability),	a	predator	should	 leave	the	patch	when	the	
marginal	capture	rate	falls	to	the	average	rate	for	the	habitat	(Charnov,	
1976).	As	the	animal	forages	in	the	patch,	the	availability	of	food	in	the	
patch	diminishes.	As	a	consequence,	 the	 instantaneous	 rate	of	 food	
gain	 drops.	The	 forager’s	 expectation	 of	 the	 profitability	 of	 a	 patch	
can	 be	 influenced	 by	 the	 experience	 of	 previously	 visited	 patches	
(Vásquez,	Grossi,	&	Marquez,	2006).	In	poor	patches,	where	capture	is	
rarer,	predators	might	take	longer	to	assess	the	local	profitability	than	
in	 rich	 patches	where	 prey	were	 frequently	 encountered,	with	 con-
sequent	overuse	of	poor	patches	 (Esposito,	 Incerti,	Giannino,	Russo,	
&	Mazzoleni,	2010).	The	overuse	of	poor	patches	can	 lead	to	a	 low	
expectation	of	environmental	profitability,	with	 consequent	overuse	
of	all	patches	(Esposito	et	al.,	2010).	Razorbills	often	performed	short	
dive	bouts	of	<1000	s	duration	(Figures	5–7),	which	could	represent	

very	good	foraging	patches.	The	sigmoid	effect	can	perhaps	be	an	in-
dication	of	spatial	structures	of	prey	swarms,	diminishing	food,	satiety,	
or	tiredness	affecting	the	total	 time	spent	pursuing	and	catching,	as	
well	as	the	effect	of	less	profitable	patches	after	highly	profitable	ones	
(Watanabe	et	al.,	2014;	Watkins	&	Murray,	1998).

Common	guillemots	exhibited	longer	and	deeper	dives	than	razor-
bills,	performed	fewer	dives	and	dive	bouts,	and	performed	types	of	
searching	behaviors	underwater	that	were	not	observed	in	razorbills	
(Chimienti	 et	al.,	 2016).	PCT	 is	 associated	with	events	during	which	
the	animals	might	effectively	attempt	to	catch	prey.	The	differences	
in	the	relationship	between	time	spent	underwater	and	PCT	between	
the	two	species,	as	well	as	the	distribution	of	the	data	points	around	
the	prediction,	clearly	indicate	different	foraging	choices	(Figure	6).

At	comparable	time	spent	in	a	patch	for	the	two	species,	the	time	
spent	pursuing	and	catching	was	much	 lower	 in	guillemots.	By	reach-
ing	deeper	patches	 than	 razorbills,	guillemots	 travel	 further	underwa-
ter,	probably	reducing	time	spent	in	PCE.	However,	the	cost	of	moving	
through	the	water	column	changes	with	depth	(Lovvorn,	Liggins,	Borstad,	
Calisal,	&	Mikkelsen,	2001)	and	the	type	of	prey	targeted	can	also	affect	
the	time	budget	within	a	dive.	Precise	information	on	energetic	expen-
diture	of	each	dive	and	type	of	prey	caught	can	disentangle	the	effect	of	
targeting	different	patches	on	a	cost/benefit	functional	response.

Fish	 schools	 close	 to	 the	 sea	 floor	 can	be	 larger	 and	 less	dense	
during	neap	tides	compared	to	shallow	pelagic	fish	schools	(Embling	
et	al.,	2013).	Feeding	on	deep	dispersed	pelagic	or	benthic	prey	and	
targeting	 small	 prey	patches	or	 isolated	prey	might	 require	 a	differ-
ent	foraging	strategy	than	that	employed	for	schooling	fish	(Crook	&	
Davoren,	2014;	Thums	et	al.,	 2013).	We	propose	 that	 the	observed	
species-	specific	 foraging	strategies	are	 the	 result	of	 species-	specific	
optimal	 foraging	 decisions	 taken	 according	 to	 perceived	 availability	
and	profitability	of	foraging	patches	encountered	as	a	response	to	dy-
namic	changes	in	both	prey	availability	and	characteristics	of	hetero-
geneous	environments.

In	 order	 to	 disentangle	 effects	 of	 prey	 encounter	 rate	 on	 dive	
time,	further	effort	should	be	invested	in	validating	these	new	insights	
with	data	on	prey	availability	and	distribution	and	in	building	context-	
dependent	dynamic	models	 (Morales	et	al.,	2010).	Studies	combining	
tracking	data	with	prey	 survey	data	 are	very	 rare	 (Boyd	et	al.,	 2015;	
Carroll	et	al.,	2017).	Research	on	 foraging	site	selection	and	how	se-
lection	patterns	adapt	 in	 response	 to	changes	 in	prey	availability	are	
fundamental	for	understanding	the	scale	at	which	predators	relate	to	
their	prey	and	invest	more	effort.	Furthermore,	knowledge	of	how	and	
where	predators	select	and	exploit	food	patches	would	improve	the	de-
sign	of	conservation	measures	and	the	planning	of	marine	habitat	use.

4.3 | The future of combined movement data

Tracking	devices	have	been	used	previously	as	a	method	for	quantify-
ing	 important	 areas	used	by	wild	animals	 (Block	et	al.,	2011;	Hussey	
et	al.,	2015;	Kays	et	al.,	2015).	Despite	 their	potential,	 tracking	stud-
ies	often	provide	data	on	only	a	few	individuals,	depending	on	species	
studied	and	type	of	device	used,	and	are	often	carried	out	 in	a	small	
number	of	years	because	of	the	cost	of	the	devices	or	other	logistical	
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constraints.	In	our	study,	the	small	sample	size	obtained	does	not	allow	
us	to	estimate	the	degree	of	variation	 in	the	behaviors	observed	be-
tween	 individuals	 belonging	 to	 the	 same	 colony,	 across	 colonies	 or	
years.	However,	we	can	combine	data	collected	by	traditional	tracking	
devices	with	data	collected	by	more	recent	tracking	technology,	record-
ing	orientation,	acceleration,	temperature,	and	environmental	charac-
teristics	 (Richard,	 Cox,	 Picard,	 Vacquié-	Garcia,	 &	Guinet,	 2016).	 This	
combination	allows	researchers	to	infer	information	about	habitat	se-
lection	and	animal	decision	making	across	types	of	data	and	individuals.

Recently,	a	few	studies	started	to	build	predictive	models	consid-
ering	 information	on	pursuit	and	catching	events	detected	by	accel-
erometers	 using	 dive	 data	 only	 to	 assess	 foraging	 success	 and	 test	
optimal	foraging	theory	(Foo	et	al.,	2016;	Jouma’a	et	al.,	2015;	Viviant,	
Monestiez,	&	Guinet,	 2014).	Dive	 duration	 and	 depth	 are	 generally	
good	predictors	of	PCE.	We	 further	 emphasize	 the	need	 to	 include	
additional	types	of	dive	metrics	when	inferring	foraging	success	from	
dive	data	only	(such	as	dive	type	or	shape),	especially	in	species	that	
use	the	water	column	to	search	for	and	catch	prey.

Further	research	should	also	be	directed	toward	building	models	
for	transferring	information	across	multiple	spatiotemporal	scales	and	
based	on	behavioral	information	acquired	from	different	tracking	de-
vices.	Examining	behavior	at	different	temporal	and	spatial	scales	has	
the	potential	to	reveal	animal	movement	decisions	and	reasons	for	ob-
served	changes	in	foraging	patterns.	Ultimately,	combining	multiscale	
modeling	approaches	with	behavioral	information	can	provide	an	op-
portunity	to	progress	from	the	movement	ecology	of	a	few	individuals	
to	descriptions	of	population-	level	habitat	use.

5  | CONCLUSIONS

Understanding	 how	 marine	 predators	 select	 and	 exploit	 different	
types	of	prey	patches	from	high-	frequency	movement	data	offers	the	
unique	opportunity	to	comprehend	the	behavioral	ecology	behind	dif-
ferent	movement	 patterns	 and	 improves	 our	 understanding	 of	 how	
animals	might	 respond	 to	 changes	 in	 prey	 distributions.	 By	 looking	
at	the	foraging	behavior	of	two	species	of	seabirds,	we	have	gained	
new	 insights	 into	 the	 different	 strategies	 used	when	 pursuing	 prey	
throughout	 the	water	 column.	We	propose	 that	 the	 information	 on	
pursuit	and	catching	events	can	be	used	as	a	proxy	for	perceived	prey	
availability	throughout	the	water	column.	The	variation	in	time	spent	
pursuing	and	catching	across	dive	bouts	provided	information	on	the	
behavioral	responses	to	different	levels	of	prey	availability.	Razorbills	
exploited	areas	with	high	variation	in	bathymetry	and	performed	only	
pelagic	 dives,	most	 likely	 exploiting	 fish	 aggregations	 distributed	 at	
shallow	 depths,	 as	 indicated	 by	 the	 distribution	 of	 the	 pursuit	 and	
catching	events.	In	contrast,	guillemots	were	more	flexible	in	their	be-
havior,	switching	between	benthic	and	pelagic	dives,	and	had	rates	of	
pursuit	and	catching	events	indicating	that	they	were	probably	target-
ing	different	prey	aggregations	than	razorbills.

The	analysis	performed	in	this	study	depended	on	data	collected	
at	very	fine	spatiotemporal	scales	and	was	performed	on	few	individ-
uals.	Including	such	detailed	information	in	movement	models	looking	

at	 broader	 scales	 will	 provide	 solid	 foundations	 for	 the	 analysis	 of	
long-	term	 movement	 datasets.	 These	 new	 modeling	 approaches,	
in	 conjunction	with	 fine-	scale	data	 about	prey	density	 and	distribu-
tions,	will	play	an	important	role	in	clarifying	the	type	of	habitat	and	
prey	selected	as	well	as	effort	invested	by	predators	in	specific	areas.	
Understanding	why,	where,	and	how	these	animals	use	their	habitat	
has	the	potential	to	inform	species-	specific	survey	plans	and	has	a	di-
rect	impact	when	determining	the	effects	of	anthropogenic	develop-
ments	and	changing	environments	on	foraging	behavior.
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